import ..algebra.spectral_sequence .strunc .cohomology open eq spectrum trunc is_trunc pointed int EM algebra left_module fiber lift equiv is_equiv cohomology group sigma unit is_conn set_option pp.binder_types true /- Eilenberg MacLane spaces are the fibers of the Postnikov system of a type -/ namespace pointed definition postnikov_map [constructor] (A : Type*) (n : ℕ₋₂) : ptrunc (n.+1) A →* ptrunc n A := ptrunc.elim (n.+1) !ptr definition ptrunc_functor_postnikov_map {A B : Type*} (n : ℕ₋₂) (f : A →* B) : ptrunc_functor n f ∘* postnikov_map A n ~* ptrunc.elim (n.+1) (!ptr ∘* f) := begin fapply phomotopy.mk, { intro x, induction x with a, reflexivity }, { reflexivity } end section open nat group definition pfiber_postnikov_map (A : Type*) (n : ℕ) : pfiber (postnikov_map A n) ≃* EM_type A (n+1) := begin symmetry, apply EM_type_pequiv, { symmetry, refine _ ⬝g ghomotopy_group_ptrunc (n+1) A, exact chain_complex.LES_isomorphism_of_trivial_cod _ _ (trivial_homotopy_group_of_is_trunc _ (self_lt_succ n)) (trivial_homotopy_group_of_is_trunc _ (le_succ _)) }, { apply is_conn_fun_trunc_elim, apply is_conn_fun_tr }, { have is_trunc (n+1) (ptrunc n.+1 A), from !is_trunc_trunc, have is_trunc ((n+1).+1) (ptrunc n A), by do 2 apply is_trunc_succ, apply is_trunc_trunc, apply is_trunc_pfiber } end end definition postnikov_map_natural {A B : Type*} (f : A →* B) (n : ℕ₋₂) : psquare (postnikov_map A n) (postnikov_map B n) (ptrunc_functor (n.+1) f) (ptrunc_functor n f) := !ptrunc_functor_postnikov_map ⬝* !ptrunc_elim_ptrunc_functor⁻¹* definition is_equiv_postnikov_map (A : Type*) {n k : ℕ₋₂} [HA : is_trunc k A] (H : k ≤ n) : is_equiv (postnikov_map A n) := begin apply is_equiv_of_equiv_of_homotopy (ptrunc_pequiv_ptrunc_of_is_trunc (trunc_index.le.step H) H HA), intro x, induction x, reflexivity end definition encode_ap1_gen_tr (n : ℕ₋₂) {A : Type*} {a a' : A} (p : a = a') : trunc.encode (ap1_gen tr idp idp p) = tr p :> trunc n (a = a') := by induction p; reflexivity definition ap1_postnikov_map (A : Type*) (n : ℕ₋₂) : psquare (Ω→ (postnikov_map A (n.+1))) (postnikov_map (Ω A) n) (loop_ptrunc_pequiv (n.+1) A) (loop_ptrunc_pequiv n A) := have psquare (postnikov_map (Ω A) n) (Ω→ (postnikov_map A (n.+1))) (loop_ptrunc_pequiv (n.+1) A)⁻¹ᵉ* (loop_ptrunc_pequiv n A)⁻¹ᵉ*, begin refine _ ⬝* !ap1_ptrunc_elim⁻¹*, apply pinv_left_phomotopy_of_phomotopy, fapply phomotopy.mk, { intro x, induction x with p, exact !encode_ap1_gen_tr⁻¹ }, { reflexivity } end, this⁻¹ᵛ* end pointed open pointed namespace spectrum definition is_strunc_strunc_pred (X : spectrum) (k : ℤ) : is_strunc k (strunc (k - 1) X) := λn, @(is_trunc_of_le _ (maxm2_monotone (add_le_add_right (sub_one_le k) n))) !is_strunc_strunc definition postnikov_smap [constructor] (X : spectrum) (k : ℤ) : strunc k X →ₛ strunc (k - 1) X := strunc_elim (str (k - 1) X) (is_strunc_strunc_pred X k) /- we could try to prove that postnikov_smap is homotopic to postnikov_map, although the types are different enough, that even stating it will be quite annoying -/ definition pfiber_postnikov_smap (A : spectrum) (n : ℤ) (k : ℤ) : sfiber (postnikov_smap A n) k ≃* EM_spectrum (πₛ[n] A) k := begin exact sorry /- symmetry, apply spectrum_pequiv_of_nat_succ_succ, clear k, intro k, apply EMadd1_pequiv k, { exact sorry -- refine _ ⬝g shomotopy_group_strunc n A, -- exact chain_complex.LES_isomorphism_of_trivial_cod _ _ -- (trivial_homotopy_group_of_is_trunc _ (self_lt_succ n)) -- (trivial_homotopy_group_of_is_trunc _ (le_succ _)) }, { exact sorry --apply is_conn_fun_trunc_elim, apply is_conn_fun_tr }, { -- have is_trunc (n+1) (ptrunc n.+1 A), from !is_trunc_trunc, -- have is_trunc ((n+1).+1) (ptrunc n A), by do 2 apply is_trunc_succ, apply is_trunc_trunc, -- apply is_trunc_pfiber exact sorry }-/ end section atiyah_hirzebruch parameters {X : Type*} (Y : X → spectrum) (s₀ : ℤ) (H : Πx, is_strunc s₀ (Y x)) definition atiyah_hirzebruch_exact_couple : exact_couple rℤ Z2 := @exact_couple_sequence (λs, strunc s (spi X Y)) (postnikov_smap (spi X Y)) definition atiyah_hirzebruch_ub ⦃s n : ℤ⦄ (Hs : s ≤ n - 1) : is_contr (πₛ[n] (strunc s (spi X Y))) := begin apply trivial_shomotopy_group_of_is_strunc, apply is_strunc_strunc, exact lt_of_le_sub_one Hs end include H definition atiyah_hirzebruch_lb ⦃s n : ℤ⦄ (Hs : s ≥ s₀ + 1) : is_equiv (postnikov_smap (spi X Y) s n) := begin have H2 : is_strunc s₀ (spi X Y), from is_strunc_spi _ _ H, refine is_equiv_of_equiv_of_homotopy (ptrunc_pequiv_ptrunc_of_is_trunc _ _ (H2 n)) _, { apply maxm2_monotone, apply add_le_add_right, exact le.trans !le_add_one Hs }, { apply maxm2_monotone, apply add_le_add_right, exact le_sub_one_of_lt Hs }, refine @trunc.rec _ _ _ _ _, { intro x, apply is_trunc_eq, assert H3 : maxm2 (s - 1 + n) ≤ (maxm2 (s + n)).+1, { refine trunc_index.le_succ (maxm2_monotone (le.trans (le_of_eq !add.right_comm) !sub_one_le)) }, exact @is_trunc_of_le _ _ _ H3 !is_trunc_trunc }, intro a, reflexivity end definition is_bounded_atiyah_hirzebruch : is_bounded atiyah_hirzebruch_exact_couple := is_bounded_sequence _ s₀ (λn, n - 1) atiyah_hirzebruch_lb atiyah_hirzebruch_ub definition atiyah_hirzebruch_convergence' : (λn s, πₛ[n] (sfiber (postnikov_smap (spi X Y) s))) ⟹ᵍ (λn, πₛ[n] (strunc s₀ (spi X Y))) := converges_to_sequence _ s₀ (λn, n - 1) atiyah_hirzebruch_lb atiyah_hirzebruch_ub lemma spi_EM_spectrum (k n : ℤ) : EM_spectrum (πₛ[n] (spi X Y)) k ≃* spi X (λx, EM_spectrum (πₛ[n] (Y x))) k := sorry definition atiyah_hirzebruch_convergence : (λn s, opH^-n[(x : X), πₛ[s] (Y x)]) ⟹ᵍ (λn, pH^-n[(x : X), Y x]) := converges_to_g_isomorphism atiyah_hirzebruch_convergence' begin intro n s, refine _ ⬝g (parametrized_cohomology_isomorphism_shomotopy_group_spi _ idp)⁻¹ᵍ, apply shomotopy_group_isomorphism_of_pequiv, intro k, refine pfiber_postnikov_smap (spi X Y) s k ⬝e* _, apply spi_EM_spectrum end begin intro n, refine _ ⬝g (parametrized_cohomology_isomorphism_shomotopy_group_spi _ idp)⁻¹ᵍ, apply shomotopy_group_isomorphism_of_pequiv, intro k, apply ptrunc_pequiv, exact is_strunc_spi s₀ Y H k, end end atiyah_hirzebruch section unreduced_atiyah_hirzebruch definition unreduced_atiyah_hirzebruch_convergence {X : Type} (Y : X → spectrum) (s₀ : ℤ) (H : Πx, is_strunc s₀ (Y x)) : (λn s, uopH^-n[(x : X), πₛ[s] (Y x)]) ⟹ᵍ (λn, upH^-n[(x : X), Y x]) := converges_to_g_isomorphism (@atiyah_hirzebruch_convergence X₊ (add_point_spectrum Y) s₀ (is_strunc_add_point_spectrum H)) begin intro n s, refine _ ⬝g !uopH_isomorphism_opH⁻¹ᵍ, apply ordinary_parametrized_cohomology_isomorphism_right, intro x, apply shomotopy_group_add_point_spectrum end begin intro n, reflexivity end end unreduced_atiyah_hirzebruch section serre variables {X : Type} (F : X → Type) (Y : spectrum) (s₀ : ℤ) (H : is_strunc s₀ Y) open option definition add_point_over {X : Type} (F : X → Type) (x : option X) : Type* := (option.cases_on x (lift empty) F)₊ postfix `₊ₒ`:(max+1) := add_point_over include H -- definition serre_convergence : -- (λn s, uopH^-n[(x : X), uH^-s[F x, Y]]) ⟹ᵍ (λn, uH^-n[Σ(x : X), F x, Y]) := -- proof -- converges_to_g_isomorphism -- (unreduced_atiyah_hirzebruch_convergence -- (λx, sp_cotensor (F x) Y) s₀ -- (λx, is_strunc_sp_cotensor s₀ (F x) H)) -- begin -- exact sorry -- -- intro n s, -- -- apply ordinary_parametrized_cohomology_isomorphism_right, -- -- intro x, -- -- exact (cohomology_isomorphism_shomotopy_group_sp_cotensor _ _ idp)⁻¹ᵍ, -- end -- begin -- intro n, exact sorry -- -- refine parametrized_cohomology_isomorphism_shomotopy_group_spi _ idp ⬝g _, -- -- refine _ ⬝g (cohomology_isomorphism_shomotopy_group_sp_cotensor _ _ idp)⁻¹ᵍ, -- -- apply shomotopy_group_isomorphism_of_pequiv, intro k, -- end -- qed end serre /- TODO: πₛ[n] (strunc 0 (spi X Y)) ≃g H^n[X, λx, Y x] -/ end spectrum