/- Copyright (c) 2016 Ulrik Buchholtz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Ulrik Buchholtz, Floris van Doorn -/ import homotopy.connectedness types.pointed2 .move_to_lib .pointed open eq pointed equiv sigma is_equiv trunc option pi function fiber /- In this file we define dependent pointed maps and properties of them. Using this, we give the truncation level of the type of pointed maps, giving the connectivity of the domain and the truncation level of the codomain. This is is_trunc_pmap_of_is_conn at the end. We also prove other properties about pointed (dependent maps), like the fact that (Π*a, F a) → (Π*a, X a) → (Π*a, B a) is a fibration sequence if (F a) → (X a) → B a) is. -/ namespace pointed /- the pointed type of unpointed (nondependent) maps -/ definition pumap [constructor] (A : Type) (B : Type*) : Type* := pointed.MK (A → B) (const A pt) /- the pointed type of unpointed dependent maps -/ definition pupi [constructor] {A : Type} (B : A → Type*) : Type* := pointed.MK (Πa, B a) (λa, pt) notation `Πᵘ*` binders `, ` r:(scoped P, pupi P) := r infix ` →ᵘ* `:30 := pumap /- stuff about the pointed type of unpointed maps (dependent and non-dependent) -/ definition sigma_pumap {A : Type} (B : A → Type) (C : Type*) : ((Σa, B a) →ᵘ* C) ≃* Πᵘ*a, B a →ᵘ* C := pequiv_of_equiv (equiv_sigma_rec _)⁻¹ᵉ idp definition phomotopy_mk_pupi [constructor] {A : Type*} {B : Type} {C : B → Type*} {f g : A →* (Πᵘ*b, C b)} (p : f ~2 g) (q : p pt ⬝hty apd10 (respect_pt g) ~ apd10 (respect_pt f)) : f ~* g := begin apply phomotopy.mk (λa, eq_of_homotopy (p a)), apply eq_of_fn_eq_fn eq_equiv_homotopy, apply eq_of_homotopy, intro b, refine !apd10_con ⬝ _, refine whisker_right _ !pi.apd10_eq_of_homotopy ⬝ q b end definition pupi_functor [constructor] {A A' : Type} {B : A → Type*} {B' : A' → Type*} (f : A' → A) (g : Πa, B (f a) →* B' a) : (Πᵘ*a, B a) →* (Πᵘ*a', B' a') := pmap.mk (pi_functor f g) (eq_of_homotopy (λa, respect_pt (g a))) definition pupi_functor_right [constructor] {A : Type} {B B' : A → Type*} (g : Πa, B a →* B' a) : (Πᵘ*a, B a) →* (Πᵘ*a, B' a) := pupi_functor id g definition pupi_functor_compose {A A' A'' : Type} {B : A → Type*} {B' : A' → Type*} {B'' : A'' → Type*} (f : A'' → A') (f' : A' → A) (g' : Πa, B' (f a) →* B'' a) (g : Πa, B (f' a) →* B' a) : pupi_functor (f' ∘ f) (λa, g' a ∘* g (f a)) ~* pupi_functor f g' ∘* pupi_functor f' g := begin fapply phomotopy_mk_pupi, { intro h a, reflexivity }, { intro a, refine !idp_con ⬝ _, refine !apd10_con ⬝ _ ⬝ !pi.apd10_eq_of_homotopy⁻¹, esimp, refine (!apd10_prepostcompose ⬝ ap02 (g' a) !pi.apd10_eq_of_homotopy) ◾ !pi.apd10_eq_of_homotopy } end definition pupi_functor_pid (A : Type) (B : A → Type*) : pupi_functor id (λa, pid (B a)) ~* pid (Πᵘ*a, B a) := begin fapply phomotopy_mk_pupi, { intro h a, reflexivity }, { intro a, refine !idp_con ⬝ !pi.apd10_eq_of_homotopy⁻¹ } end definition pupi_functor_phomotopy {A A' : Type} {B : A → Type*} {B' : A' → Type*} {f f' : A' → A} {g : Πa, B (f a) →* B' a} {g' : Πa, B (f' a) →* B' a} (p : f ~ f') (q : Πa, g a ~* g' a ∘* ptransport B (p a)) : pupi_functor f g ~* pupi_functor f' g' := begin fapply phomotopy_mk_pupi, { intro h a, exact q a (h (f a)) ⬝ ap (g' a) (apdt h (p a)) }, { intro a, esimp, exact whisker_left _ !pi.apd10_eq_of_homotopy ⬝ !con.assoc ⬝ to_homotopy_pt (q a) ⬝ !pi.apd10_eq_of_homotopy⁻¹ } end definition pupi_pequiv [constructor] {A A' : Type} {B : A → Type*} {B' : A' → Type*} (e : A' ≃ A) (f : Πa, B (e a) ≃* B' a) : (Πᵘ*a, B a) ≃* (Πᵘ*a', B' a') := pequiv.MK (pupi_functor e f) (pupi_functor e⁻¹ᵉ (λa, ptransport B (right_inv e a) ∘* (f (e⁻¹ᵉ a))⁻¹ᵉ*)) abstract begin refine !pupi_functor_compose⁻¹* ⬝* pupi_functor_phomotopy (to_right_inv e) _ ⬝* !pupi_functor_pid, intro a, exact !pinv_pcompose_cancel_right ⬝* !pid_pcompose⁻¹* end end abstract begin refine !pupi_functor_compose⁻¹* ⬝* pupi_functor_phomotopy (to_left_inv e) _ ⬝* !pupi_functor_pid, intro a, refine !passoc⁻¹* ⬝* pinv_right_phomotopy_of_phomotopy _ ⬝* !pid_pcompose⁻¹*, refine pwhisker_left _ _ ⬝* !ptransport_natural, exact ptransport_change_eq _ (adj e a) ⬝* ptransport_ap B e (to_left_inv e a) end end definition pupi_pequiv_right [constructor] {A : Type} {B B' : A → Type*} (f : Πa, B a ≃* B' a) : (Πᵘ*a, B a) ≃* (Πᵘ*a, B' a) := pupi_pequiv erfl f definition loop_pupi [constructor] {A : Type} (B : A → Type*) : Ω (Πᵘ*a, B a) ≃* Πᵘ*a, Ω (B a) := pequiv_of_equiv eq_equiv_homotopy idp -- definition loop_pupi_natural [constructor] {A : Type} {B B' : A → Type*} (f : Πa, B a →* B' a) : -- psquare (Ω→ (pupi_functor_right f)) (pupi_functor_right (λa, Ω→ (f a))) -- (loop_pupi B) (loop_pupi B') := definition ap1_gen_pi {A A' : Type} {B : A → Type} {B' : A' → Type} {h₀ h₁ : Πa, B a} {h₀' h₁' : Πa', B' a'} (f : A' → A) (g : Πa, B (f a) → B' a) (p₀ : pi_functor f g h₀ ~ h₀') (p₁ : pi_functor f g h₁ ~ h₁') (r : h₀ = h₁) (a' : A') : apd10 (ap1_gen (pi_functor f g) (eq_of_homotopy p₀) (eq_of_homotopy p₁) r) a' = ap1_gen (g a') (p₀ a') (p₁ a') (apd10 r (f a')) := begin induction r, induction p₀ using homotopy.rec_idp, induction p₁ using homotopy.rec_idp, esimp, exact apd10 (ap apd10 !ap1_gen_idp) a', -- exact ap (λx, apd10 (ap1_gen _ x x _) _) !eq_of_homotopy_idp end definition ap1_gen_pi_idp {A A' : Type} {B : A → Type} {B' : A' → Type} {h₀ : Πa, B a} (f : A' → A) (g : Πa, B (f a) → B' a) (a' : A') : ap1_gen_pi f g (homotopy.refl (pi_functor f g h₀)) (homotopy.refl (pi_functor f g h₀)) idp a' = apd10 (ap apd10 !ap1_gen_idp) a' := -- apd10 (ap apd10 (ap1_gen_idp (pi_functor id f) (eq_of_homotopy (λ a, idp)))) a' := -- ap (λp, apd10 p a') (ap1_gen_idp (pi_functor f g) (eq_of_homotopy homotopy.rfl)) := begin esimp [ap1_gen_pi], refine !homotopy_rec_idp_refl ⬝ !homotopy_rec_idp_refl, end -- print homotopy.rec_ -- print apd10_ap_postcompose -- print pi_functor -- print ap1_gen_idp -- print ap1_gen_pi definition loop_pupi_natural [constructor] {A : Type} {B B' : A → Type*} (f : Πa, B a →* B' a) : psquare (Ω→ (pupi_functor_right f)) (pupi_functor_right (λa, Ω→ (f a))) (loop_pupi B) (loop_pupi B') := begin fapply phomotopy_mk_pupi, { intro p a, exact ap1_gen_pi id f (λa, respect_pt (f a)) (λa, respect_pt (f a)) p a }, { intro a, revert B' f, refine fiberwise_pointed_map_rec _ _, intro B' f, refine !ap1_gen_pi_idp ◾ (ap (λx, apd10 x _) !idp_con ⬝ !apd10_eq_of_homotopy) } end definition phomotopy_mk_pumap [constructor] {A C : Type*} {B : Type} {f g : A →* (B →ᵘ* C)} (p : f ~2 g) (q : p pt ⬝hty apd10 (respect_pt g) ~ apd10 (respect_pt f)) : f ~* g := phomotopy_mk_pupi p q definition pumap_functor [constructor] {A A' : Type} {B B' : Type*} (f : A' → A) (g : B →* B') : (A →ᵘ* B) →* (A' →ᵘ* B') := pupi_functor f (λa, g) definition pumap_functor_compose {A A' A'' : Type} {B B' B'' : Type*} (f : A'' → A') (f' : A' → A) (g' : B' →* B'') (g : B →* B') : pumap_functor (f' ∘ f) (g' ∘* g) ~* pumap_functor f g' ∘* pumap_functor f' g := pupi_functor_compose f f' (λa, g') (λa, g) definition pumap_functor_pid (A : Type) (B : Type*) : pumap_functor id (pid B) ~* pid (A →ᵘ* B) := pupi_functor_pid A (λa, B) definition pumap_functor_phomotopy {A A' : Type} {B B' : Type*} {f f' : A' → A} {g g' : B →* B'} (p : f ~ f') (q : g ~* g') : pumap_functor f g ~* pumap_functor f' g' := pupi_functor_phomotopy p (λa, q ⬝* !pcompose_pid⁻¹* ⬝* pwhisker_left _ !ptransport_constant⁻¹*) definition pumap_pequiv [constructor] {A A' : Type} {B B' : Type*} (e : A ≃ A') (f : B ≃* B') : (A →ᵘ* B) ≃* (A' →ᵘ* B') := pupi_pequiv e⁻¹ᵉ (λa, f) definition pumap_pequiv_right [constructor] (A : Type) {B B' : Type*} (f : B ≃* B') : (A →ᵘ* B) ≃* (A →ᵘ* B') := pumap_pequiv erfl f definition pumap_pequiv_left [constructor] {A A' : Type} (B : Type*) (f : A ≃ A') : (A →ᵘ* B) ≃* (A' →ᵘ* B) := pumap_pequiv f pequiv.rfl definition loop_pumap [constructor] (A : Type) (B : Type*) : Ω (A →ᵘ* B) ≃* A →ᵘ* Ω B := loop_pupi (λa, B) /- the pointed sigma type -/ definition psigma_gen [constructor] {A : Type*} (P : A → Type) (x : P pt) : Type* := pointed.MK (Σa, P a) ⟨pt, x⟩ definition psigma_gen_functor [constructor] {A A' : Type*} {B : A → Type} {B' : A' → Type} {b : B pt} {b' : B' pt} (f : A →* A') (g : Πa, B a → B' (f a)) (p : g pt b =[respect_pt f] b') : psigma_gen B b →* psigma_gen B' b' := pmap.mk (sigma_functor f g) (sigma_eq (respect_pt f) p) definition psigma_gen_functor_right [constructor] {A : Type*} {B B' : A → Type} {b : B pt} {b' : B' pt} (f : Πa, B a → B' a) (p : f pt b = b') : psigma_gen B b →* psigma_gen B' b' := proof pmap.mk (sigma_functor id f) (sigma_eq_right p) qed definition psigma_gen_pequiv_psigma_gen [constructor] {A A' : Type*} {B : A → Type} {B' : A' → Type} {b : B pt} {b' : B' pt} (f : A ≃* A') (g : Πa, B a ≃ B' (f a)) (p : g pt b =[respect_pt f] b') : psigma_gen B b ≃* psigma_gen B' b' := pequiv_of_equiv (sigma_equiv_sigma f g) (sigma_eq (respect_pt f) p) definition psigma_gen_pequiv_psigma_gen_left [constructor] {A A' : Type*} {B : A' → Type} {b : B pt} (f : A ≃* A') {b' : B (f pt)} (q : b' =[respect_pt f] b) : psigma_gen (B ∘ f) b' ≃* psigma_gen B b := psigma_gen_pequiv_psigma_gen f (λa, erfl) q definition psigma_gen_pequiv_psigma_gen_right [constructor] {A : Type*} {B B' : A → Type} {b : B pt} {b' : B' pt} (f : Πa, B a ≃ B' a) (p : f pt b = b') : psigma_gen B b ≃* psigma_gen B' b' := psigma_gen_pequiv_psigma_gen pequiv.rfl f (pathover_idp_of_eq p) definition psigma_gen_pequiv_psigma_gen_basepoint [constructor] {A : Type*} {B : A → Type} {b b' : B pt} (p : b = b') : psigma_gen B b ≃* psigma_gen B b' := psigma_gen_pequiv_psigma_gen_right (λa, erfl) p definition loop_psigma_gen [constructor] {A : Type*} (B : A → Type) (b₀ : B pt) : Ω (psigma_gen B b₀) ≃* @psigma_gen (Ω A) (λp, pathover B b₀ p b₀) idpo := pequiv_of_equiv (sigma_eq_equiv pt pt) idp open sigma.ops definition ap1_gen_sigma {A A' : Type} {B : A → Type} {B' : A' → Type} {x₀ x₁ : Σa, B a} {a₀' a₁' : A'} {b₀' : B' a₀'} {b₁' : B' a₁'} (f : A → A') (p₀ : f x₀.1 = a₀') (p₁ : f x₁.1 = a₁') (g : Πa, B a → B' (f a)) (q₀ : g x₀.1 x₀.2 =[p₀] b₀') (q₁ : g x₁.1 x₁.2 =[p₁] b₁') (r : x₀ = x₁) : (λx, ⟨x..1, x..2⟩) (ap1_gen (sigma_functor f g) (sigma_eq p₀ q₀) (sigma_eq p₁ q₁) r) = ⟨ap1_gen f p₀ p₁ r..1, q₀⁻¹ᵒ ⬝o pathover_ap B' f (apo g r..2) ⬝o q₁⟩ := begin induction r, induction q₀, induction q₁, reflexivity end definition loop_psigma_gen_natural {A A' : Type*} {B : A → Type} {B' : A' → Type} {b : B pt} {b' : B' pt} (f : A →* A') (g : Πa, B a → B' (f a)) (p : g pt b =[respect_pt f] b') : psquare (Ω→ (psigma_gen_functor f g p)) (psigma_gen_functor (Ω→ f) (λq r, p⁻¹ᵒ ⬝o pathover_ap _ _ (apo g r) ⬝o p) !cono.left_inv) (loop_psigma_gen B b) (loop_psigma_gen B' b') := begin fapply phomotopy.mk, { exact ap1_gen_sigma f (respect_pt f) (respect_pt f) g p p }, { induction f with f f₀, induction A' with A' a₀', esimp at * ⊢, induction p, reflexivity } end definition psigma_gen_functor_pcompose [constructor] {A₁ A₂ A₃ : Type*} {B₁ : A₁ → Type} {B₂ : A₂ → Type} {B₃ : A₃ → Type} {b₁ : B₁ pt} {b₂ : B₂ pt} {b₃ : B₃ pt} {f₁ : A₁ →* A₂} {f₂ : A₂ →* A₃} (g₁ : Π⦃a⦄, B₁ a → B₂ (f₁ a)) (g₂ : Π⦃a⦄, B₂ a → B₃ (f₂ a)) (p₁ : pathover B₂ (g₁ b₁) (respect_pt f₁) b₂) (p₂ : pathover B₃ (g₂ b₂) (respect_pt f₂) b₃) : psigma_gen_functor (f₂ ∘* f₁) (λa, @g₂ (f₁ a) ∘ @g₁ a) (pathover_ap B₃ f₂ (apo g₂ p₁) ⬝o p₂) ~* psigma_gen_functor f₂ g₂ p₂ ∘* psigma_gen_functor f₁ g₁ p₁ := begin fapply phomotopy.mk, { intro x, reflexivity }, { refine !idp_con ⬝ _, esimp, refine whisker_right _ !ap_sigma_functor_eq_dpair ⬝ _, induction f₁ with f₁ f₁₀, induction f₂ with f₂ f₂₀, induction A₂ with A₂ a₂₀, induction A₃ with A₃ a₃₀, esimp at * ⊢, induction p₁, induction p₂, reflexivity } end definition psigma_gen_functor_phomotopy [constructor] {A₁ A₂ : Type*} {B₁ : A₁ → Type} {B₂ : A₂ → Type} {b₁ : B₁ pt} {b₂ : B₂ pt} {f₁ f₂ : A₁ →* A₂} {g₁ : Π⦃a⦄, B₁ a → B₂ (f₁ a)} {g₂ : Π⦃a⦄, B₁ a → B₂ (f₂ a)} {p₁ : pathover B₂ (g₁ b₁) (respect_pt f₁) b₂} {p₂ : pathover B₂ (g₂ b₁) (respect_pt f₂) b₂} (h₁ : f₁ ~* f₂) (h₂ : Π⦃a⦄ (b : B₁ a), pathover B₂ (g₁ b) (h₁ a) (g₂ b)) (h₃ : squareover B₂ (square_of_eq (to_homotopy_pt h₁)⁻¹) p₁ p₂ (h₂ b₁) idpo) : psigma_gen_functor f₁ g₁ p₁ ~* psigma_gen_functor f₂ g₂ p₂ := begin induction h₁ using phomotopy_rec_idp, fapply phomotopy.mk, { intro x, induction x with a b, exact ap (dpair (f₁ a)) (eq_of_pathover_idp (h₂ b)) }, { induction f₁ with f f₀, induction A₂ with A₂ a₂₀, esimp at * ⊢, induction f₀, esimp, induction p₂ using idp_rec_on, rewrite [to_right_inv !eq_con_inv_equiv_con_eq at h₃], have h₂ b₁ = p₁, from (eq_top_of_squareover h₃)⁻¹, induction this, refine !ap_dpair ⬝ ap (sigma_eq _) _, exact to_left_inv !pathover_idp (h₂ b₁) } end definition psigma_gen_functor_psquare [constructor] {A₀₀ A₀₂ A₂₀ A₂₂ : Type*} {B₀₀ : A₀₀ → Type} {B₀₂ : A₀₂ → Type} {B₂₀ : A₂₀ → Type} {B₂₂ : A₂₂ → Type} {b₀₀ : B₀₀ pt} {b₀₂ : B₀₂ pt} {b₂₀ : B₂₀ pt} {b₂₂ : B₂₂ pt} {f₀₁ : A₀₀ →* A₀₂} {f₁₀ : A₀₀ →* A₂₀} {f₂₁ : A₂₀ →* A₂₂} {f₁₂ : A₀₂ →* A₂₂} {g₀₁ : Π⦃a⦄, B₀₀ a → B₀₂ (f₀₁ a)} {g₁₀ : Π⦃a⦄, B₀₀ a → B₂₀ (f₁₀ a)} {g₂₁ : Π⦃a⦄, B₂₀ a → B₂₂ (f₂₁ a)} {g₁₂ : Π⦃a⦄, B₀₂ a → B₂₂ (f₁₂ a)} {p₀₁ : pathover B₀₂ (g₀₁ b₀₀) (respect_pt f₀₁) b₀₂} {p₁₀ : pathover B₂₀ (g₁₀ b₀₀) (respect_pt f₁₀) b₂₀} {p₂₁ : pathover B₂₂ (g₂₁ b₂₀) (respect_pt f₂₁) b₂₂} {p₁₂ : pathover B₂₂ (g₁₂ b₀₂) (respect_pt f₁₂) b₂₂} (h₁ : psquare f₁₀ f₁₂ f₀₁ f₂₁) (h₂ : Π⦃a⦄ (b : B₀₀ a), pathover B₂₂ (g₂₁ (g₁₀ b)) (h₁ a) (g₁₂ (g₀₁ b))) (h₃ : squareover B₂₂ (square_of_eq (to_homotopy_pt h₁)⁻¹) (pathover_ap B₂₂ f₂₁ (apo g₂₁ p₁₀) ⬝o p₂₁) (pathover_ap B₂₂ f₁₂ (apo g₁₂ p₀₁) ⬝o p₁₂) (h₂ b₀₀) idpo) : psquare (psigma_gen_functor f₁₀ g₁₀ p₁₀) (psigma_gen_functor f₁₂ g₁₂ p₁₂) (psigma_gen_functor f₀₁ g₀₁ p₀₁) (psigma_gen_functor f₂₁ g₂₁ p₂₁) := proof !psigma_gen_functor_pcompose⁻¹* ⬝* psigma_gen_functor_phomotopy h₁ h₂ h₃ ⬝* !psigma_gen_functor_pcompose qed end pointed open pointed namespace pointed definition pointed_respect_pt [instance] [constructor] {A B : Type*} (f : A →* B) : pointed (f pt = pt) := pointed.mk (respect_pt f) definition ppi_of_phomotopy [constructor] {A B : Type*} {f g : A →* B} (h : f ~* g) : ppi (λx, f x = g x) (respect_pt f ⬝ (respect_pt g)⁻¹) := h definition phomotopy {A : Type*} {P : A → Type} {x : P pt} (f g : ppi P x) : Type := ppi (λa, f a = g a) (respect_pt f ⬝ (respect_pt g)⁻¹) variables {A : Type*} {P Q R : A → Type*} {f g h : Π*a, P a} {B C D : A → Type} {b₀ : B pt} {c₀ : C pt} {d₀ : D pt} {k k' l m : ppi B b₀} definition pppi_equiv_pmap [constructor] (A B : Type*) : (Π*(a : A), B) ≃ (A →* B) := by reflexivity definition pppi_pequiv_ppmap [constructor] (A B : Type*) : (Π*(a : A), B) ≃* ppmap A B := by reflexivity definition apd10_to_fun_eq_of_phomotopy (h : f ~* g) : apd10 (ap (λ k, pppi.to_fun k) (eq_of_phomotopy h)) = h := begin induction h using phomotopy_rec_idp, xrewrite [eq_of_phomotopy_refl f] end -- definition phomotopy_of_eq_of_phomotopy definition phomotopy_mk_ppi [constructor] {A : Type*} {B : Type*} {C : B → Type*} {f g : A →* (Π*b, C b)} (p : Πa, f a ~* g a) (q : p pt ⬝* phomotopy_of_eq (respect_pt g) = phomotopy_of_eq (respect_pt f)) : f ~* g := begin apply phomotopy.mk (λa, eq_of_phomotopy (p a)), apply eq_of_fn_eq_fn !ppi_eq_equiv, refine !phomotopy_of_eq_con ⬝ _, esimp, refine ap (λx, x ⬝* _) !phomotopy_of_eq_of_phomotopy ⬝ q end -- definition phomotopy_mk_ppmap [constructor] -- {A : Type*} {X : A → Type*} {Y : Π (a : A), X a → Type*} -- {f g : Π* (a : A), Π*(x : (X a)), (Y a x)} -- (p : Πa, f a ~* g a) -- (q : p pt ⬝* phomotopy_of_eq (ppi_resp_pt g) = phomotopy_of_eq (ppi_resp_pt f)) -- : f ~* g := -- begin -- apply phomotopy.mk (λa, eq_of_phomotopy (p a)), -- apply eq_of_fn_eq_fn (ppi_eq_equiv _ _), -- refine !phomotopy_of_eq_con ⬝ _, -- -- refine !phomotopy_of_eq_of_phomotopy ◾** idp ⬝ q, -- end variable {k} variables (k l) definition ppi_loop_equiv : (k = k) ≃ Π*(a : A), Ω (pType.mk (B a) (k a)) := begin induction k with k p, induction p, exact ppi_eq_equiv (ppi.mk k idp) (ppi.mk k idp) end variables {k l} -- definition eq_of_phomotopy (h : k ~* l) : k = l := -- (ppi_eq_equiv k l)⁻¹ᵉ h definition ppi_functor_right [constructor] {A : Type*} {B B' : A → Type} {b : B pt} {b' : B' pt} (f : Πa, B a → B' a) (p : f pt b = b') (g : ppi B b) : ppi B' b' := ppi.mk (λa, f a (g a)) (ap (f pt) (respect_pt g) ⬝ p) definition ppi_functor_right_compose [constructor] {A : Type*} {B₁ B₂ B₃ : A → Type} {b₁ : B₁ pt} {b₂ : B₂ pt} {b₃ : B₃ pt} (f₂ : Πa, B₂ a → B₃ a) (p₂ : f₂ pt b₂ = b₃) (f₁ : Πa, B₁ a → B₂ a) (p₁ : f₁ pt b₁ = b₂) (g : ppi B₁ b₁) : ppi_functor_right (λa, f₂ a ∘ f₁ a) (ap (f₂ pt) p₁ ⬝ p₂) g ~* ppi_functor_right f₂ p₂ (ppi_functor_right f₁ p₁ g) := begin fapply phomotopy.mk, { reflexivity }, { induction p₁, induction p₂, exact !idp_con ⬝ !ap_compose⁻¹ } end definition ppi_functor_right_id [constructor] {A : Type*} {B : A → Type} {b : B pt} (g : ppi B b) : ppi_functor_right (λa, id) idp g ~* g := begin fapply phomotopy.mk, { reflexivity }, { reflexivity } end definition ppi_functor_right_phomotopy [constructor] {g g' : Π(a : A), B a → C a} {g₀ : g pt b₀ = c₀} {g₀' : g' pt b₀ = c₀} {f f' : ppi B b₀} (p : g ~2 g') (q : f ~* f') (r : p pt b₀ ⬝ g₀' = g₀) : ppi_functor_right g g₀ f ~* ppi_functor_right g' g₀' f' := phomotopy.mk (λa, p a (f a) ⬝ ap (g' a) (q a)) abstract begin induction q using phomotopy_rec_idp, induction r, revert g p, refine rec_idp_of_equiv _ homotopy2.rfl _ _ _, { intro h h', exact !eq_equiv_eq_symm ⬝e !eq_equiv_homotopy2 }, { reflexivity }, induction g₀', induction f with f f₀, induction f₀, reflexivity end end definition ppi_functor_right_phomotopy_refl [constructor] (g : Π(a : A), B a → C a) (g₀ : g pt b₀ = c₀) (f : ppi B b₀) : ppi_functor_right_phomotopy (homotopy2.refl g) (phomotopy.refl f) !idp_con = phomotopy.refl (ppi_functor_right g g₀ f) := begin induction g₀, apply ap (phomotopy.mk homotopy.rfl), refine !phomotopy_rec_idp_refl ⬝ _, esimp, refine !rec_idp_of_equiv_idp ⬝ _, induction f with f f₀, induction f₀, reflexivity end definition ppi_equiv_ppi_right [constructor] {A : Type*} {B B' : A → Type} {b : B pt} {b' : B' pt} (f : Πa, B a ≃ B' a) (p : f pt b = b') : ppi B b ≃ ppi B' b' := equiv.MK (ppi_functor_right f p) (ppi_functor_right (λa, (f a)⁻¹ᵉ) (inv_eq_of_eq p⁻¹)) abstract begin intro g, apply eq_of_phomotopy, refine !ppi_functor_right_compose⁻¹* ⬝* _, refine ppi_functor_right_phomotopy (λa, to_right_inv (f a)) (phomotopy.refl g) _ ⬝* !ppi_functor_right_id, induction p, exact adj (f pt) b ⬝ ap02 (f pt) !idp_con⁻¹ end end abstract begin intro g, apply eq_of_phomotopy, refine !ppi_functor_right_compose⁻¹* ⬝* _, refine ppi_functor_right_phomotopy (λa, to_left_inv (f a)) (phomotopy.refl g) _ ⬝* !ppi_functor_right_id, induction p, exact (!idp_con ⬝ !idp_con)⁻¹, end end definition ppi_equiv_ppi_basepoint [constructor] {A : Type*} {B : A → Type} {b b' : B pt} (p : b = b') : ppi B b ≃ ppi B b' := ppi_equiv_ppi_right (λa, erfl) p definition pmap_compose_ppi [constructor] (g : Π(a : A), ppmap (P a) (Q a)) (f : Π*(a : A), P a) : Π*(a : A), Q a := ppi_functor_right g (respect_pt (g pt)) f definition pmap_compose_ppi_ppi_const [constructor] (g : Π(a : A), ppmap (P a) (Q a)) : pmap_compose_ppi g (ppi_const P) ~* ppi_const Q := proof phomotopy.mk (λa, respect_pt (g a)) !idp_con⁻¹ qed definition pmap_compose_ppi_pconst [constructor] (f : Π*(a : A), P a) : pmap_compose_ppi (λa, pconst (P a) (Q a)) f ~* ppi_const Q := phomotopy.mk homotopy.rfl !ap_constant⁻¹ definition pmap_compose_ppi2 [constructor] {g g' : Π(a : A), ppmap (P a) (Q a)} {f f' : Π*(a : A), P a} (p : Πa, g a ~* g' a) (q : f ~* f') : pmap_compose_ppi g f ~* pmap_compose_ppi g' f' := ppi_functor_right_phomotopy p q (to_homotopy_pt (p pt)) definition pmap_compose_ppi2_refl [constructor] (g : Π(a : A), P a →* Q a) (f : Π*(a : A), P a) : pmap_compose_ppi2 (λa, phomotopy.refl (g a)) (phomotopy.refl f) = phomotopy.rfl := begin refine _ ⬝ ppi_functor_right_phomotopy_refl g (respect_pt (g pt)) f, exact ap (ppi_functor_right_phomotopy _ _) (to_right_inv !eq_con_inv_equiv_con_eq _) end definition pmap_compose_ppi_phomotopy_left [constructor] {g g' : Π(a : A), ppmap (P a) (Q a)} (f : Π*(a : A), P a) (p : Πa, g a ~* g' a) : pmap_compose_ppi g f ~* pmap_compose_ppi g' f := pmap_compose_ppi2 p phomotopy.rfl definition pmap_compose_ppi_phomotopy_right [constructor] (g : Π(a : A), ppmap (P a) (Q a)) {f f' : Π*(a : A), P a} (p : f ~* f') : pmap_compose_ppi g f ~* pmap_compose_ppi g f' := pmap_compose_ppi2 (λa, phomotopy.rfl) p definition pmap_compose_ppi_pid_left [constructor] (f : Π*(a : A), P a) : pmap_compose_ppi (λa, pid (P a)) f ~* f := phomotopy.mk homotopy.rfl idp definition pmap_compose_ppi_pcompose [constructor] (h : Π(a : A), ppmap (Q a) (R a)) (g : Π(a : A), ppmap (P a) (Q a)) : pmap_compose_ppi (λa, h a ∘* g a) f ~* pmap_compose_ppi h (pmap_compose_ppi g f) := phomotopy.mk homotopy.rfl abstract !idp_con ⬝ whisker_right _ (!ap_con ⬝ whisker_right _ !ap_compose'⁻¹) ⬝ !con.assoc end definition ppi_assoc [constructor] (h : Π (a : A), Q a →* R a) (g : Π (a : A), P a →* Q a) (f : Π*a, P a) : pmap_compose_ppi (λa, h a ∘* g a) f ~* pmap_compose_ppi h (pmap_compose_ppi g f) := begin fapply phomotopy.mk, { intro a, reflexivity }, exact !idp_con ⬝ whisker_right _ (!ap_con ⬝ whisker_right _ !ap_compose⁻¹) ⬝ !con.assoc end definition pmap_compose_ppi_eq_of_phomotopy (g : Πa, P a →* Q a) {f f' : Π*a, P a} (p : f ~* f') : ap (pmap_compose_ppi g) (eq_of_phomotopy p) = eq_of_phomotopy (pmap_compose_ppi_phomotopy_right g p) := begin induction p using phomotopy_rec_idp, refine ap02 _ !eq_of_phomotopy_refl ⬝ !eq_of_phomotopy_refl⁻¹ ⬝ ap eq_of_phomotopy _, exact !pmap_compose_ppi2_refl⁻¹ end definition ppi_assoc_ppi_const_right (g : Πa, Q a →* R a) (f : Πa, P a →* Q a) : ppi_assoc g f (ppi_const P) ⬝* (pmap_compose_ppi_phomotopy_right _ (pmap_compose_ppi_ppi_const f) ⬝* pmap_compose_ppi_ppi_const g) = pmap_compose_ppi_ppi_const (λa, g a ∘* f a) := begin revert R g, refine fiberwise_pointed_map_rec _ _, revert Q f, refine fiberwise_pointed_map_rec _ _, intro Q f R g, refine ap (λx, _ ⬝* (x ⬝* _)) !pmap_compose_ppi2_refl ⬝ _, reflexivity end definition pppi_compose_left [constructor] (g : Π(a : A), ppmap (P a) (Q a)) : (Π*(a : A), P a) →* Π*(a : A), Q a := pmap.mk (pmap_compose_ppi g) (eq_of_phomotopy (pmap_compose_ppi_ppi_const g)) -- pppi_compose_left is a functor in the following sense definition pppi_compose_left_pcompose (g : Π (a : A), Q a →* R a) (f : Π (a : A), P a →* Q a) : pppi_compose_left (λ a, g a ∘* f a) ~* (pppi_compose_left g ∘* pppi_compose_left f) := begin fapply phomotopy_mk_ppi, { exact ppi_assoc g f }, { refine idp ◾** (!phomotopy_of_eq_con ⬝ (ap phomotopy_of_eq !pmap_compose_ppi_eq_of_phomotopy ⬝ !phomotopy_of_eq_of_phomotopy) ◾** !phomotopy_of_eq_of_phomotopy) ⬝ _ ⬝ !phomotopy_of_eq_of_phomotopy⁻¹, apply ppi_assoc_ppi_const_right }, end definition pppi_compose_left_phomotopy [constructor] {g g' : Π(a : A), ppmap (P a) (Q a)} (p : Πa, g a ~* g' a) : pppi_compose_left g ~* pppi_compose_left g' := begin apply phomotopy_of_eq, apply ap pppi_compose_left, apply eq_of_homotopy, intro a, apply eq_of_phomotopy, exact p a end definition psquare_pppi_compose_left {A : Type*} {B C D E : A → Type*} {ftop : Π (a : A), B a →* C a} {fbot : Π (a : A), D a →* E a} {fleft : Π (a : A), B a →* D a} {fright : Π (a : A), C a →* E a} (psq : Π (a :A), psquare (ftop a) (fbot a) (fleft a) (fright a)) : psquare (pppi_compose_left ftop) (pppi_compose_left fbot) (pppi_compose_left fleft) (pppi_compose_left fright) := begin refine (pppi_compose_left_pcompose fright ftop)⁻¹* ⬝* _ ⬝* (pppi_compose_left_pcompose fbot fleft), exact pppi_compose_left_phomotopy psq end definition ppi_pequiv_right [constructor] (g : Π(a : A), P a ≃* Q a) : (Π*(a : A), P a) ≃* Π*(a : A), Q a := begin apply pequiv_of_pmap (pppi_compose_left g), apply adjointify _ (pppi_compose_left (λa, (g a)⁻¹ᵉ*)), { intro f, apply eq_of_phomotopy, refine !pmap_compose_ppi_pcompose⁻¹* ⬝* _, refine pmap_compose_ppi_phomotopy_left _ (λa, !pright_inv) ⬝* _, apply pmap_compose_ppi_pid_left }, { intro f, apply eq_of_phomotopy, refine !pmap_compose_ppi_pcompose⁻¹* ⬝* _, refine pmap_compose_ppi_phomotopy_left _ (λa, !pleft_inv) ⬝* _, apply pmap_compose_ppi_pid_left } end end pointed namespace pointed variables {A B C : Type*} -- TODO: replace in types.fiber definition pfiber.sigma_char' (f : A →* B) : pfiber f ≃* psigma_gen (λa, f a = pt) (respect_pt f) := pequiv_of_equiv (fiber.sigma_char f pt) idp definition fiberpt [constructor] {A B : Type*} {f : A →* B} : fiber f pt := fiber.mk pt (respect_pt f) definition psigma_fiber_pequiv [constructor] {A B : Type*} (f : A →* B) : psigma_gen (fiber f) fiberpt ≃* A := pequiv_of_equiv (sigma_fiber_equiv f) idp definition ppmap.sigma_char [constructor] (A B : Type*) : ppmap A B ≃* @psigma_gen (A →ᵘ* B) (λf, f pt = pt) idp := pequiv_of_equiv pmap.sigma_char idp definition pppi.sigma_char [constructor] (B : A → Type*) : (Π*(a : A), B a) ≃* @psigma_gen (Πᵘ*a, B a) (λf, f pt = pt) idp := proof pequiv_of_equiv !ppi.sigma_char idp qed definition pppi_sigma_char_natural_bottom [constructor] {B B' : A → Type*} (f : Πa, B a →* B' a) : @psigma_gen (Πᵘ*a, B a) (λg, g pt = pt) idp →* @psigma_gen (Πᵘ*a, B' a) (λg, g pt = pt) idp := psigma_gen_functor (pupi_functor_right f) (λg p, ap (f pt) p ⬝ respect_pt (f pt)) begin apply eq_pathover_constant_right, apply square_of_eq, esimp, exact !idp_con ⬝ !apd10_eq_of_homotopy⁻¹ ⬝ !ap_eq_apd10⁻¹, end definition pppi_sigma_char_natural {B B' : A → Type*} (f : Πa, B a →* B' a) : psquare (pppi_compose_left f) (pppi_sigma_char_natural_bottom f) (pppi.sigma_char B) (pppi.sigma_char B') := begin fapply phomotopy.mk, { intro g, reflexivity }, { refine !idp_con ⬝ !idp_con ⬝ _, fapply sigma_eq2, { refine !sigma_eq_pr1 ⬝ _ ⬝ !ap_sigma_pr1⁻¹, apply eq_of_fn_eq_fn eq_equiv_homotopy, refine !apd10_eq_of_homotopy ⬝ _ ⬝ !apd10_to_fun_eq_of_phomotopy⁻¹, apply eq_of_homotopy, intro a, reflexivity }, { exact sorry } } end open sigma.ops definition psigma_gen_pi_pequiv_pupi_psigma_gen [constructor] {A : Type*} {B : A → Type*} (C : Πa, B a → Type) (c : Πa, C a pt) : @psigma_gen (Πᵘ*a, B a) (λf, Πa, C a (f a)) c ≃* Πᵘ*a, psigma_gen (C a) (c a) := pequiv_of_equiv sigma_pi_equiv_pi_sigma idp definition pupi_psigma_gen_pequiv_psigma_gen_pi [constructor] {A : Type*} {B : A → Type*} (C : Πa, B a → Type) (c : Πa, C a pt) : (Πᵘ*a, psigma_gen (C a) (c a)) ≃* @psigma_gen (Πᵘ*a, B a) (λf, Πa, C a (f a)) c := pequiv_of_equiv sigma_pi_equiv_pi_sigma⁻¹ᵉ idp definition psigma_gen_assoc [constructor] {A : Type*} {B : A → Type} (C : Πa, B a → Type) (b₀ : B pt) (c₀ : C pt b₀) : psigma_gen (λa, Σb, C a b) ⟨b₀, c₀⟩ ≃* @psigma_gen (psigma_gen B b₀) (λv, C v.1 v.2) c₀ := pequiv_of_equiv !sigma_assoc_equiv idp definition psigma_gen_swap [constructor] {A : Type*} {B B' : A → Type} (C : Π⦃a⦄, B a → B' a → Type) (b₀ : B pt) (b₀' : B' pt) (c₀ : C b₀ b₀') : @psigma_gen (psigma_gen B b₀ ) (λv, Σb', C v.2 b') ⟨b₀', c₀⟩ ≃* @psigma_gen (psigma_gen B' b₀') (λv, Σb , C b v.2) ⟨b₀ , c₀⟩ := !psigma_gen_assoc⁻¹ᵉ* ⬝e* psigma_gen_pequiv_psigma_gen_right (λa, !sigma_comm_equiv) idp ⬝e* !psigma_gen_assoc definition ppi_psigma.{u v w} {A : pType.{u}} {B : A → pType.{v}} (C : Πa, B a → Type.{w}) (c : Πa, C a pt) : (Π*(a : A), (psigma_gen (C a) (c a))) ≃* psigma_gen (λ(f : Π*(a : A), B a), ppi (λa, C a (f a)) (transport (C pt) (respect_pt f)⁻¹ (c pt))) (ppi_const _) := proof calc (Π*(a : A), psigma_gen (C a) (c a)) ≃* @psigma_gen (Πᵘ*a, psigma_gen (C a) (c a)) (λf, f pt = pt) idp : pppi.sigma_char ... ≃* @psigma_gen (@psigma_gen (Πᵘ*a, B a) (λf, Πa, C a (f a)) c) (λv, Σ(p : v.1 pt = pt), v.2 pt =[p] c pt) ⟨idp, idpo⟩ : by exact psigma_gen_pequiv_psigma_gen (pupi_psigma_gen_pequiv_psigma_gen_pi C c) (λf, sigma_eq_equiv _ _) idpo ... ≃* @psigma_gen (@psigma_gen (Πᵘ*a, B a) (λf, f pt = pt) idp) (λv, Σ(g : Πa, C a (v.1 a)), g pt =[v.2] c pt) ⟨c, idpo⟩ : by apply psigma_gen_swap ... ≃* psigma_gen (λ(f : Π*(a : A), B a), ppi (λa, C a (f a)) (transport (C pt) (respect_pt f)⁻¹ (c pt))) (ppi_const _) : by exact (psigma_gen_pequiv_psigma_gen (pppi.sigma_char B) (λf, !ppi.sigma_char ⬝e sigma_equiv_sigma_right (λg, !pathover_equiv_eq_tr⁻¹ᵉ)) idpo)⁻¹ᵉ* qed definition ppmap_psigma {A B : Type*} (C : B → Type) (c : C pt) : ppmap A (psigma_gen C c) ≃* psigma_gen (λ(f : ppmap A B), ppi (C ∘ f) (transport C (respect_pt f)⁻¹ c)) (ppi_const _) := !pppi_pequiv_ppmap⁻¹ᵉ* ⬝e* !ppi_psigma ⬝e* sorry -- psigma_gen_pequiv_psigma_gen (pppi_pequiv_ppmap A B) (λf, begin esimp, exact ppi_equiv_ppi_right (λa, _) _ end) _ definition pfiber_pppi_compose_left {B C : A → Type*} (f : Πa, B a →* C a) : pfiber (pppi_compose_left f) ≃* Π*(a : A), pfiber (f a) := calc pfiber (pppi_compose_left f) ≃* psigma_gen (λ(g : Π*(a : A), B a), pmap_compose_ppi f g = ppi_const C) proof (eq_of_phomotopy (pmap_compose_ppi_ppi_const f)) qed : by exact !pfiber.sigma_char' ... ≃* psigma_gen (λ(g : Π*(a : A), B a), pmap_compose_ppi f g ~* ppi_const C) proof (pmap_compose_ppi_ppi_const f) qed : by exact psigma_gen_pequiv_psigma_gen_right (λa, !ppi_eq_equiv) !phomotopy_of_eq_of_phomotopy ... ≃* @psigma_gen (Π*(a : A), B a) (λ(g : Π*(a : A), B a), ppi (λa, f a (g a) = pt) (transport (λb, f pt b = pt) (respect_pt g)⁻¹ (respect_pt (f pt)))) (ppi_const _) : begin refine psigma_gen_pequiv_psigma_gen_right (λg, ppi_equiv_ppi_basepoint (_ ⬝ !eq_transport_Fl⁻¹)) _, intro g, refine !con_idp ⬝ _, apply whisker_right, exact ap02 (f pt) !inv_inv⁻¹ ⬝ !ap_inv, apply eq_of_phomotopy, fapply phomotopy.mk, intro x, reflexivity, refine !idp_con ⬝ _, symmetry, refine !ap_id ◾ !idp_con ⬝ _, apply con.right_inv end ... ≃* Π*(a : A), (psigma_gen (λb, f a b = pt) (respect_pt (f a))) : by exact (ppi_psigma _ _)⁻¹ᵉ* ... ≃* Π*(a : A), pfiber (f a) : by exact ppi_pequiv_right (λa, !pfiber.sigma_char'⁻¹ᵉ*) /- TODO: proof the following as a special case of pfiber_pppi_compose_left -/ definition pfiber_ppcompose_left (f : B →* C) : pfiber (@ppcompose_left A B C f) ≃* ppmap A (pfiber f) := calc pfiber (@ppcompose_left A B C f) ≃* psigma_gen (λ(g : ppmap A B), f ∘* g = pconst A C) proof (eq_of_phomotopy (pcompose_pconst f)) qed : by exact !pfiber.sigma_char' ... ≃* psigma_gen (λ(g : ppmap A B), f ∘* g ~* pconst A C) proof (pcompose_pconst f) qed : by exact psigma_gen_pequiv_psigma_gen_right (λa, !pmap_eq_equiv) !phomotopy_of_eq_of_phomotopy ... ≃* psigma_gen (λ(g : ppmap A B), ppi (λa, f (g a) = pt) (transport (λb, f b = pt) (respect_pt g)⁻¹ (respect_pt f))) (ppi_const _) : begin refine psigma_gen_pequiv_psigma_gen_right (λg, ppi_equiv_ppi_basepoint (_ ⬝ !eq_transport_Fl⁻¹)) _, intro g, refine !con_idp ⬝ _, apply whisker_right, exact ap02 f !inv_inv⁻¹ ⬝ !ap_inv, apply eq_of_phomotopy, fapply phomotopy.mk, intro x, reflexivity, refine !idp_con ⬝ _, symmetry, refine !ap_id ◾ !idp_con ⬝ _, apply con.right_inv end ... ≃* ppmap A (psigma_gen (λb, f b = pt) (respect_pt f)) : by exact (ppmap_psigma _ _)⁻¹ᵉ* ... ≃* ppmap A (pfiber f) : by exact pequiv_ppcompose_left !pfiber.sigma_char'⁻¹ᵉ* -- definition pppi_ppmap {A C : Type*} {B : A → Type*} : -- ppmap (/- dependent smash of B -/) C ≃* Π*(a : A), ppmap (B a) C := definition ppi_add_point_over {A : Type} (B : A → Type*) : (Π*a, add_point_over B a) ≃ Πa, B a := begin fapply equiv.MK, { intro f a, exact f (some a) }, { intro f, fconstructor, intro a, cases a, exact pt, exact f a, reflexivity }, { intro f, reflexivity }, { intro f, cases f with f p, apply eq_of_phomotopy, fapply phomotopy.mk, { intro a, cases a, exact p⁻¹, reflexivity }, { exact con.left_inv p }}, end definition pppi_add_point_over {A : Type} (B : A → Type*) : (Π*a, add_point_over B a) ≃* Πᵘ*a, B a := pequiv_of_equiv (ppi_add_point_over B) idp definition ppmap_add_point {A : Type} (B : Type*) : ppmap A₊ B ≃* A →ᵘ* B := pequiv_of_equiv (pmap_equiv_left A B) idp /- There are some lemma's needed to prove the naturality of the equivalence Ω (Π*a, B a) ≃* Π*(a : A), Ω (B a) -/ definition ppi_eq_equiv_natural_gen_lem {B C : A → Type} {b₀ : B pt} {c₀ : C pt} {f : Π(a : A), B a → C a} {f₀ : f pt b₀ = c₀} {k : ppi B b₀} {k' : ppi C c₀} (p : ppi_functor_right f f₀ k ~* k') : ap1_gen (f pt) (p pt) f₀ (respect_pt k) = respect_pt k' := begin symmetry, refine _ ⬝ !con.assoc⁻¹, exact eq_inv_con_of_con_eq (to_homotopy_pt p), end definition ppi_eq_equiv_natural_gen_lem2 {B C : A → Type} {b₀ : B pt} {c₀ : C pt} {f : Π(a : A), B a → C a} {f₀ : f pt b₀ = c₀} {k l : ppi B b₀} {k' l' : ppi C c₀} (p : ppi_functor_right f f₀ k ~* k') (q : ppi_functor_right f f₀ l ~* l') : ap1_gen (f pt) (p pt) (q pt) (respect_pt k ⬝ (respect_pt l)⁻¹) = respect_pt k' ⬝ (respect_pt l')⁻¹ := (ap1_gen_con (f pt) _ f₀ _ _ _ ⬝ (ppi_eq_equiv_natural_gen_lem p) ◾ (!ap1_gen_inv ⬝ (ppi_eq_equiv_natural_gen_lem q)⁻²)) definition ppi_eq_equiv_natural_gen {B C : A → Type} {b₀ : B pt} {c₀ : C pt} {f : Π(a : A), B a → C a} {f₀ : f pt b₀ = c₀} {k l : ppi B b₀} {k' l' : ppi C c₀} (p : ppi_functor_right f f₀ k ~* k') (q : ppi_functor_right f f₀ l ~* l') : hsquare (ap1_gen (ppi_functor_right f f₀) (eq_of_phomotopy p) (eq_of_phomotopy q)) (ppi_functor_right (λa, ap1_gen (f a) (p a) (q a)) (ppi_eq_equiv_natural_gen_lem2 p q)) phomotopy_of_eq phomotopy_of_eq := begin intro r, induction r, induction f₀, induction k with k k₀, induction k₀, refine idp ⬝ _, revert l' q, refine phomotopy_rec_idp' _ _, revert k' p, refine phomotopy_rec_idp' _ _, reflexivity end definition ppi_eq_equiv_natural_gen_refl {B C : A → Type} {f : Π(a : A), B a → C a} {k : Πa, B a} : ppi_eq_equiv_natural_gen (phomotopy.refl (ppi_functor_right f idp (ppi.mk k idp))) (phomotopy.refl (ppi_functor_right f idp (ppi.mk k idp))) idp = ap phomotopy_of_eq !ap1_gen_idp := begin refine !idp_con ⬝ _, refine !phomotopy_rec_idp'_refl ⬝ _, refine ap (transport _ _) !phomotopy_rec_idp'_refl ⬝ _, refine !tr_diag_eq_tr_tr⁻¹ ⬝ _, refine !eq_transport_Fl ⬝ _, refine !ap_inv⁻² ⬝ !inv_inv ⬝ !ap_compose ⬝ ap02 _ _, exact !ap1_gen_idp_eq⁻¹ end definition loop_pppi_pequiv [constructor] {A : Type*} (B : A → Type*) : Ω (Π*a, B a) ≃* Π*(a : A), Ω (B a) := pequiv_of_equiv !ppi_eq_equiv idp definition loop_pppi_pequiv_natural {A : Type*} {X Y : A → Type*} (f : Π (a : A), X a →* Y a) : psquare (Ω→ (pppi_compose_left f)) (pppi_compose_left (λ a, Ω→ (f a))) (loop_pppi_pequiv X) (loop_pppi_pequiv Y) := begin revert Y f, refine fiberwise_pointed_map_rec _ _, intro Y f, fapply phomotopy.mk, { exact ppi_eq_equiv_natural_gen (pmap_compose_ppi_ppi_const (λa, pmap_of_map (f a) pt)) (pmap_compose_ppi_ppi_const (λa, pmap_of_map (f a) pt)) }, { exact !ppi_eq_equiv_natural_gen_refl ◾ (!idp_con ⬝ !eq_of_phomotopy_refl) } end /- below is an alternate proof strategy for the naturality of loop_pppi_pequiv_natural, where we define loop_pppi_pequiv as composite of pointed equivalences, and proved the naturality individually. That turned out to be harder. -/ /- definition loop_pppi_pequiv2 {A : Type*} (B : A → Type*) : Ω (Π*a, B a) ≃* Π*(a : A), Ω (B a) := begin refine loop_pequiv_loop (pppi.sigma_char B) ⬝e* _, refine !loop_psigma_gen ⬝e* _, transitivity @psigma_gen (Πᵘ*a, Ω (B a)) (λf, f pt = idp) idp, exact psigma_gen_pequiv_psigma_gen (loop_pupi B) (λp, eq_pathover_equiv_Fl p idp idp ⬝e equiv_eq_closed_right _ (whisker_right _ (ap_eq_apd10 p _)) ⬝e !eq_equiv_eq_symm) idpo, exact (pppi.sigma_char (Ω ∘ B))⁻¹ᵉ* end definition loop_pppi_pequiv_natural2 {A : Type*} {X Y : A → Type*} (f : Π (a : A), X a →* Y a) : psquare (Ω→ (pppi_compose_left f)) (pppi_compose_left (λ a, Ω→ (f a))) (loop_pppi_pequiv2 X) (loop_pppi_pequiv2 Y) := begin refine ap1_psquare (pppi_sigma_char_natural f) ⬝v* _, refine !loop_psigma_gen_natural ⬝v* _, refine _ ⬝v* (pppi_sigma_char_natural (λ a, Ω→ (f a)))⁻¹ᵛ*, fapply psigma_gen_functor_psquare, { apply loop_pupi_natural }, { intro p q, exact sorry }, { exact sorry } end-/ end pointed open pointed open is_trunc is_conn namespace is_conn section variables (A : Type*) (n : ℕ₋₂) [H : is_conn (n.+1) A] include H definition is_contr_ppi_match (P : A → Type*) (H : Πa, is_trunc (n.+1) (P a)) : is_contr (Π*(a : A), P a) := begin apply is_contr.mk pt, intro f, induction f with f p, apply eq_of_phomotopy, fapply phomotopy.mk, { apply is_conn.elim n, exact p⁻¹ }, { krewrite (is_conn.elim_β n), apply con.left_inv } end -- definition is_trunc_ppi_of_is_conn (k : ℕ₋₂) (P : A → Type*) -- : is_trunc k.+1 (Π*(a : A), P a) := definition is_trunc_ppi_of_is_conn (k l : ℕ₋₂) (H2 : l ≤ n.+1+2+k) (P : A → Type*) (H3 : Πa, is_trunc l (P a)) : is_trunc k.+1 (Π*(a : A), P a) := begin have H4 : Πa, is_trunc (n.+1+2+k) (P a), from λa, is_trunc_of_le (P a) H2, clear H2 H3, revert P H4, induction k with k IH: intro P H4, { apply is_prop_of_imp_is_contr, intro f, apply is_contr_ppi_match A n P H4 }, { apply is_trunc_succ_of_is_trunc_loop (trunc_index.succ_le_succ (trunc_index.minus_two_le k)), intro f, apply @is_trunc_equiv_closed_rev _ _ k.+1 (ppi_loop_equiv f), apply IH, intro a, apply is_trunc_loop, apply H4 } end definition is_trunc_pmap_of_is_conn (k l : ℕ₋₂) (B : Type*) (H2 : l ≤ n.+1+2+k) (H3 : is_trunc l B) : is_trunc k.+1 (A →* B) := @is_trunc_equiv_closed _ _ k.+1 (pppi_equiv_pmap A B) (is_trunc_ppi_of_is_conn A n k l H2 (λ a, B) _) end -- this is probably much easier to prove directly definition is_trunc_ppi (A : Type*) (n k : ℕ₋₂) (H : n ≤ k) (P : A → Type*) (H2 : Πa, is_trunc n (P a)) : is_trunc k (Π*(a : A), P a) := begin cases k with k, { apply is_contr_of_merely_prop, { exact @is_trunc_ppi_of_is_conn A -2 (is_conn_minus_one A (tr pt)) -2 _ (trunc_index.le.step H) P H2 }, { exact tr pt } }, { assert K : n ≤ -1 +2+ k, { rewrite (trunc_index.add_plus_two_comm -1 k), exact H }, { exact @is_trunc_ppi_of_is_conn A -2 (is_conn_minus_one A (tr pt)) k _ K P H2 } } end end is_conn