/- Copyright (c) 2016 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn -/ import homotopy.wedge algebra.homotopy_group homotopy.sphere types.nat open eq is_conn is_trunc pointed susp nat pi equiv is_equiv trunc fiber trunc_index -- definition iterated_loop_ptrunc_pequiv_con' (n : ℕ₋₂) (k : ℕ) (A : Type*) -- (p q : Ω[k](ptrunc (n+k) (Ω A))) : -- iterated_loop_ptrunc_pequiv n k (Ω A) (loop_mul trunc_concat p q) = -- trunc_functor2 (loop_mul concat) (iterated_loop_ptrunc_pequiv n k (Ω A) p) -- (iterated_loop_ptrunc_pequiv n k (Ω A) q) := -- begin -- revert n p q, induction k with k IH: intro n p q, -- { reflexivity}, -- { exact sorry} -- end theorem elim_type_merid_inv {A : Type} (PN : Type) (PS : Type) (Pm : A → PN ≃ PS) (a : A) : transport (susp.elim_type PN PS Pm) (merid a)⁻¹ = to_inv (Pm a) := by rewrite [tr_eq_cast_ap_fn,↑susp.elim_type,ap_inv,elim_merid]; apply cast_ua_inv_fn definition is_conn_trunc (A : Type) (n k : ℕ₋₂) [H : is_conn n A] : is_conn n (trunc k A) := begin apply is_trunc_equiv_closed, apply trunc_trunc_equiv_trunc_trunc end section open sphere sphere.ops definition psphere_succ [unfold_full] (n : ℕ) : S. (n + 1) = psusp (S. n) := idp end namespace freudenthal section /- The Freudenthal Suspension Theorem -/ parameters {A : Type*} {n : ℕ} [is_conn n A] /- This proof is ported from Agda This is the 95% version of the Freudenthal Suspension Theorem, which means that we don't prove that loop_susp_unit : A →* Ω(psusp A) is 2n-connected (if A is n-connected), but instead we only prove that it induces an equivalence on the first 2n homotopy groups. -/ definition up (a : A) : north = north :> susp A := loop_susp_unit A a definition code_merid : A → ptrunc (n + n) A → ptrunc (n + n) A := begin have is_conn n (ptrunc (n + n) A), from !is_conn_trunc, refine wedge_extension.ext n n (λ x y, ttrunc (n + n) A) _ _ _, { exact tr}, { exact id}, { reflexivity} end definition code_merid_β_left (a : A) : code_merid a pt = tr a := by apply wedge_extension.β_left definition code_merid_β_right (b : ptrunc (n + n) A) : code_merid pt b = b := by apply wedge_extension.β_right definition code_merid_coh : code_merid_β_left pt = code_merid_β_right pt := begin symmetry, apply eq_of_inv_con_eq_idp, apply wedge_extension.coh end definition is_equiv_code_merid (a : A) : is_equiv (code_merid a) := begin have Πa, is_trunc n.-2.+1 (is_equiv (code_merid a)), from λa, is_trunc_of_le _ !minus_one_le_succ, refine is_conn.elim (n.-1) _ _ a, { esimp, exact homotopy_closed id (homotopy.symm (code_merid_β_right))} end definition code_merid_equiv [constructor] (a : A) : trunc (n + n) A ≃ trunc (n + n) A := equiv.mk _ (is_equiv_code_merid a) definition code_merid_inv_pt (x : trunc (n + n) A) : (code_merid_equiv pt)⁻¹ x = x := begin refine ap010 @(is_equiv.inv _) _ x ⬝ _, { exact homotopy_closed id (homotopy.symm code_merid_β_right)}, { apply is_conn.elim_β}, { reflexivity} end definition code [unfold 4] : susp A → Type := susp.elim_type (trunc (n + n) A) (trunc (n + n) A) code_merid_equiv definition is_trunc_code (x : susp A) : is_trunc (n + n) (code x) := begin induction x with a: esimp, { exact _}, { exact _}, { apply is_prop.elimo} end local attribute is_trunc_code [instance] definition decode_north [unfold 4] : code north → trunc (n + n) (north = north :> susp A) := trunc_functor (n + n) up definition decode_north_pt : decode_north (tr pt) = tr idp := ap tr !con.right_inv definition decode_south [unfold 4] : code south → trunc (n + n) (north = south :> susp A) := trunc_functor (n + n) merid definition encode' {x : susp A} (p : north = x) : code x := transport code p (tr pt) definition encode [unfold 5] {x : susp A} (p : trunc (n + n) (north = x)) : code x := begin induction p with p, exact transport code p (tr pt) end theorem encode_decode_north (c : code north) : encode (decode_north c) = c := begin have H : Πc, is_trunc (n + n) (encode (decode_north c) = c), from _, esimp at *, induction c with a, rewrite [↑[encode, decode_north, up, code], con_tr, elim_type_merid, ▸*, code_merid_β_left, elim_type_merid_inv, ▸*, code_merid_inv_pt] end definition decode_coh_f (a : A) : tr (up pt) =[merid a] decode_south (code_merid a (tr pt)) := begin refine _ ⬝op ap decode_south (code_merid_β_left a)⁻¹, apply trunc_pathover, apply eq_pathover_constant_left_id_right, apply square_of_eq, exact whisker_right !con.right_inv (merid a) end definition decode_coh_g (a' : A) : tr (up a') =[merid pt] decode_south (code_merid pt (tr a')) := begin refine _ ⬝op ap decode_south (code_merid_β_right (tr a'))⁻¹, apply trunc_pathover, apply eq_pathover_constant_left_id_right, apply square_of_eq, refine !inv_con_cancel_right ⬝ !idp_con⁻¹ end definition decode_coh_lem {A : Type} {a a' : A} (p : a = a') : whisker_right (con.right_inv p) p = inv_con_cancel_right p p ⬝ (idp_con p)⁻¹ := by induction p; reflexivity theorem decode_coh (a : A) : decode_north =[merid a] decode_south := begin apply arrow_pathover_left, intro c, esimp at *, induction c with a', rewrite [↑code, elim_type_merid, ▸*], refine wedge_extension.ext n n _ _ _ _ a a', { exact decode_coh_f}, { exact decode_coh_g}, { clear a a', unfold [decode_coh_f, decode_coh_g], refine ap011 concato_eq _ _, { refine ap (λp, trunc_pathover (eq_pathover_constant_left_id_right (square_of_eq p))) _, apply decode_coh_lem}, { apply ap (λp, ap decode_south p⁻¹), apply code_merid_coh}} end definition decode [unfold 4] {x : susp A} (c : code x) : trunc (n + n) (north = x) := begin induction x with a, { exact decode_north c}, { exact decode_south c}, { exact decode_coh a} end theorem decode_encode {x : susp A} (p : trunc (n + n) (north = x)) : decode (encode p) = p := begin induction p with p, induction p, esimp, apply decode_north_pt end parameters (A n) definition equiv' : trunc (n + n) A ≃ trunc (n + n) (Ω (psusp A)) := equiv.MK decode_north encode decode_encode encode_decode_north definition pequiv' : ptrunc (n + n) A ≃* ptrunc (n + n) (Ω (psusp A)) := pequiv_of_equiv equiv' decode_north_pt -- We don't prove this: -- theorem freudenthal_suspension : is_conn_fun (n+n) (loop_susp_unit A) := end end freudenthal open algebra definition freudenthal_pequiv (A : Type*) {n k : ℕ} [is_conn n A] (H : k ≤ 2 * n) : ptrunc k A ≃* ptrunc k (Ω (psusp A)) := have H' : k ≤[ℕ₋₂] n + n, by rewrite [mul.comm at H, -algebra.zero_add n at {1}]; exact of_nat_le_of_nat H, ptrunc_pequiv_ptrunc_of_le H' (freudenthal.pequiv' A n) definition freudenthal_equiv {A : Type*} {n k : ℕ} [is_conn n A] (H : k ≤ 2 * n) : trunc k A ≃ trunc k (Ω (psusp A)) := freudenthal_pequiv A H namespace sphere open ops algebra pointed function -- replace with definition in algebra.homotopy_group definition phomotopy_group_succ_in2 (A : Type*) (n : ℕ) : π*[n + 1] A = π*[n] Ω A :> Type* := ap (ptrunc 0) (loop_space_succ_eq_in A n) definition stability_pequiv_helper (k n : ℕ) (H : k + 2 ≤ 2 * n) : ptrunc k (Ω(psusp (S. n))) ≃* ptrunc k (S. n) := begin have H' : k ≤ 2 * pred n, begin rewrite [mul_pred_right], change pred (pred (k + 2)) ≤ pred (pred (2 * n)), apply pred_le_pred, apply pred_le_pred, exact H end, have is_conn (of_nat (pred n)) (S. n), begin cases n with n, { exfalso, exact not_succ_le_zero _ H}, { esimp, apply is_conn_psphere} end, symmetry, exact freudenthal_pequiv (S. n) H' end definition stability_pequiv (k n : ℕ) (H : k + 2 ≤ 2 * n) : π*[k + 1] (S. (n+1)) ≃* π*[k] (S. n) := begin refine pequiv_of_eq (phomotopy_group_succ_in2 (S. (n+1)) k) ⬝e* _, rewrite psphere_succ, refine !phomotopy_group_pequiv_loop_ptrunc ⬝e* _, refine loopn_pequiv_loopn k (stability_pequiv_helper k n H) ⬝e* _, exact !phomotopy_group_pequiv_loop_ptrunc⁻¹ᵉ*, end -- change some "+1"'s intro succ's to avoid this definition (or vice versa) definition group_homotopy_group2 [instance] (k : ℕ) (A : Type*) : group (carrier (ptrunctype.to_pType (π*[k + 1] A))) := group_homotopy_group k A definition loop_pequiv_loop_con {A B : Type*} (f : A ≃* B) (p q : Ω A) : loop_pequiv_loop f (p ⬝ q) = loop_pequiv_loop f p ⬝ loop_pequiv_loop f q := loopn_pequiv_loopn_con 0 f p q definition iterated_loop_ptrunc_pequiv_con {n : ℕ₋₂} {k : ℕ} {A : Type*} (p q : Ω[succ k] (ptrunc (n+succ k) A)) : iterated_loop_ptrunc_pequiv n (succ k) A (p ⬝ q) = trunc_concat (iterated_loop_ptrunc_pequiv n (succ k) A p) (iterated_loop_ptrunc_pequiv n (succ k) A q) := begin refine _ ⬝ loop_ptrunc_pequiv_con _ _, exact ap !loop_ptrunc_pequiv !loop_pequiv_loop_con end theorem inv_respect_binary_operation {A B : Type} (f : A ≃ B) (mA : A → A → A) (mB : B → B → B) (p : Πa₁ a₂, f (mA a₁ a₂) = mB (f a₁) (f a₂)) (b₁ b₂ : B) : f⁻¹ (mB b₁ b₂) = mA (f⁻¹ b₁) (f⁻¹ b₂) := begin refine is_equiv_rect' f⁻¹ _ _ b₁, refine is_equiv_rect' f⁻¹ _ _ b₂, intros a₂ a₁, apply inv_eq_of_eq, symmetry, exact p a₁ a₂ end definition iterated_loop_ptrunc_pequiv_inv_con {n : ℕ₋₂} {k : ℕ} {A : Type*} (p q : ptrunc n (Ω[succ k] A)) : (iterated_loop_ptrunc_pequiv n (succ k) A)⁻¹ᵉ* (trunc_concat p q) = (iterated_loop_ptrunc_pequiv n (succ k) A)⁻¹ᵉ* p ⬝ (iterated_loop_ptrunc_pequiv n (succ k) A)⁻¹ᵉ* q := inv_respect_binary_operation (iterated_loop_ptrunc_pequiv n (succ k) A) concat trunc_concat (@iterated_loop_ptrunc_pequiv_con n k A) p q definition phomotopy_group_pequiv_loop_ptrunc_con {k : ℕ} {A : Type*} (p q : πg[k +1] A) : phomotopy_group_pequiv_loop_ptrunc (succ k) A (p * q) = phomotopy_group_pequiv_loop_ptrunc (succ k) A p ⬝ phomotopy_group_pequiv_loop_ptrunc (succ k) A q := begin refine _ ⬝ !loopn_pequiv_loopn_con, exact ap (loopn_pequiv_loopn _ _) !iterated_loop_ptrunc_pequiv_inv_con end definition phomotopy_group_pequiv_loop_ptrunc_inv_con {k : ℕ} {A : Type*} (p q : Ω[succ k] (ptrunc (succ k) A)) : (phomotopy_group_pequiv_loop_ptrunc (succ k) A)⁻¹ᵉ* (p ⬝ q) = (phomotopy_group_pequiv_loop_ptrunc (succ k) A)⁻¹ᵉ* p * (phomotopy_group_pequiv_loop_ptrunc (succ k) A)⁻¹ᵉ* q := inv_respect_binary_operation (phomotopy_group_pequiv_loop_ptrunc (succ k) A) mul concat (@phomotopy_group_pequiv_loop_ptrunc_con k A) p q definition tcast [constructor] {n : ℕ₋₂} {A B : n-Type*} (p : A = B) : A →* B := pcast (ap ptrunctype.to_pType p) definition tr_mul_tr {n : ℕ} {A : Type*} (p q : Ω[succ n] A) : tr p *[π[n + 1] A] tr q = tr (p ⬝ q) := idp -- use this in proof for ghomotopy_group_succ_in definition phomotopy_group_succ_in2_con {A : Type*} {n : ℕ} (g h : πg[succ n +1] A) : pcast (phomotopy_group_succ_in2 A (succ n)) (g * h) = pcast (phomotopy_group_succ_in2 A (succ n)) g * pcast (phomotopy_group_succ_in2 A (succ n)) h := begin induction g with p, induction h with q, esimp, rewrite [-+tr_eq_cast_ap, ↑phomotopy_group_succ_in2, -+tr_compose], refine ap (transport _ _) !tr_mul_tr ⬝ _, rewrite [+trunc_transport], apply ap tr, apply loop_space_succ_eq_in_concat, end definition stability_eq (k n : ℕ) (H : k + 3 ≤ 2 * n) : πg[k+1 +1] (S. (n+1)) = πg[k+1] (S. n) := begin fapply Group_eq, { exact equiv_of_pequiv (stability_pequiv (succ k) n H)}, { intro g h, refine _ ⬝ !phomotopy_group_pequiv_loop_ptrunc_inv_con, apply ap !phomotopy_group_pequiv_loop_ptrunc⁻¹ᵉ*, refine ap (loopn_pequiv_loopn _ _) _ ⬝ !loopn_pequiv_loopn_con, refine ap !phomotopy_group_pequiv_loop_ptrunc _ ⬝ !phomotopy_group_pequiv_loop_ptrunc_con, apply phomotopy_group_succ_in2_con } end end sphere