/- submodules and quotient modules -/ -- Authors: Floris van Doorn import .left_module .quotient_group open algebra eq group sigma sigma.ops is_trunc function trunc equiv is_equiv -- move to subgroup attribute normal_subgroup_rel._trans_of_to_subgroup_rel [unfold 2] attribute normal_subgroup_rel.to_subgroup_rel [constructor] definition is_equiv_incl_of_subgroup {G : Group} (H : subgroup_rel G) (h : Πg, H g) : is_equiv (incl_of_subgroup H) := have is_surjective (incl_of_subgroup H), begin intro g, exact image.mk ⟨g, h g⟩ idp end, have is_embedding (incl_of_subgroup H), from is_embedding_incl_of_subgroup H, function.is_equiv_of_is_surjective_of_is_embedding (incl_of_subgroup H) definition subgroup_isomorphism [constructor] {G : Group} (H : subgroup_rel G) (h : Πg, H g) : subgroup H ≃g G := isomorphism.mk _ (is_equiv_incl_of_subgroup H h) definition is_equiv_qg_map {G : Group} (H : normal_subgroup_rel G) (H₂ : Π⦃g⦄, H g → g = 1) : is_equiv (qg_map H) := set_quotient.is_equiv_class_of _ (λg h r, eq_of_mul_inv_eq_one (H₂ r)) definition quotient_group_isomorphism [constructor] {G : Group} (H : normal_subgroup_rel G) (h : Πg, H g → g = 1) : quotient_group H ≃g G := (isomorphism.mk _ (is_equiv_qg_map H h))⁻¹ᵍ definition is_equiv_ab_qg_map {G : AbGroup} (H : subgroup_rel G) (h : Π⦃g⦄, H g → g = 1) : is_equiv (ab_qg_map H) := proof is_equiv_qg_map _ h qed definition ab_quotient_group_isomorphism [constructor] {G : AbGroup} (H : subgroup_rel G) (h : Πg, H g → g = 1) : quotient_ab_group H ≃g G := (isomorphism.mk _ (is_equiv_ab_qg_map H h))⁻¹ᵍ namespace left_module /- submodules -/ variables {R : Ring} {M M₁ M₂ M₃ : LeftModule R} {m m₁ m₂ : M} structure submodule_rel (M : LeftModule R) : Type := (S : M → Prop) (Szero : S 0) (Sadd : Π⦃g h⦄, S g → S h → S (g + h)) (Ssmul : Π⦃g⦄ (r : R), S g → S (r • g)) definition contains_zero := @submodule_rel.Szero definition contains_add := @submodule_rel.Sadd definition contains_smul := @submodule_rel.Ssmul attribute submodule_rel.S [coercion] theorem contains_neg (S : submodule_rel M) ⦃m⦄ (H : S m) : S (-m) := transport (λx, S x) (neg_one_smul m) (contains_smul S (- 1) H) theorem is_normal_submodule (S : submodule_rel M) ⦃m₁ m₂⦄ (H : S m₁) : S (m₂ + m₁ + (-m₂)) := transport (λx, S x) (by rewrite [add.comm, neg_add_cancel_left]) H open submodule_rel variables {S : submodule_rel M} definition subgroup_rel_of_submodule_rel [constructor] (S : submodule_rel M) : subgroup_rel (AddGroup_of_AddAbGroup M) := subgroup_rel.mk S (contains_zero S) (contains_add S) (contains_neg S) definition submodule_rel_of_subgroup_rel [constructor] (S : subgroup_rel (AddGroup_of_AddAbGroup M)) (h : Π⦃g⦄ (r : R), S g → S (r • g)) : submodule_rel M := submodule_rel.mk S (subgroup_has_one S) @(subgroup_respect_mul S) h definition submodule' (S : submodule_rel M) : AddAbGroup := ab_subgroup (subgroup_rel_of_submodule_rel S) definition submodule_smul [constructor] (S : submodule_rel M) (r : R) : submodule' S →a submodule' S := ab_subgroup_functor (smul_homomorphism M r) (λg, contains_smul S r) definition submodule_smul_right_distrib (r s : R) (n : submodule' S) : submodule_smul S (r + s) n = submodule_smul S r n + submodule_smul S s n := begin refine subgroup_functor_homotopy _ _ _ n ⬝ !subgroup_functor_mul⁻¹, intro m, exact to_smul_right_distrib r s m end definition submodule_mul_smul' (r s : R) (n : submodule' S) : submodule_smul S (r * s) n = (submodule_smul S r ∘g submodule_smul S s) n := begin refine subgroup_functor_homotopy _ _ _ n ⬝ (subgroup_functor_compose _ _ _ _ n)⁻¹ᵖ, intro m, exact to_mul_smul r s m end definition submodule_mul_smul (r s : R) (n : submodule' S) : submodule_smul S (r * s) n = submodule_smul S r (submodule_smul S s n) := by rexact submodule_mul_smul' r s n definition submodule_one_smul (n : submodule' S) : submodule_smul S 1 n = n := begin refine subgroup_functor_homotopy _ _ _ n ⬝ !subgroup_functor_gid, intro m, exact to_one_smul m end definition submodule (S : submodule_rel M) : LeftModule R := LeftModule_of_AddAbGroup (submodule' S) (submodule_smul S) (λr, homomorphism.addstruct (submodule_smul S r)) submodule_smul_right_distrib submodule_mul_smul submodule_one_smul definition submodule_incl [constructor] (S : submodule_rel M) : submodule S →lm M := lm_homomorphism_of_group_homomorphism (incl_of_subgroup _) begin intro r m, induction m with m hm, reflexivity end definition hom_lift [constructor] {K : submodule_rel M₂} (φ : M₁ →lm M₂) (h : Π (m : M₁), K (φ m)) : M₁ →lm submodule K := lm_homomorphism_of_group_homomorphism (hom_lift (group_homomorphism_of_lm_homomorphism φ) _ h) begin intro r g, exact subtype_eq (to_respect_smul φ r g) end definition submodule_functor [constructor] {S : submodule_rel M₁} {K : submodule_rel M₂} (φ : M₁ →lm M₂) (h : Π (m : M₁), S m → K (φ m)) : submodule S →lm submodule K := hom_lift (φ ∘lm submodule_incl S) (by intro m; exact h m.1 m.2) definition hom_lift_compose {K : submodule_rel M₃} (φ : M₂ →lm M₃) (h : Π (m : M₂), K (φ m)) (ψ : M₁ →lm M₂) : hom_lift φ h ∘lm ψ ~ hom_lift (φ ∘lm ψ) proof (λm, h (ψ m)) qed := by reflexivity definition hom_lift_homotopy {K : submodule_rel M₂} {φ : M₁ →lm M₂} {h : Π (m : M₁), K (φ m)} {φ' : M₁ →lm M₂} {h' : Π (m : M₁), K (φ' m)} (p : φ ~ φ') : hom_lift φ h ~ hom_lift φ' h' := λg, subtype_eq (p g) definition incl_smul (S : submodule_rel M) (r : R) (m : M) (h : S m) : r • ⟨m, h⟩ = ⟨_, contains_smul S r h⟩ :> submodule S := by reflexivity definition submodule_rel_submodule [constructor] (S₂ S₁ : submodule_rel M) : submodule_rel (submodule S₂) := submodule_rel.mk (λm, S₁ (submodule_incl S₂ m)) (contains_zero S₁) (λm n p q, contains_add S₁ p q) begin intro m r p, induction m with m hm, exact contains_smul S₁ r p end definition submodule_rel_submodule_trivial [constructor] {S₂ S₁ : submodule_rel M} (h : Π⦃m⦄, S₁ m → m = 0) ⦃m : submodule S₂⦄ (Sm : submodule_rel_submodule S₂ S₁ m) : m = 0 := begin fapply subtype_eq, apply h Sm end definition is_prop_submodule (S : submodule_rel M) [H : is_prop M] : is_prop (submodule S) := begin apply @is_trunc_sigma, exact H end local attribute is_prop_submodule [instance] definition is_contr_submodule [instance] (S : submodule_rel M) [is_contr M] : is_contr (submodule S) := is_contr_of_inhabited_prop 0 definition submodule_isomorphism [constructor] (S : submodule_rel M) (h : Πg, S g) : submodule S ≃lm M := isomorphism.mk (submodule_incl S) (is_equiv_incl_of_subgroup (subgroup_rel_of_submodule_rel S) h) /- quotient modules -/ definition quotient_module' (S : submodule_rel M) : AddAbGroup := quotient_ab_group (subgroup_rel_of_submodule_rel S) definition quotient_module_smul [constructor] (S : submodule_rel M) (r : R) : quotient_module' S →a quotient_module' S := quotient_ab_group_functor (smul_homomorphism M r) (λg, contains_smul S r) definition quotient_module_smul_right_distrib (r s : R) (n : quotient_module' S) : quotient_module_smul S (r + s) n = quotient_module_smul S r n + quotient_module_smul S s n := begin refine quotient_group_functor_homotopy _ _ _ n ⬝ !quotient_group_functor_mul⁻¹, intro m, exact to_smul_right_distrib r s m end definition quotient_module_mul_smul' (r s : R) (n : quotient_module' S) : quotient_module_smul S (r * s) n = (quotient_module_smul S r ∘g quotient_module_smul S s) n := begin refine quotient_group_functor_homotopy _ _ _ n ⬝ (quotient_group_functor_compose _ _ _ _ n)⁻¹ᵖ, intro m, exact to_mul_smul r s m end definition quotient_module_mul_smul (r s : R) (n : quotient_module' S) : quotient_module_smul S (r * s) n = quotient_module_smul S r (quotient_module_smul S s n) := by rexact quotient_module_mul_smul' r s n definition quotient_module_one_smul (n : quotient_module' S) : quotient_module_smul S 1 n = n := begin refine quotient_group_functor_homotopy _ _ _ n ⬝ !quotient_group_functor_gid, intro m, exact to_one_smul m end definition quotient_module (S : submodule_rel M) : LeftModule R := LeftModule_of_AddAbGroup (quotient_module' S) (quotient_module_smul S) (λr, homomorphism.addstruct (quotient_module_smul S r)) quotient_module_smul_right_distrib quotient_module_mul_smul quotient_module_one_smul definition quotient_map [constructor] (S : submodule_rel M) : M →lm quotient_module S := lm_homomorphism_of_group_homomorphism (ab_qg_map _) (λr g, idp) definition quotient_map_eq_zero (m : M) (H : S m) : quotient_map S m = 0 := qg_map_eq_one _ H definition rel_of_quotient_map_eq_zero (m : M) (H : quotient_map S m = 0) : S m := rel_of_qg_map_eq_one m H definition quotient_elim [constructor] (φ : M →lm M₂) (H : Π⦃m⦄, S m → φ m = 0) : quotient_module S →lm M₂ := lm_homomorphism_of_group_homomorphism (quotient_group_elim (group_homomorphism_of_lm_homomorphism φ) H) begin intro r m, esimp, induction m using set_quotient.rec_prop with m, exact to_respect_smul φ r m end definition is_prop_quotient_module (S : submodule_rel M) [H : is_prop M] : is_prop (quotient_module S) := begin apply @set_quotient.is_trunc_set_quotient, exact H end local attribute is_prop_quotient_module [instance] definition is_contr_quotient_module [instance] (S : submodule_rel M) [is_contr M] : is_contr (quotient_module S) := is_contr_of_inhabited_prop 0 definition quotient_module_isomorphism [constructor] (S : submodule_rel M) (h : Π⦃m⦄, S m → m = 0) : quotient_module S ≃lm M := (isomorphism.mk (quotient_map S) (is_equiv_ab_qg_map (subgroup_rel_of_submodule_rel S) h))⁻¹ˡᵐ /- specific submodules -/ definition has_scalar_image (φ : M₁ →lm M₂) ⦃m : M₂⦄ (r : R) (h : image φ m) : image φ (r • m) := begin induction h with m' p, apply image.mk (r • m'), refine to_respect_smul φ r m' ⬝ ap (λx, r • x) p, end definition image_rel [constructor] (φ : M₁ →lm M₂) : submodule_rel M₂ := submodule_rel_of_subgroup_rel (image_subgroup (group_homomorphism_of_lm_homomorphism φ)) (has_scalar_image φ) definition image_rel_trivial (φ : M₁ →lm M₂) [H : is_contr M₁] ⦃m : M₂⦄ (h : image_rel φ m) : m = 0 := begin refine image.rec _ h, intro x p, refine p⁻¹ ⬝ ap φ _ ⬝ to_respect_zero φ, apply @is_prop.elim, apply is_trunc_succ, exact H end definition image_module [constructor] (φ : M₁ →lm M₂) : LeftModule R := submodule (image_rel φ) -- unfortunately this is note definitionally equal: -- definition foo (φ : M₁ →lm M₂) : -- (image_module φ : AddAbGroup) = image (group_homomorphism_of_lm_homomorphism φ) := -- by reflexivity definition image_lift [constructor] (φ : M₁ →lm M₂) : M₁ →lm image_module φ := hom_lift φ (λm, image.mk m idp) definition is_surjective_image_lift (φ : M₁ →lm M₂) : is_surjective (image_lift φ) := begin refine total_image.rec _, intro m, exact image.mk m (subtype_eq idp) end variables {ψ : M₂ →lm M₃} {φ : M₁ →lm M₂} {θ : M₁ →lm M₃} definition image_elim [constructor] (θ : M₁ →lm M₃) (h : Π⦃g⦄, φ g = 0 → θ g = 0) : image_module φ →lm M₃ := begin refine homomorphism.mk (image_elim (group_homomorphism_of_lm_homomorphism θ) h) _, split, { exact homomorphism.struct (image_elim (group_homomorphism_of_lm_homomorphism θ) _) }, { intro r, refine @total_image.rec _ _ _ _ (λx, !is_trunc_eq) _, intro g, apply to_respect_smul } end definition image_elim_compute (h : Π⦃g⦄, φ g = 0 → θ g = 0) : image_elim θ h ∘lm image_lift φ ~ θ := begin reflexivity end -- definition image_elim_hom_lift (ψ : M →lm M₂) (h : Π⦃g⦄, φ g = 0 → θ g = 0) : -- image_elim θ h ∘lm hom_lift ψ _ ~ _ := -- begin -- reflexivity -- end definition is_contr_image_module [instance] (φ : M₁ →lm M₂) [is_contr M₂] : is_contr (image_module φ) := !is_contr_submodule definition is_contr_image_module_of_is_contr_dom (φ : M₁ →lm M₂) [is_contr M₁] : is_contr (image_module φ) := is_contr.mk 0 begin have Π(x : image_module φ), is_prop (0 = x), from _, apply @total_image.rec, exact this, intro m, induction (is_prop.elim 0 m), apply subtype_eq, exact (to_respect_zero φ)⁻¹ end definition image_module_isomorphism [constructor] (φ : M₁ →lm M₂) (H : is_surjective φ) : image_module φ ≃lm M₂ := submodule_isomorphism _ H definition has_scalar_kernel (φ : M₁ →lm M₂) ⦃m : M₁⦄ (r : R) (p : φ m = 0) : φ (r • m) = 0 := begin refine to_respect_smul φ r m ⬝ ap (λx, r • x) p ⬝ smul_zero r, end definition kernel_rel [constructor] (φ : M₁ →lm M₂) : submodule_rel M₁ := submodule_rel_of_subgroup_rel (kernel_subgroup (group_homomorphism_of_lm_homomorphism φ)) (has_scalar_kernel φ) definition kernel_rel_full (φ : M₁ →lm M₂) [is_contr M₂] (m : M₁) : kernel_rel φ m := !is_prop.elim definition kernel_module [constructor] (φ : M₁ →lm M₂) : LeftModule R := submodule (kernel_rel φ) definition is_contr_kernel_module [instance] (φ : M₁ →lm M₂) [is_contr M₁] : is_contr (kernel_module φ) := !is_contr_submodule definition kernel_module_isomorphism [constructor] (φ : M₁ →lm M₂) [is_contr M₂] : kernel_module φ ≃lm M₁ := submodule_isomorphism _ (kernel_rel_full φ) definition homology (ψ : M₂ →lm M₃) (φ : M₁ →lm M₂) : LeftModule R := @quotient_module R (submodule (kernel_rel ψ)) (submodule_rel_submodule _ (image_rel φ)) definition homology.mk (φ : M₁ →lm M₂) (m : M₂) (h : ψ m = 0) : homology ψ φ := quotient_map _ ⟨m, h⟩ definition homology_eq0 {m : M₂} {hm : ψ m = 0} (h : image φ m) : homology.mk φ m hm = 0 := ab_qg_map_eq_one _ h definition homology_eq0' {m : M₂} {hm : ψ m = 0} (h : image φ m): homology.mk φ m hm = homology.mk φ 0 (to_respect_zero ψ) := ab_qg_map_eq_one _ h definition homology_eq {m n : M₂} {hm : ψ m = 0} {hn : ψ n = 0} (h : image φ (m - n)) : homology.mk φ m hm = homology.mk φ n hn := eq_of_sub_eq_zero (homology_eq0 h) definition homology_elim [constructor] (θ : M₂ →lm M) (H : Πm, θ (φ m) = 0) : homology ψ φ →lm M := quotient_elim (θ ∘lm submodule_incl _) begin intro m x, induction m with m h, esimp at *, induction x with v, induction v with m' p, exact ap θ p⁻¹ ⬝ H m' end definition is_contr_homology [instance] (ψ : M₂ →lm M₃) (φ : M₁ →lm M₂) [is_contr M₂] : is_contr (homology ψ φ) := begin apply @is_contr_quotient_module end definition homology_isomorphism [constructor] (ψ : M₂ →lm M₃) (φ : M₁ →lm M₂) [is_contr M₁] [is_contr M₃] : homology ψ φ ≃lm M₂ := quotient_module_isomorphism _ (submodule_rel_submodule_trivial (image_rel_trivial φ)) ⬝lm !kernel_module_isomorphism -- remove: -- definition homology.rec (P : homology ψ φ → Type) -- [H : Πx, is_set (P x)] (h₀ : Π(m : M₂) (h : ψ m = 0), P (homology.mk m h)) -- (h₁ : Π(m : M₂) (h : ψ m = 0) (k : image φ m), h₀ m h =[homology_eq0' k] h₀ 0 (to_respect_zero ψ)) -- : Πx, P x := -- begin -- refine @set_quotient.rec _ _ _ H _ _, -- { intro v, induction v with m h, exact h₀ m h }, -- { intro v v', induction v with m hm, induction v' with n hn, -- intro h, -- note x := h₁ (m - n) _ h, -- esimp, -- exact change_path _ _, -- } -- end -- definition quotient.rec (P : quotient_group N → Type) -- [H : Πx, is_set (P x)] (h₀ : Π(g : G), P (qg_map N g)) -- -- (h₀_mul : Π(g h : G), h₀ (g * h)) -- (h₁ : Π(g : G) (h : N g), h₀ g =[qg_map_eq_one g h] h₀ 1) -- : Πx, P x := -- begin -- refine @set_quotient.rec _ _ _ H _ _, -- { intro g, exact h₀ g }, -- { intro g g' h, -- note x := h₁ (g * g'⁻¹) h, -- } -- -- { intro v, induction }, -- -- { intro v v', induction v with m hm, induction v' with n hn, -- -- intro h, -- -- note x := h₁ (m - n) _ h, -- -- esimp, -- -- exact change_path _ _, -- -- } -- end end left_module