/- Copyright (c) 2016 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn Reduced cohomology -/ import algebra.arrow_group .spectrum homotopy.EM open eq spectrum int trunc pointed EM group algebra circle sphere nat EM.ops definition EM_spectrum /-[constructor]-/ (G : AbGroup) : spectrum := spectrum.Mk (K G) (λn, (loop_EM G n)⁻¹ᵉ*) definition cohomology (X : Type*) (Y : spectrum) (n : ℤ) : AbGroup := AbGroup_pmap X (πag[2] (Y (2+n))) definition ordinary_cohomology [reducible] (X : Type*) (G : AbGroup) (n : ℤ) : AbGroup := cohomology X (EM_spectrum G) n definition ordinary_cohomology_Z [reducible] (X : Type*) (n : ℤ) : AbGroup := ordinary_cohomology X agℤ n notation `H^` n `[`:0 X:0 `, ` Y:0 `]`:0 := cohomology X Y n notation `H^` n `[`:0 X:0 `]`:0 := ordinary_cohomology_Z X n -- check H^3[S¹*,EM_spectrum agℤ] -- check H^3[S¹*] definition unpointed_cohomology (X : Type) (Y : spectrum) (n : ℤ) : AbGroup := cohomology X₊ Y n definition cohomology_homomorphism [constructor] {X X' : Type*} (f : X' →* X) (Y : spectrum) (n : ℤ) : cohomology X Y n →g cohomology X' Y n := Group_pmap_homomorphism f (πag[2] (Y (2+n))) definition cohomology_homomorphism_id (X : Type*) (Y : spectrum) (n : ℤ) (f : H^n[X, Y]) : cohomology_homomorphism (pid X) Y n f ~* f := !pcompose_pid definition cohomology_homomorphism_compose {X X' X'' : Type*} (g : X'' →* X') (f : X' →* X) (Y : spectrum) (n : ℤ) (h : H^n[X, Y]) : cohomology_homomorphism (f ∘* g) Y n h ~* cohomology_homomorphism g Y n (cohomology_homomorphism f Y n h) := !passoc⁻¹*