/- Copyright (c) 2017 Yuri Sulyma, Favonia Released under Apache 2.0 license as described in the file LICENSE. Authors: Yuri Sulyma, Favonia Reduced homology theories -/ import ..homotopy.spectrum ..homotopy.EM ..algebra.arrow_group ..algebra.direct_sum ..homotopy.fwedge ..choice ..homotopy.pushout ..move_to_lib open eq spectrum int pointed group algebra sphere nat equiv susp is_trunc function fwedge cofiber lift is_equiv choice algebra pi smash namespace homology /- homology theory -/ structure homology_theory.{u} : Type.{u+1} := (HH : ℤ → pType.{u} → AbGroup.{u}) (Hh : Π(n : ℤ) {X Y : Type*} (f : X →* Y), HH n X →g HH n Y) (Hid : Π(n : ℤ) {X : Type*} (x : HH n X), Hh n (pid X) x = x) (Hcompose : Π(n : ℤ) {X Y Z : Type*} (f : Y →* Z) (g : X →* Y), Hh n (f ∘* g) ~ Hh n f ∘ Hh n g) (Hsusp : Π(n : ℤ) (X : Type*), HH (succ n) (psusp X) ≃g HH n X) (Hsusp_natural : Π(n : ℤ) {X Y : Type*} (f : X →* Y), Hsusp n Y ∘ Hh (succ n) (psusp_functor f) ~ Hh n f ∘ Hsusp n X) (Hexact : Π(n : ℤ) {X Y : Type*} (f : X →* Y), is_exact_g (Hh n f) (Hh n (pcod f))) (Hadditive : Π(n : ℤ) {I : Set.{u}} (X : I → Type*), is_equiv (dirsum_elim (λi, Hh n (pinl i)) : dirsum (λi, HH n (X i)) → HH n (⋁ X))) structure ordinary_homology_theory.{u} extends homology_theory.{u} : Type.{u+1} := (Hdimension : Π(n : ℤ), n ≠ 0 → is_contr (HH n (plift (psphere 0)))) section parameter (theory : homology_theory) open homology_theory theorem HH_base_indep (n : ℤ) {A : Type} (a b : A) : HH theory n (pType.mk A a) ≃g HH theory n (pType.mk A b) := calc HH theory n (pType.mk A a) ≃g HH theory (int.succ n) (psusp A) : by exact (Hsusp theory n (pType.mk A a)) ⁻¹ᵍ ... ≃g HH theory n (pType.mk A b) : by exact Hsusp theory n (pType.mk A b) theorem Hh_homotopy' (n : ℤ) {A B : Type*} (f : A → B) (p q : f pt = pt) : Hh theory n (pmap.mk f p) ~ Hh theory n (pmap.mk f q) := λ x, calc Hh theory n (pmap.mk f p) x = Hh theory n (pmap.mk f p) (Hsusp theory n A ((Hsusp theory n A)⁻¹ᵍ x)) : by exact ap (Hh theory n (pmap.mk f p)) (equiv.to_right_inv (equiv_of_isomorphism (Hsusp theory n A)) x)⁻¹ ... = Hsusp theory n B (Hh theory (succ n) (pmap.mk (susp.functor f) !refl) ((Hsusp theory n A)⁻¹ x)) : by exact (Hsusp_natural theory n (pmap.mk f p) ((Hsusp theory n A)⁻¹ᵍ x))⁻¹ ... = Hh theory n (pmap.mk f q) (Hsusp theory n A ((Hsusp theory n A)⁻¹ x)) : by exact Hsusp_natural theory n (pmap.mk f q) ((Hsusp theory n A)⁻¹ x) ... = Hh theory n (pmap.mk f q) x : by exact ap (Hh theory n (pmap.mk f q)) (equiv.to_right_inv (equiv_of_isomorphism (Hsusp theory n A)) x) theorem Hh_homotopy (n : ℤ) {A B : Type*} (f g : A →* B) (h : f ~ g) : Hh theory n f ~ Hh theory n g := λ x, calc Hh theory n f x = Hh theory n (pmap.mk f (respect_pt f)) x : by exact ap (λ f, Hh theory n f x) (pmap.eta f)⁻¹ ... = Hh theory n (pmap.mk f (h pt ⬝ respect_pt g)) x : by exact Hh_homotopy' n f (respect_pt f) (h pt ⬝ respect_pt g) x ... = Hh theory n g x : by exact ap (λ f, Hh theory n f x) (@pmap_eq _ _ (pmap.mk f (h pt ⬝ respect_pt g)) _ h (refl (h pt ⬝ respect_pt g))) definition HH_isomorphism (n : ℤ) {A B : Type*} (e : A ≃* B) : HH theory n A ≃g HH theory n B := begin fapply isomorphism.mk, { exact Hh theory n e }, fapply adjointify, { exact Hh theory n e⁻¹ᵉ* }, { intro x, exact calc Hh theory n e (Hh theory n e⁻¹ᵉ* x) = Hh theory n (e ∘* e⁻¹ᵉ*) x : by exact (Hcompose theory n e e⁻¹ᵉ* x)⁻¹ ... = Hh theory n !pid x : by exact Hh_homotopy n (e ∘* e⁻¹ᵉ*) !pid (to_right_inv e) x ... = x : by exact Hid theory n x }, { intro x, exact calc Hh theory n e⁻¹ᵉ* (Hh theory n e x) = Hh theory n (e⁻¹ᵉ* ∘* e) x : by exact (Hcompose theory n e⁻¹ᵉ* e x)⁻¹ ... = Hh theory n !pid x : by exact Hh_homotopy n (e⁻¹ᵉ* ∘* e) !pid (to_left_inv e) x ... = x : by exact Hid theory n x } end end end homology