/- Copyright (c) 2016 Egbert Rijke. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Egbert Rijke, Steve Awodey Exact couple, derived couples, and so on -/ import algebra.group_theory hit.set_quotient types.sigma types.list types.sum .quotient_group .subgroup .ses open eq algebra is_trunc set_quotient relation sigma sigma.ops prod prod.ops sum list trunc function group trunc equiv is_equiv definition is_differential {B : AbGroup} (d : B →g B) := Π(b:B), d (d b) = 1 definition image_subgroup_of_diff {B : AbGroup} (d : B →g B) (H : is_differential d) : subgroup_rel (ab_kernel d) := subgroup_rel_of_subgroup (image_subgroup d) (kernel_subgroup d) begin intro g p, induction p with f, induction f with h p, rewrite [p⁻¹], esimp, exact H h end definition homology {B : AbGroup} (d : B →g B) (H : is_differential d) : AbGroup := @quotient_ab_group (ab_kernel d) (image_subgroup_of_diff d H) structure exact_couple (A B : AbGroup) : Type := ( i : A →g A) (j : A →g B) (k : B →g A) ( exact_ij : is_exact i j) ( exact_jk : is_exact j k) ( exact_ki : is_exact k i) definition differential {A B : AbGroup} (EC : exact_couple A B) : B →g B := (exact_couple.j EC) ∘g (exact_couple.k EC) definition differential_is_differential {A B : AbGroup} (EC : exact_couple A B) : is_differential (differential EC) := begin induction EC, induction exact_jk, intro b, exact (ap (group_fun j) (im_in_ker (group_fun k b))) ⬝ (respect_one j) end section derived_couple variables {A B : AbGroup} (EC : exact_couple A B) definition derived_couple_A : AbGroup := ab_subgroup (image_subgroup (exact_couple.i EC)) definition derived_couple_B : AbGroup := homology (differential EC) (differential_is_differential EC) definition derived_couple_i : derived_couple_A EC →g derived_couple_A EC := (image_lift (exact_couple.i EC)) ∘g (image_incl (exact_couple.i EC)) definition derived_couple_j : derived_couple_A EC →g derived_couple_B EC := begin exact sorry, -- refine (comm_gq_map (comm_kernel (boundary CC)) (image_subgroup_of_bd (boundary CC) (boundary_is_boundary CC))) ∘g _, end end derived_couple