import .spectrum .EM open int trunc eq is_trunc lift unit pointed equiv is_equiv algebra EM namespace spectrum definition trunc_int.{u} (k : ℤ) (X : Type.{u}) : Type.{u} := begin induction k with k k, exact trunc k X, cases k with k, exact trunc -1 X, exact lift unit end definition ptrunc_int.{u} (k : ℤ) (X : pType.{u}) : pType.{u} := begin induction k with k k, exact ptrunc k X, exact plift punit end definition ptrunc_int_pequiv_ptrunc_int (k : ℤ) {X Y : Type*} (e : X ≃* Y) : ptrunc_int k X ≃* ptrunc_int k Y := begin induction k with k k, exact ptrunc_pequiv_ptrunc k e, exact !pequiv_plift⁻¹ᵉ* ⬝e* !pequiv_plift end definition ptrunc_int_change_int {k l : ℤ} (X : Type*) (p : k = l) : ptrunc_int k X ≃* ptrunc_int l X := pequiv_ap (λn, ptrunc_int n X) p definition loop_ptrunc_int_pequiv (k : ℤ) (X : Type*) : Ω (ptrunc_int (k+1) X) ≃* ptrunc_int k (Ω X) := begin induction k with k k, exact loop_ptrunc_pequiv k X, cases k with k, change Ω (ptrunc 0 X) ≃* plift punit, exact !loop_pequiv_punit_of_is_set ⬝e* !pequiv_plift, exact loop_pequiv_loop !pequiv_plift⁻¹ᵉ* ⬝e* !loop_punit ⬝e* !pequiv_plift end definition strunc_int [constructor] (k : ℤ) (E : spectrum) : spectrum := spectrum.MK (λ(n : ℤ), ptrunc_int (k + n) (E n)) (λ(n : ℤ), ptrunc_int_pequiv_ptrunc_int (k + n) (equiv_glue E n) ⬝e* (loop_ptrunc_int_pequiv (k + n) (E (n+1)))⁻¹ᵉ* ⬝e* loop_pequiv_loop (ptrunc_int_change_int _ (add.assoc k n 1))) definition strunc_int_change_int [constructor] {k l : ℤ} (E : spectrum) (p : k = l) : strunc_int k E →ₛ strunc_int l E := begin induction p, reflexivity end end spectrum