/- Copyright (c) 2017 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad -/ import types.trunc open funext eq trunc is_trunc prod sum --reserve prefix `¬`:40 --reserve prefix `~`:40 --reserve infixr ` ∧ `:35 --reserve infixr ` /\ `:35 --reserve infixr ` \/ `:30 --reserve infixr ` ∨ `:30 --reserve infix ` <-> `:20 --reserve infix ` ↔ `:20 namespace logic section open trunc_index definition propext {p q : Prop} (h : p ↔ q) : p = q := tua (equiv_of_iff_of_is_prop h) end definition false : Prop := trunctype.mk (lift empty) _ definition false.elim {A : Type} (h : false) : A := lift.rec empty.elim h definition true : Prop := trunctype.mk (lift unit) _ definition true.intro : true := lift.up unit.star definition trivial : true := lift.up unit.star definition and (p q : Prop) : Prop := tprod p q infixr ` ∧ ` := and infixr ` /\ ` := and definition and.intro {p q : Prop} (h₁ : p) (h₂ : q) : and p q := prod.mk h₁ h₂ definition and.left {p q : Prop} (h : p ∧ q) : p := prod.pr1 h definition and.right {p q : Prop} (h : p ∧ q) : q := prod.pr2 h definition not (p : Prop) : Prop := trunctype.mk (p → empty) _ definition or.inl := @or.intro_left definition or.inr := @or.intro_right definition or.elim {A B C : Type} [is_prop C] (h₀ : A ∨ B) (h₁ : (A → C)) (h₂ : B → C) : C := begin apply trunc.elim_on h₀, intro h₃, apply sum.elim h₃ h₁ h₂ end end logic