-- definitions, theorems and attributes which should be moved to files in the HoTT library import homotopy.sphere2 homotopy.cofiber homotopy.wedge hit.prop_trunc hit.set_quotient eq2 open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc_index pi group is_trunc function sphere unit sum prod bool namespace eq definition eq.rec_to {A : Type} {a₀ : A} {P : Π⦃a₁⦄, a₀ = a₁ → Type} {a₁ : A} (p₀ : a₀ = a₁) (H : P p₀) ⦃a₂ : A⦄ (p : a₀ = a₂) : P p := begin induction p₀, induction p, exact H end definition eq.rec_to2 {A : Type} {P : Π⦃a₀ a₁⦄, a₀ = a₁ → Type} {a₀ a₀' a₁' : A} (p' : a₀' = a₁') (p₀ : a₀ = a₀') (H : P p') ⦃a₁ : A⦄ (p : a₀ = a₁) : P p := begin induction p₀, induction p', induction p, exact H end definition eq.rec_right_inv {A : Type} (f : A ≃ A) {P : Π⦃a₀ a₁⦄, f a₀ = a₁ → Type} (H : Πa, P (right_inv f a)) ⦃a₀ a₁ : A⦄ (p : f a₀ = a₁) : P p := begin revert a₀ p, refine equiv_rect f⁻¹ᵉ _ _, intro a₀ p, exact eq.rec_to (right_inv f a₀) (H a₀) p, end definition eq.rec_equiv {A B : Type} {a₀ : A} (f : A ≃ B) {P : Π{a₁}, f a₀ = f a₁ → Type} (H : P (idpath (f a₀))) ⦃a₁ : A⦄ (p : f a₀ = f a₁) : P p := begin assert qr : Σ(q : a₀ = a₁), ap f q = p, { exact ⟨eq_of_fn_eq_fn f p, ap_eq_of_fn_eq_fn' f p⟩ }, cases qr with q r, apply transport P r, induction q, exact H end definition eq.rec_equiv_symm {A B : Type} {a₁ : A} (f : A ≃ B) {P : Π{a₀}, f a₀ = f a₁ → Type} (H : P (idpath (f a₁))) ⦃a₀ : A⦄ (p : f a₀ = f a₁) : P p := begin assert qr : Σ(q : a₀ = a₁), ap f q = p, { exact ⟨eq_of_fn_eq_fn f p, ap_eq_of_fn_eq_fn' f p⟩ }, cases qr with q r, apply transport P r, induction q, exact H end definition eq.rec_equiv_to_same {A B : Type} {a₀ : A} (f : A ≃ B) {P : Π{a₁}, f a₀ = f a₁ → Type} ⦃a₁' : A⦄ (p' : f a₀ = f a₁') (H : P p') ⦃a₁ : A⦄ (p : f a₀ = f a₁) : P p := begin revert a₁' p' H a₁ p, refine eq.rec_equiv f _, exact eq.rec_equiv f end definition eq.rec_equiv_to {A A' B : Type} {a₀ : A} (f : A ≃ B) (g : A' ≃ B) {P : Π{a₁}, f a₀ = g a₁ → Type} ⦃a₁' : A'⦄ (p' : f a₀ = g a₁') (H : P p') ⦃a₁ : A'⦄ (p : f a₀ = g a₁) : P p := begin assert qr : Σ(q : g⁻¹ (f a₀) = a₁), (right_inv g (f a₀))⁻¹ ⬝ ap g q = p, { exact ⟨eq_of_fn_eq_fn g (right_inv g (f a₀) ⬝ p), whisker_left _ (ap_eq_of_fn_eq_fn' g _) ⬝ !inv_con_cancel_left⟩ }, assert q'r' : Σ(q' : g⁻¹ (f a₀) = a₁'), (right_inv g (f a₀))⁻¹ ⬝ ap g q' = p', { exact ⟨eq_of_fn_eq_fn g (right_inv g (f a₀) ⬝ p'), whisker_left _ (ap_eq_of_fn_eq_fn' g _) ⬝ !inv_con_cancel_left⟩ }, induction qr with q r, induction q'r' with q' r', induction q, induction q', induction r, induction r', exact H end definition eq.rec_grading {A A' B : Type} {a : A} (f : A ≃ B) (g : A' ≃ B) {P : Π{b}, f a = b → Type} {a' : A'} (p' : f a = g a') (H : P p') ⦃b : B⦄ (p : f a = b) : P p := begin revert b p, refine equiv_rect g _ _, exact eq.rec_equiv_to f g p' H end definition eq.rec_grading_unbased {A B B' C : Type} (f : A ≃ B) (g : B ≃ C) (h : B' ≃ C) {P : Π{b c}, g b = c → Type} {a' : A} {b' : B'} (p' : g (f a') = h b') (H : P p') ⦃b : B⦄ ⦃c : C⦄ (q : f a' = b) (p : g b = c) : P p := begin induction q, exact eq.rec_grading (f ⬝e g) h p' H p end -- definition homotopy_group_homomorphism_pinv (n : ℕ) {A B : Type*} (f : A ≃* B) : -- π→g[n+1] f⁻¹ᵉ* ~ (homotopy_group_isomorphism_of_pequiv n f)⁻¹ᵍ := -- begin -- -- refine ptrunc_functor_phomotopy 0 !apn_pinv ⬝hty _, -- -- intro x, esimp, -- end -- definition natural_square_tr_eq {A B : Type} {a a' : A} {f g : A → B} -- (p : f ~ g) (q : a = a') : natural_square p q = square_of_pathover (apd p q) := -- idp end eq open eq namespace pmap definition eta {A B : Type*} (f : A →* B) : pmap.mk f (respect_pt f) = f := begin induction f, reflexivity end end pmap namespace trunc -- TODO: redefine loopn_ptrunc_pequiv definition apn_ptrunc_functor (n : ℕ₋₂) (k : ℕ) {A B : Type*} (f : A →* B) : Ω→[k] (ptrunc_functor (n+k) f) ∘* (loopn_ptrunc_pequiv n k A)⁻¹ᵉ* ~* (loopn_ptrunc_pequiv n k B)⁻¹ᵉ* ∘* ptrunc_functor n (Ω→[k] f) := begin revert n, induction k with k IH: intro n, { reflexivity }, { exact sorry } end definition ptrunc_pequiv_natural [constructor] (n : ℕ₋₂) {A B : Type*} (f : A →* B) [is_trunc n A] [is_trunc n B] : f ∘* ptrunc_pequiv n A ~* ptrunc_pequiv n B ∘* ptrunc_functor n f := begin fapply phomotopy.mk, { intro a, induction a with a, reflexivity }, { refine !idp_con ⬝ _ ⬝ !idp_con⁻¹, refine !ap_compose'⁻¹ ⬝ _, apply ap_id } end definition ptr_natural [constructor] (n : ℕ₋₂) {A B : Type*} (f : A →* B) : ptrunc_functor n f ∘* ptr n A ~* ptr n B ∘* f := begin fapply phomotopy.mk, { intro a, reflexivity }, { reflexivity } end definition ptrunc_elim_pcompose (n : ℕ₋₂) {A B C : Type*} (g : B →* C) (f : A →* B) [is_trunc n B] [is_trunc n C] : ptrunc.elim n (g ∘* f) ~* g ∘* ptrunc.elim n f := begin fapply phomotopy.mk, { intro a, induction a with a, reflexivity }, { apply idp_con } end end trunc namespace sigma -- definition sigma_pathover_equiv_of_is_prop {A : Type} {B : A → Type} {C : Πa, B a → Type} -- {a a' : A} {p : a = a'} {b : B a} {b' : B a'} {c : C a b} {c' : C a' b'} -- [Πa b, is_prop (C a b)] : ⟨b, c⟩ =[p] ⟨b', c'⟩ ≃ b =[p] b' := -- begin -- fapply equiv.MK, -- { exact pathover_pr1 }, -- { intro q, induction q, apply pathover_idp_of_eq, exact sigma_eq idp !is_prop.elimo }, -- { intro q, induction q, -- have c = c', from !is_prop.elim, induction this, -- rewrite [▸*, is_prop_elimo_self (C a) c] }, -- { esimp, generalize ⟨b, c⟩, intro x q, } -- end --rexact @(ap pathover_pr1) _ idpo _, end sigma open sigma namespace group -- definition is_equiv_isomorphism -- some extra instances for type class inference -- definition is_mul_hom_comm_homomorphism [instance] {G G' : AbGroup} (φ : G →g G') -- : @is_mul_hom G G' (@ab_group.to_group _ (AbGroup.struct G)) -- (@ab_group.to_group _ (AbGroup.struct G')) φ := -- homomorphism.struct φ -- definition is_mul_hom_comm_homomorphism1 [instance] {G G' : AbGroup} (φ : G →g G') -- : @is_mul_hom G G' _ -- (@ab_group.to_group _ (AbGroup.struct G')) φ := -- homomorphism.struct φ -- definition is_mul_hom_comm_homomorphism2 [instance] {G G' : AbGroup} (φ : G →g G') -- : @is_mul_hom G G' (@ab_group.to_group _ (AbGroup.struct G)) _ φ := -- homomorphism.struct φ definition isomorphism_ap {A : Type} (F : A → Group) {a b : A} (p : a = b) : F a ≃g F b := isomorphism_of_eq (ap F p) definition interchange (G : AbGroup) (a b c d : G) : (a * b) * (c * d) = (a * c) * (b * d) := calc (a * b) * (c * d) = a * (b * (c * d)) : by exact mul.assoc a b (c * d) ... = a * ((b * c) * d) : by exact ap (λ bcd, a * bcd) (mul.assoc b c d)⁻¹ ... = a * ((c * b) * d) : by exact ap (λ bc, a * (bc * d)) (mul.comm b c) ... = a * (c * (b * d)) : by exact ap (λ bcd, a * bcd) (mul.assoc c b d) ... = (a * c) * (b * d) : by exact (mul.assoc a c (b * d))⁻¹ end group open group namespace function variables {A B : Type} {f f' : A → B} definition homotopy_group_isomorphism_of_is_embedding (n : ℕ) [H : is_succ n] {A B : Type*} (f : A →* B) [H2 : is_embedding f] : πg[n] A ≃g πg[n] B := begin apply isomorphism.mk (homotopy_group_homomorphism n f), induction H with n, apply is_equiv_of_equiv_of_homotopy (ptrunc_pequiv_ptrunc 0 (loopn_pequiv_loopn_of_is_embedding (n+1) f)), exact sorry end end function open function namespace is_conn open unit trunc_index nat is_trunc pointed.ops definition is_conn_fun_compose {n : ℕ₋₂} {A B C : Type} (g : B → C) (f : A → B) (H : is_conn_fun n g) (K : is_conn_fun n f) : is_conn_fun n (g ∘ f) := sorry end is_conn namespace misc open is_conn /- move! -/ open sigma.ops pointed definition merely_constant {A B : Type} (f : A → B) : Type := Σb, Πa, merely (f a = b) definition merely_constant_pmap {A B : Type*} {f : A →* B} (H : merely_constant f) (a : A) : merely (f a = pt) := tconcat (tconcat (H.2 a) (tinverse (H.2 pt))) (tr (respect_pt f)) definition merely_constant_of_is_conn {A B : Type*} (f : A →* B) [is_conn 0 A] : merely_constant f := ⟨pt, is_conn.elim -1 _ (tr (respect_pt f))⟩ open sigma definition component [constructor] (A : Type*) : Type* := pType.mk (Σ(a : A), merely (pt = a)) ⟨pt, tr idp⟩ lemma is_conn_component [instance] (A : Type*) : is_conn 0 (component A) := is_contr.mk (tr pt) begin intro x, induction x with x, induction x with a p, induction p with p, induction p, reflexivity end definition component_incl [constructor] (A : Type*) : component A →* A := pmap.mk pr1 idp definition is_embedding_component_incl [instance] (A : Type*) : is_embedding (component_incl A) := is_embedding_pr1 _ definition component_intro [constructor] {A B : Type*} (f : A →* B) (H : merely_constant f) : A →* component B := begin fapply pmap.mk, { intro a, refine ⟨f a, _⟩, exact tinverse (merely_constant_pmap H a) }, exact subtype_eq !respect_pt end definition component_functor [constructor] {A B : Type*} (f : A →* B) : component A →* component B := component_intro (f ∘* component_incl A) !merely_constant_of_is_conn -- definition component_elim [constructor] {A B : Type*} (f : A →* B) (H : merely_constant f) : -- A →* component B := -- begin -- fapply pmap.mk, -- { intro a, refine ⟨f a, _⟩, exact tinverse (merely_constant_pmap H a) }, -- exact subtype_eq !respect_pt -- end definition loop_component (A : Type*) : Ω (component A) ≃* Ω A := loop_pequiv_loop_of_is_embedding (component_incl A) lemma loopn_component (n : ℕ) (A : Type*) : Ω[n+1] (component A) ≃* Ω[n+1] A := !loopn_succ_in ⬝e* loopn_pequiv_loopn n (loop_component A) ⬝e* !loopn_succ_in⁻¹ᵉ* -- lemma fundamental_group_component (A : Type*) : π₁ (component A) ≃g π₁ A := -- isomorphism_of_equiv (trunc_equiv_trunc 0 (loop_component A)) _ lemma homotopy_group_component (n : ℕ) (A : Type*) : πg[n+1] (component A) ≃g πg[n+1] A := homotopy_group_isomorphism_of_is_embedding (n+1) (component_incl A) definition is_trunc_component [instance] (n : ℕ₋₂) (A : Type*) [is_trunc n A] : is_trunc n (component A) := begin apply @is_trunc_sigma, intro a, cases n with n, { apply is_contr_of_inhabited_prop, exact tr !is_prop.elim }, { apply is_trunc_succ_of_is_prop }, end definition ptrunc_component' (n : ℕ₋₂) (A : Type*) : ptrunc (n.+2) (component A) ≃* component (ptrunc (n.+2) A) := begin fapply pequiv.MK, { exact ptrunc.elim (n.+2) (component_functor !ptr) }, { intro x, cases x with x p, induction x with a, refine tr ⟨a, _⟩, note q := trunc_functor -1 !tr_eq_tr_equiv p, exact trunc_trunc_equiv_left _ !minus_one_le_succ q }, { exact sorry }, { exact sorry } end definition ptrunc_component (n : ℕ₋₂) (A : Type*) : ptrunc n (component A) ≃* component (ptrunc n A) := begin cases n with n, exact sorry, cases n with n, exact sorry, exact ptrunc_component' n A end definition pfiber_pequiv_component_of_is_contr [constructor] {A B : Type*} (f : A →* B) [is_contr B] /- extra condition, something like trunc_functor 0 f is an embedding -/ : pfiber f ≃* component A := sorry end misc namespace category definition precategory_Group.{u} [instance] [constructor] : precategory.{u+1 u} Group := begin fapply precategory.mk, { exact λG H, G →g H }, { exact _ }, { exact λG H K ψ φ, ψ ∘g φ }, { exact λG, gid G }, { intros, apply homomorphism_eq, esimp }, { intros, apply homomorphism_eq, esimp }, { intros, apply homomorphism_eq, esimp } end definition precategory_AbGroup.{u} [instance] [constructor] : precategory.{u+1 u} AbGroup := begin fapply precategory.mk, { exact λG H, G →g H }, { exact _ }, { exact λG H K ψ φ, ψ ∘g φ }, { exact λG, gid G }, { intros, apply homomorphism_eq, esimp }, { intros, apply homomorphism_eq, esimp }, { intros, apply homomorphism_eq, esimp } end open iso definition Group_is_iso_of_is_equiv {G H : Group} (φ : G →g H) (H : is_equiv (group_fun φ)) : is_iso φ := begin fconstructor, { exact (isomorphism.mk φ H)⁻¹ᵍ }, { apply homomorphism_eq, rexact left_inv φ }, { apply homomorphism_eq, rexact right_inv φ } end definition Group_is_equiv_of_is_iso {G H : Group} (φ : G ⟶ H) (Hφ : is_iso φ) : is_equiv (group_fun φ) := begin fapply adjointify, { exact group_fun φ⁻¹ʰ }, { note p := right_inverse φ, exact ap010 group_fun p }, { note p := left_inverse φ, exact ap010 group_fun p } end definition Group_iso_equiv (G H : Group) : (G ≅ H) ≃ (G ≃g H) := begin fapply equiv.MK, { intro φ, induction φ with φ φi, constructor, exact Group_is_equiv_of_is_iso φ _ }, { intro v, induction v with φ φe, constructor, exact Group_is_iso_of_is_equiv φ _ }, { intro v, induction v with φ φe, apply isomorphism_eq, reflexivity }, { intro φ, induction φ with φ φi, apply iso_eq, reflexivity } end definition Group_props.{u} {A : Type.{u}} (v : (A → A → A) × (A → A) × A) : Prop.{u} := begin induction v with m v, induction v with i o, fapply trunctype.mk, { exact is_set A × (Πa, m a o = a) × (Πa, m o a = a) × (Πa b c, m (m a b) c = m a (m b c)) × (Πa, m (i a) a = o) }, { apply is_trunc_of_imp_is_trunc, intro v, induction v with H v, have is_prop (Πa, m a o = a), from _, have is_prop (Πa, m o a = a), from _, have is_prop (Πa b c, m (m a b) c = m a (m b c)), from _, have is_prop (Πa, m (i a) a = o), from _, apply is_trunc_prod } end definition Group.sigma_char2.{u} : Group.{u} ≃ Σ(A : Type.{u}) (v : (A → A → A) × (A → A) × A), Group_props v := begin fapply equiv.MK, { intro G, refine ⟨G, _⟩, induction G with G g, induction g with m s ma o om mo i mi, repeat (fconstructor; do 2 try assumption), }, { intro v, induction v with x v, induction v with y v, repeat induction y with x y, repeat induction v with x v, constructor, fconstructor, repeat assumption }, { intro v, induction v with x v, induction v with y v, repeat induction y with x y, repeat induction v with x v, reflexivity }, { intro v, repeat induction v with x v, reflexivity }, end open is_trunc section local attribute group.to_has_mul group.to_has_inv [coercion] theorem inv_eq_of_mul_eq {A : Type} (G H : group A) (p : @mul A G ~2 @mul A H) : @inv A G ~ @inv A H := begin have foo : Π(g : A), @inv A G g = (@inv A G g * g) * @inv A H g, from λg, !mul_inv_cancel_right⁻¹, cases G with Gs Gm Gh1 G1 Gh2 Gh3 Gi Gh4, cases H with Hs Hm Hh1 H1 Hh2 Hh3 Hi Hh4, change Gi ~ Hi, intro g, have p' : Gm ~2 Hm, from p, calc Gi g = Hm (Hm (Gi g) g) (Hi g) : foo ... = Hm (Gm (Gi g) g) (Hi g) : by rewrite p' ... = Hm G1 (Hi g) : by rewrite Gh4 ... = Gm G1 (Hi g) : by rewrite p' ... = Hi g : Gh2 end theorem one_eq_of_mul_eq {A : Type} (G H : group A) (p : @mul A (group.to_has_mul G) ~2 @mul A (group.to_has_mul H)) : @one A (group.to_has_one G) = @one A (group.to_has_one H) := begin cases G with Gm Gs Gh1 G1 Gh2 Gh3 Gi Gh4, cases H with Hm Hs Hh1 H1 Hh2 Hh3 Hi Hh4, exact (Hh2 G1)⁻¹ ⬝ (p H1 G1)⁻¹ ⬝ Gh3 H1, end end open prod.ops definition group_of_Group_props.{u} {A : Type.{u}} {m : A → A → A} {i : A → A} {o : A} (H : Group_props (m, (i, o))) : group A := ⦃group, mul := m, inv := i, one := o, is_set_carrier := H.1, mul_one := H.2.1, one_mul := H.2.2.1, mul_assoc := H.2.2.2.1, mul_left_inv := H.2.2.2.2⦄ theorem Group_eq_equiv_lemma2 {A : Type} {m m' : A → A → A} {i i' : A → A} {o o' : A} (H : Group_props (m, (i, o))) (H' : Group_props (m', (i', o'))) : (m, (i, o)) = (m', (i', o')) ≃ (m ~2 m') := begin have is_set A, from pr1 H, apply equiv_of_is_prop, { intro p, exact apd100 (eq_pr1 p)}, { intro p, apply prod_eq (eq_of_homotopy2 p), apply prod_eq: esimp [Group_props] at *; esimp, { apply eq_of_homotopy, exact inv_eq_of_mul_eq (group_of_Group_props H) (group_of_Group_props H') p }, { exact one_eq_of_mul_eq (group_of_Group_props H) (group_of_Group_props H') p }} end open sigma.ops theorem Group_eq_equiv_lemma {G H : Group} (p : (Group.sigma_char2 G).1 = (Group.sigma_char2 H).1) : ((Group.sigma_char2 G).2 =[p] (Group.sigma_char2 H).2) ≃ (is_mul_hom (equiv_of_eq (proof p qed : Group.carrier G = Group.carrier H))) := begin refine !sigma_pathover_equiv_of_is_prop ⬝e _, induction G with G g, induction H with H h, esimp [Group.sigma_char2] at p, induction p, refine !pathover_idp ⬝e _, induction g with s m ma o om mo i mi, induction h with σ μ μa ε εμ με ι μι, exact Group_eq_equiv_lemma2 (Group.sigma_char2 (Group.mk G (group.mk s m ma o om mo i mi))).2.2 (Group.sigma_char2 (Group.mk G (group.mk σ μ μa ε εμ με ι μι))).2.2 end definition isomorphism.sigma_char (G H : Group) : (G ≃g H) ≃ Σ(e : G ≃ H), is_mul_hom e := begin fapply equiv.MK, { intro φ, exact ⟨equiv_of_isomorphism φ, to_respect_mul φ⟩ }, { intro v, induction v with e p, exact isomorphism_of_equiv e p }, { intro v, induction v with e p, induction e, reflexivity }, { intro φ, induction φ with φ H, induction φ, reflexivity }, end definition Group_eq_equiv (G H : Group) : G = H ≃ (G ≃g H) := begin refine (eq_equiv_fn_eq_of_equiv Group.sigma_char2 G H) ⬝e _, refine !sigma_eq_equiv ⬝e _, refine sigma_equiv_sigma_right Group_eq_equiv_lemma ⬝e _, transitivity (Σ(e : (Group.sigma_char2 G).1 ≃ (Group.sigma_char2 H).1), @is_mul_hom _ _ _ _ (to_fun e)), apply sigma_ua, exact !isomorphism.sigma_char⁻¹ᵉ end definition to_fun_Group_eq_equiv {G H : Group} (p : G = H) : Group_eq_equiv G H p ~ isomorphism_of_eq p := begin induction p, reflexivity end definition Group_eq2 {G H : Group} {p q : G = H} (r : isomorphism_of_eq p ~ isomorphism_of_eq q) : p = q := begin apply eq_of_fn_eq_fn (Group_eq_equiv G H), apply isomorphism_eq, intro g, refine to_fun_Group_eq_equiv p g ⬝ r g ⬝ (to_fun_Group_eq_equiv q g)⁻¹, end definition Group_eq_equiv_Group_iso (G₁ G₂ : Group) : G₁ = G₂ ≃ G₁ ≅ G₂ := Group_eq_equiv G₁ G₂ ⬝e (Group_iso_equiv G₁ G₂)⁻¹ᵉ definition category_Group.{u} : category Group.{u} := category.mk precategory_Group begin intro G H, apply is_equiv_of_equiv_of_homotopy (Group_eq_equiv_Group_iso G H), intro p, induction p, fapply iso_eq, apply homomorphism_eq, reflexivity end definition category_AbGroup : category AbGroup := category.mk precategory_AbGroup sorry definition Grp.{u} [constructor] : Category := category.Mk Group.{u} category_Group definition AbGrp [constructor] : Category := category.Mk AbGroup category_AbGroup end category namespace sphere -- definition constant_sphere_map_sphere {n m : ℕ} (H : n < m) (f : S* n →* S* m) : -- f ~* pconst (S* n) (S* m) := -- begin -- assert H : is_contr (Ω[n] (S* m)), -- { apply homotopy_group_sphere_le, }, -- apply phomotopy_of_eq, -- apply eq_of_fn_eq_fn !psphere_pmap_pequiv, -- apply @is_prop.elim -- end end sphere section injective_surjective open trunc fiber image /- do we want to prove this without funext before we move it? -/ variables {A B C : Type} (f : A → B) definition is_embedding_factor [is_set A] [is_set B] (g : B → C) (h : A → C) (H : g ∘ f ~ h) : is_embedding h → is_embedding f := begin induction H using homotopy.rec_on_idp, intro E, fapply is_embedding_of_is_injective, intro x y p, fapply @is_injective_of_is_embedding _ _ _ E _ _ (ap g p) end definition is_surjective_factor (g : B → C) (h : A → C) (H : g ∘ f ~ h) : is_surjective h → is_surjective g := begin induction H using homotopy.rec_on_idp, intro S, intro c, note p := S c, induction p, apply tr, fapply fiber.mk, exact f a, exact p end end injective_surjective