/- Copyright (c) 2017 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad Short exact sequences -/ import homotopy.chain_complex eq2 .quotient_group open pointed is_trunc equiv is_equiv eq algebra group trunc function fiber sigma structure is_exact_t {A B : Type} {C : Type*} (f : A → B) (g : B → C) := ( im_in_ker : Π(a:A), g (f a) = pt) ( ker_in_im : Π(b:B), (g b = pt) → fiber f b) structure is_exact {A B : Type} {C : Type*} (f : A → B) (g : B → C) := ( im_in_ker : Π(a:A), g (f a) = pt) ( ker_in_im : Π(b:B), (g b = pt) → image f b) namespace algebra definition is_exact_g {A B C : Group} (f : A →g B) (g : B →g C) := is_exact f g definition is_exact_ag {A B C : AbGroup} (f : A →g B) (g : B →g C) := is_exact f g definition is_exact_g.mk {A B C : Group} {f : A →g B} {g : B →g C} (H₁ : Πa, g (f a) = 1) (H₂ : Πb, g b = 1 → image f b) : is_exact_g f g := is_exact.mk H₁ H₂ definition is_exact.im_in_ker2 {A B : Type} {C : Set*} {f : A → B} {g : B → C} (H : is_exact f g) {b : B} (h : image f b) : g b = pt := begin induction h with a p, exact ap g p⁻¹ ⬝ is_exact.im_in_ker H a end definition is_exact_homotopy {A B : Type} {C : Type*} {f f' : A → B} {g g' : B → C} (p : f ~ f') (q : g ~ g') (H : is_exact f g) : is_exact f' g' := begin induction p using homotopy.rec_on_idp, induction q using homotopy.rec_on_idp, exact H end definition is_exact_trunc_functor {A B : Type} {C : Type*} {f : A → B} {g : B → C} (H : is_exact_t f g) : @is_exact _ _ (ptrunc 0 C) (trunc_functor 0 f) (trunc_functor 0 g) := begin constructor, { intro a, esimp, induction a with a, exact ap tr (is_exact_t.im_in_ker H a) }, { intro b p, induction b with b, note q := !tr_eq_tr_equiv p, induction q with q, induction is_exact_t.ker_in_im H b q with a r, exact image.mk (tr a) (ap tr r) } end definition is_contr_middle_of_is_exact {A B : Type} {C : Type*} {f : A → B} {g : B → C} (H : is_exact f g) [is_contr A] [is_set B] [is_contr C] : is_contr B := begin apply is_contr.mk (f pt), intro b, induction is_exact.ker_in_im H b !is_prop.elim, exact ap f !is_prop.elim ⬝ p end definition is_surjective_of_is_exact_of_is_contr {A B : Type} {C : Type*} {f : A → B} {g : B → C} (H : is_exact f g) [is_contr C] : is_surjective f := λb, is_exact.ker_in_im H b !is_prop.elim definition is_embedding_of_is_exact_g {A B C : Group} {g : B →g C} {f : A →g B} (gf : is_exact_g f g) [is_contr A] : is_embedding g := begin apply to_is_embedding_homomorphism, intro a p, induction is_exact.ker_in_im gf a p with x q, exact q⁻¹ ⬝ ap f !is_prop.elim ⬝ to_respect_one f end definition map_left_of_is_exact {G₃' G₃ G₂ : Type} {G₁ : Type*} {g : G₃ → G₂} {g' : G₃' → G₂} {f : G₂ → G₁} (H1 : is_exact g f) (H2 : is_exact g' f) (Hg' : is_embedding g') : G₃ → G₃' := begin intro a, have fiber g' (g a), begin have is_prop (fiber g' (g a)), from !is_prop_fiber_of_is_embedding, induction is_exact.ker_in_im H2 (g a) (is_exact.im_in_ker H1 a) with a' p, exact fiber.mk a' p end, exact point this end definition map_left_of_is_exact_compute {G₃' G₃ G₂ : Type} {G₁ : Type*} {g : G₃ → G₂} {g' : G₃' → G₂} {f : G₂ → G₁} (H1 : is_exact g f) (H2 : is_exact g' f) (Hg' : is_embedding g') (a : G₃) : g' (map_left_of_is_exact H1 H2 Hg' a) = g a := @point_eq _ _ g' _ _ definition map_left_of_is_exact_compose {G₃'' G₃' G₃ G₂ : Type} {G₁ : Type*} {g : G₃ → G₂} {g' : G₃' → G₂} {g'' : G₃'' → G₂} {f : G₂ → G₁} (H1 : is_exact g f) (H2 : is_exact g' f) (H3 : is_exact g'' f) (Hg' : is_embedding g') (Hg'' : is_embedding g'') (a : G₃) : map_left_of_is_exact H2 H3 Hg'' (map_left_of_is_exact H1 H2 Hg' a) = map_left_of_is_exact H1 H3 Hg'' a := begin refine @is_injective_of_is_embedding _ _ g'' _ _ _ _, refine !map_left_of_is_exact_compute ⬝ _ ⬝ !map_left_of_is_exact_compute⁻¹, exact map_left_of_is_exact_compute H1 H2 Hg' a end definition map_left_of_is_exact_id {G₃ G₂ : Type} {G₁ : Type*} {g : G₃ → G₂} {f : G₂ → G₁} (H1 : is_exact g f) (Hg : is_embedding g) (a : G₃) : map_left_of_is_exact H1 H1 Hg a = a := begin refine @is_injective_of_is_embedding _ _ g _ _ _ _, exact map_left_of_is_exact_compute H1 H1 Hg a end definition map_left_of_is_exact_homotopy {G₃' G₃ G₂ : Type} {G₁ : Type*} {g : G₃ → G₂} {g' g'' : G₃' → G₂} {f : G₂ → G₁} (H1 : is_exact g f) (H2 : is_exact g' f) (H3 : is_exact g'' f) (Hg' : is_embedding g') (Hg'' : is_embedding g'') (p : g' ~ g'') : map_left_of_is_exact H1 H2 Hg' ~ map_left_of_is_exact H1 H3 Hg'' := begin intro a, refine @is_injective_of_is_embedding _ _ g' _ _ _ _, exact !map_left_of_is_exact_compute ⬝ (!p ⬝ !map_left_of_is_exact_compute)⁻¹, end definition homomorphism_left_of_is_exact_g {G₃' G₃ G₂ G₁ : Group} {g : G₃ →g G₂} {g' : G₃' →g G₂} {f : G₂ →g G₁} (H1 : is_exact_g g f) (H2 : is_exact_g g' f) (Hg' : is_embedding g') : G₃ →g G₃' := begin apply homomorphism.mk (map_left_of_is_exact H1 H2 Hg'), { intro a a', refine @is_injective_of_is_embedding _ _ g' _ _ _ _, exact !point_eq ⬝ to_respect_mul g a a' ⬝ (to_respect_mul g' _ _ ⬝ ap011 mul !point_eq !point_eq)⁻¹ } end definition isomorphism_left_of_is_exact_g {G₃' G₃ G₂ G₁ : Group} {g : G₃ →g G₂} {g' : G₃' →g G₂} {f : G₂ →g G₁} (H1 : is_exact g f) (H2 : is_exact g' f) (Hg : is_embedding g) (Hg' : is_embedding g') : G₃ ≃g G₃' := begin fapply isomorphism.mk, exact homomorphism_left_of_is_exact_g H1 H2 Hg', fapply adjointify, exact homomorphism_left_of_is_exact_g H2 H1 Hg, { intro a, refine @is_injective_of_is_embedding _ _ g' _ _ _ _, refine map_left_of_is_exact_compute H1 H2 Hg' _ ⬝ map_left_of_is_exact_compute H2 H1 Hg a }, { intro a, refine @is_injective_of_is_embedding _ _ g _ _ _ _, refine map_left_of_is_exact_compute H2 H1 Hg _ ⬝ map_left_of_is_exact_compute H1 H2 Hg' a }, end definition is_exact_incl_of_subgroup {G H : Group} (f : G →g H) : is_exact (incl_of_subgroup (kernel_subgroup f)) f := begin apply is_exact.mk, { intro x, cases x with x p, exact p }, { intro x p, exact image.mk ⟨x, p⟩ idp } end definition isomorphism_kernel_of_is_exact {G₄ G₃ G₂ G₁ : Group} {h : G₄ →g G₃} {g : G₃ →g G₂} {f : G₂ →g G₁} (H1 : is_exact h g) (H2 : is_exact g f) (HG : is_contr G₄) : G₃ ≃g kernel f := isomorphism_left_of_is_exact_g H2 (is_exact_incl_of_subgroup f) (is_embedding_of_is_exact_g H1) (is_embedding_incl_of_subgroup _) section chain_complex open succ_str chain_complex definition is_exact_of_is_exact_at {N : succ_str} {A : chain_complex N} {n : N} (H : is_exact_at A n) : is_exact (cc_to_fn A (S n)) (cc_to_fn A n) := is_exact.mk (cc_is_chain_complex A n) H end chain_complex structure is_short_exact {A B : Type} {C : Type*} (f : A → B) (g : B → C) := (is_emb : is_embedding f) (im_in_ker : Π(a:A), g (f a) = pt) (ker_in_im : Π(b:B), (g b = pt) → image f b) (is_surj : is_surjective g) structure is_short_exact_t {A B : Type} {C : Type*} (f : A → B) (g : B → C) := (is_emb : is_embedding f) (im_in_ker : Π(a:A), g (f a) = pt) (ker_in_im : Π(b:B), (g b = pt) → fiber f b) (is_surj : is_split_surjective g) lemma is_short_exact_of_is_exact {X A B C Y : Group} (k : X →g A) (f : A →g B) (g : B →g C) (l : C →g Y) (hX : is_contr X) (hY : is_contr Y) (kf : is_exact_g k f) (fg : is_exact_g f g) (gl : is_exact_g g l) : is_short_exact f g := begin constructor, { exact is_embedding_of_is_exact_g kf }, { exact is_exact.im_in_ker fg }, { exact is_exact.ker_in_im fg }, { intro c, exact is_exact.ker_in_im gl c !is_prop.elim }, end lemma is_short_exact_equiv {A B A' B' : Type} {C C' : Type*} {f' : A' → B'} {g' : B' → C'} (f : A → B) (g : B → C) (eA : A ≃ A') (eB : B ≃ B') (eC : C ≃* C') (h₁ : hsquare f f' eA eB) (h₂ : hsquare g g' eB eC) (H : is_short_exact f' g') : is_short_exact f g := begin constructor, { apply is_embedding_homotopy_closed_rev (homotopy_top_of_hsquare h₁), apply is_embedding_compose, apply is_embedding_of_is_equiv, apply is_embedding_compose, apply is_short_exact.is_emb H, apply is_embedding_of_is_equiv }, { intro a, refine homotopy_top_of_hsquare' (hhconcat h₁ h₂) a ⬝ _, refine ap eC⁻¹ _ ⬝ respect_pt eC⁻¹ᵉ*, exact is_short_exact.im_in_ker H (eA a) }, { intro b p, note q := eq_of_inv_eq ((homotopy_top_of_hsquare' h₂ b)⁻¹ ⬝ p) ⬝ respect_pt eC, induction is_short_exact.ker_in_im H (eB b) q with a' r, apply image.mk (eA⁻¹ a'), exact eq_of_fn_eq_fn eB ((homotopy_top_of_hsquare h₁⁻¹ʰᵗʸᵛ a')⁻¹ ⬝ r) }, { apply is_surjective_homotopy_closed_rev (homotopy_top_of_hsquare' h₂), apply is_surjective_compose, apply is_surjective_of_is_equiv, apply is_surjective_compose, apply is_short_exact.is_surj H, apply is_surjective_of_is_equiv } end lemma is_exact_of_is_short_exact {A B : Type} {C : Type*} {f : A → B} {g : B → C} (H : is_short_exact f g) : is_exact f g := begin constructor, { exact is_short_exact.im_in_ker H }, { exact is_short_exact.ker_in_im H } end /- TODO: move and remove other versions -/ definition is_surjective_qg_map {A : Group} (N : normal_subgroup_rel A) : is_surjective (qg_map N) := begin intro x, induction x, fapply image.mk, exact a, reflexivity, apply is_prop.elimo end definition is_surjective_ab_qg_map {A : AbGroup} (N : subgroup_rel A) : is_surjective (ab_qg_map N) := is_surjective_qg_map _ definition qg_map_eq_one {A : Group} {K : normal_subgroup_rel A} (g : A) (H : K g) : qg_map K g = 1 := begin apply set_quotient.eq_of_rel, have e : g * 1⁻¹ = g, from calc g * 1⁻¹ = g * 1 : one_inv ... = g : mul_one, exact transport (λx, K x) e⁻¹ H end definition ab_qg_map_eq_one {A : AbGroup} {K : subgroup_rel A} (g : A) (H : K g) : ab_qg_map K g = 1 := qg_map_eq_one g H definition is_short_exact_normal_subgroup {G : Group} (S : normal_subgroup_rel G) : is_short_exact (incl_of_subgroup S) (qg_map S) := begin fconstructor, { exact is_embedding_incl_of_subgroup S }, { intro a, fapply qg_map_eq_one, induction a with b p, exact p }, { intro b p, fapply image.mk, { apply sigma.mk b, fapply rel_of_qg_map_eq_one, exact p }, reflexivity }, { exact is_surjective_qg_map S }, end end algebra