-- Author: Floris van Doorn import homotopy.connectedness .move_to_lib open eq equiv pointed is_conn is_trunc sigma prod trunc function group nat fiber namespace is_conn open sigma.ops pointed trunc_index /- this is equivalent to pfiber (A → ∥A∥₀) ≡ connect 0 A -/ definition component [constructor] (A : Type*) : Type* := pType.mk (Σ(a : A), merely (pt = a)) ⟨pt, tr idp⟩ lemma is_conn_component [instance] (A : Type*) : is_conn 0 (component A) := is_conn_zero_pointed' begin intro x, induction x with a p, induction p with p, induction p, exact tidp end definition component_incl [constructor] (A : Type*) : component A →* A := pmap.mk pr1 idp definition is_embedding_component_incl [instance] (A : Type*) : is_embedding (component_incl A) := is_embedding_pr1 _ definition component_intro [constructor] {A B : Type*} (f : A →* B) (H : merely_constant f) : A →* component B := begin fapply pmap.mk, { intro a, refine ⟨f a, _⟩, exact tinverse (merely_constant_pmap H a) }, exact subtype_eq !respect_pt end definition component_functor [constructor] {A B : Type*} (f : A →* B) : component A →* component B := component_intro (f ∘* component_incl A) !merely_constant_of_is_conn -- definition component_elim [constructor] {A B : Type*} (f : A →* B) (H : merely_constant f) : -- A →* component B := -- begin -- fapply pmap.mk, -- { intro a, refine ⟨f a, _⟩, exact tinverse (merely_constant_pmap H a) }, -- exact subtype_eq !respect_pt -- end definition loop_component (A : Type*) : Ω (component A) ≃* Ω A := loop_pequiv_loop_of_is_embedding (component_incl A) lemma loopn_component (n : ℕ) (A : Type*) : Ω[n+1] (component A) ≃* Ω[n+1] A := !loopn_succ_in ⬝e* loopn_pequiv_loopn n (loop_component A) ⬝e* !loopn_succ_in⁻¹ᵉ* -- lemma fundamental_group_component (A : Type*) : π₁ (component A) ≃g π₁ A := -- isomorphism_of_equiv (trunc_equiv_trunc 0 (loop_component A)) _ lemma homotopy_group_component (n : ℕ) (A : Type*) : πg[n+1] (component A) ≃g πg[n+1] A := homotopy_group_isomorphism_of_is_embedding (n+1) (component_incl A) definition is_trunc_component [instance] (n : ℕ₋₂) (A : Type*) [is_trunc n A] : is_trunc n (component A) := begin apply @is_trunc_sigma, intro a, cases n with n, { refine is_contr_of_inhabited_prop _ _, exact tr !is_prop.elim }, { exact is_trunc_succ_of_is_prop _ _ _ }, end definition ptrunc_component' (n : ℕ₋₂) (A : Type*) : ptrunc (n.+2) (component A) ≃* component (ptrunc (n.+2) A) := begin fapply pequiv.MK', { exact ptrunc.elim (n.+2) (component_functor !ptr) }, { intro x, cases x with x p, induction x with a, refine tr ⟨a, _⟩, note q := trunc_functor -1 !tr_eq_tr_equiv p, exact trunc_trunc_equiv_left _ !minus_one_le_succ q }, { exact sorry }, { exact sorry } end definition ptrunc_component (n : ℕ₋₂) (A : Type*) : ptrunc n (component A) ≃* component (ptrunc n A) := begin cases n with n, exact sorry, cases n with n, exact sorry, exact ptrunc_component' n A end definition break_into_components (A : Type) : A ≃ Σ(x : trunc 0 A), Σ(a : A), ∥ tr a = x ∥ := calc A ≃ Σ(a : A) (x : trunc 0 A), tr a = x : by exact (@sigma_equiv_of_is_contr_right _ _ (λa, !is_contr_sigma_eq))⁻¹ᵉ ... ≃ Σ(x : trunc 0 A) (a : A), tr a = x : by apply sigma_comm_equiv ... ≃ Σ(x : trunc 0 A), Σ(a : A), ∥ tr a = x ∥ : by exact sigma_equiv_sigma_right (λx, sigma_equiv_sigma_right (λa, !trunc_equiv⁻¹ᵉ)) definition pfiber_pequiv_component_of_is_contr [constructor] {A B : Type*} (f : A →* B) [is_contr B] /- extra condition, something like trunc_functor 0 f is an embedding -/ : pfiber f ≃* component A := sorry end is_conn