/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn, Egbert Rijke -/ import hit.colimit .sequence cubical.squareover types.arrow types.equiv cubical.pathover2 open eq nat sigma sigma.ops quotient equiv pi is_trunc is_equiv fiber function trunc namespace seq_colim -- note: this clashes with the abbreviation defined in namespace "colimit" abbreviation ι [constructor] := @inclusion abbreviation ι' [constructor] [parsing_only] {A} (f n) := @inclusion A f n universe variable v variables {A A' A'' : ℕ → Type} (f : seq_diagram A) (f' : seq_diagram A') (f'' : seq_diagram A'') (τ τ₂ : Π⦃n⦄, A n → A' n) (p : Π⦃n⦄ (a : A n), τ (f a) = f' (τ a)) (p₂ : Π⦃n⦄ (a : A n), τ₂ (f a) = f' (τ₂ a)) (τ' : Π⦃n⦄, A' n → A'' n) (p' : Π⦃n⦄ (a' : A' n), τ' (f' a') = f'' (τ' a')) {P : Π⦃n⦄, A n → Type.{v}} (g : seq_diagram_over f P) {n : ℕ} {a : A n} definition lrep_glue {n m : ℕ} (H : n ≤ m) (a : A n) : ι f (lrep f H a) = ι f a := begin induction H with m H p, { reflexivity }, { exact glue f (lrep f H a) ⬝ p } end -- probably not needed -- definition rep0_back_glue [is_equiseq f] (k : ℕ) (a : A k) : ι f (rep0_back f k a) = ι f a := -- begin -- exact sorry -- end definition colim_back [unfold 4] [H : is_equiseq f] : seq_colim f → A 0 := begin intro x, induction x with k a k a, { exact lrep_back f (zero_le k) a}, rexact ap (lrep_back f (zero_le k)) (left_inv (@f k) a), end section variable {f} local attribute is_equiv_lrep [instance] --[priority 500] definition is_equiv_inclusion0 (H : is_equiseq f) : is_equiv (ι' f 0) := begin fapply adjointify, { exact colim_back f}, { intro x, induction x with k a k a, { refine (lrep_glue f (zero_le k) (lrep_back f (zero_le k) a))⁻¹ ⬝ _, exact ap (ι f) (right_inv (lrep f (zero_le k)) a)}, apply eq_pathover_id_right, refine (ap_compose (ι f) (colim_back f) _) ⬝ph _, refine ap02 _ _ ⬝ph _, rotate 1, { rexact elim_glue f _ _ a }, refine _ ⬝pv ((natural_square (lrep_glue f (zero_le k)) (ap (lrep_back f (zero_le k)) (left_inv (@f k) a)))⁻¹ʰ ⬝h _), { exact (glue f _)⁻¹ ⬝ ap (ι f) (right_inv (lrep f (zero_le (succ k))) (f a)) }, { rewrite [-con.assoc, -con_inv] }, refine !ap_compose⁻¹ ⬝ ap_compose (ι f) _ _ ⬝ph _, refine dconcat (aps (ι' f k) (natural_square (right_inv (lrep f (zero_le k))) (left_inv (@f _) a))) _, apply move_top_of_left, apply move_left_of_bot, refine ap02 _ (whisker_left _ (adj (@f _) a)) ⬝pv _, rewrite [-+ap_con, ap_compose', ap_id], apply natural_square_tr }, { intro a, reflexivity } end definition equiv_of_is_equiseq [constructor] (H : is_equiseq f) : seq_colim f ≃ A 0 := (equiv.mk _ (is_equiv_inclusion0 H))⁻¹ᵉ variable (f) end section definition rep_glue (k : ℕ) (a : A n) : ι f (rep f k a) = ι f a := begin induction k with k IH, { reflexivity}, { exact glue f (rep f k a) ⬝ IH} end /- functorial action and equivalences -/ section functor variables {f f' f''} include p definition seq_colim_functor [unfold 7] : seq_colim f → seq_colim f' := begin intro x, induction x with n a n a, { exact ι f' (τ a)}, { exact ap (ι f') (p a) ⬝ glue f' (τ a)} end omit p theorem seq_colim_functor_glue {n : ℕ} (a : A n) : ap (seq_colim_functor τ p) (glue f a) = ap (ι f') (p a) ⬝ glue f' (τ a) := !elim_glue definition seq_colim_functor_compose [constructor] (x : seq_colim f) : seq_colim_functor (λn x, τ' (τ x)) (λn, hvconcat (@p n) (@p' n)) x = seq_colim_functor τ' p' (seq_colim_functor τ p x) := begin induction x, reflexivity, apply eq_pathover, apply hdeg_square, refine !seq_colim_functor_glue ⬝ _ ⬝ (ap_compose (seq_colim_functor _ _) _ _)⁻¹, refine _ ⬝ (ap02 _ proof !seq_colim_functor_glue qed ⬝ !ap_con)⁻¹, refine _ ⬝ (proof !ap_compose' ⬝ ap_compose (ι f'') _ _ qed ◾ proof !seq_colim_functor_glue qed)⁻¹, exact whisker_right _ !ap_con ⬝ !con.assoc end variable (f) definition seq_colim_functor_id [constructor] (x : seq_colim f) : seq_colim_functor (λn, id) (λn, homotopy.rfl) x = x := begin induction x, reflexivity, apply eq_pathover, apply hdeg_square, exact !seq_colim_functor_glue ⬝ !idp_con ⬝ !ap_id⁻¹, end variables {f τ τ₂ p p₂} definition seq_colim_functor_homotopy [constructor] (q : τ ~2 τ₂) (r : Π⦃n⦄ (a : A n), square (q (n+1) (f a)) (ap (@f' n) (q n a)) (p a) (p₂ a)) (x : seq_colim f) : seq_colim_functor τ p x = seq_colim_functor τ₂ p₂ x := begin induction x, exact ap (ι f') (q n a), apply eq_pathover, refine !seq_colim_functor_glue ⬝ph _ ⬝hp !seq_colim_functor_glue⁻¹, refine aps (ι f') (r a) ⬝v !ap_compose⁻¹ ⬝pv natural_square_tr (glue f') (q n a), end variables (τ τ₂ p p₂) definition is_equiv_seq_colim_functor [constructor] [H : Πn, is_equiv (@τ n)] : is_equiv (seq_colim_functor @τ p) := adjointify _ (seq_colim_functor (λn, (@τ _)⁻¹) (λn a, inv_commute' τ f f' p a)) abstract begin intro x, refine !seq_colim_functor_compose⁻¹ ⬝ seq_colim_functor_homotopy _ _ x ⬝ !seq_colim_functor_id, { intro n a, exact right_inv (@τ n) a }, { intro n a, refine whisker_right _ !ap_inv_commute' ⬝ !inv_con_cancel_right ⬝ whisker_left _ !ap_inv ⬝ph _, apply whisker_bl, apply whisker_tl, exact ids } end end abstract begin intro x, refine !seq_colim_functor_compose⁻¹ ⬝ seq_colim_functor_homotopy _ _ x ⬝ !seq_colim_functor_id, { intro n a, exact left_inv (@τ n) a }, { intro n a, esimp [hvconcat], refine whisker_left _ (!inv_commute'_fn ⬝ !con.assoc) ⬝ !con_inv_cancel_left ⬝ph _, apply whisker_bl, apply whisker_tl, exact ids } end end definition seq_colim_equiv [constructor] (τ : Π{n}, A n ≃ A' n) (p : Π⦃n⦄ (a : A n), τ (f a) = f' (τ a)) : seq_colim f ≃ seq_colim f' := equiv.mk _ (is_equiv_seq_colim_functor @τ p) definition seq_colim_rec_unc [unfold 4] {P : seq_colim f → Type} (v : Σ(Pincl : Π ⦃n : ℕ⦄ (a : A n), P (ι f a)), Π ⦃n : ℕ⦄ (a : A n), Pincl (f a) =[glue f a] Pincl a) : Π(x : seq_colim f), P x := by induction v with Pincl Pglue; exact seq_colim.rec f Pincl Pglue definition is_equiv_seq_colim_rec (P : seq_colim f → Type) : is_equiv (seq_colim_rec_unc : (Σ(Pincl : Π ⦃n : ℕ⦄ (a : A n), P (ι f a)), Π ⦃n : ℕ⦄ (a : A n), Pincl (f a) =[glue f a] Pincl a) → (Π (aa : seq_colim f), P aa)) := begin fapply adjointify, { intro s, exact ⟨λn a, s (ι f a), λn a, apd s (glue f a)⟩}, { intro s, apply eq_of_homotopy, intro x, induction x, { reflexivity}, { apply eq_pathover_dep, esimp, apply hdeg_squareover, apply rec_glue}}, { intro v, induction v with Pincl Pglue, fapply ap (sigma.mk _), apply eq_of_homotopy2, intros n a, apply rec_glue}, end /- universal property -/ definition equiv_seq_colim_rec (P : seq_colim f → Type) : (Σ(Pincl : Π ⦃n : ℕ⦄ (a : A n), P (ι f a)), Π ⦃n : ℕ⦄ (a : A n), Pincl (f a) =[glue f a] Pincl a) ≃ (Π (aa : seq_colim f), P aa) := equiv.mk _ !is_equiv_seq_colim_rec end functor definition shift_up [unfold 3] (x : seq_colim f) : seq_colim (shift_diag f) := begin induction x, { exact ι' (shift_diag f) n (f a)}, { exact glue (shift_diag f) (f a)} end definition shift_down [unfold 3] (x : seq_colim (shift_diag f)) : seq_colim f := begin induction x, { exact ι' f (n+1) a}, { exact glue f a} end -- definition kshift_up' (k : ℕ) (x : seq_colim f) : seq_colim (kshift_diag' f k) := -- begin -- induction x, -- { apply ι' _ n, exact rep f k a}, -- { exact sorry} -- end -- definition kshift_down' (k : ℕ) (x : seq_colim (kshift_diag' f k)) : seq_colim f := -- begin -- induction x, -- { exact ι f a}, -- { esimp, exact sorry} -- end end definition shift_equiv [constructor] : seq_colim f ≃ seq_colim (shift_diag f) := equiv.MK (shift_up f) (shift_down f) abstract begin intro x, induction x, { exact glue _ a }, { apply eq_pathover, rewrite [▸*, ap_id, ap_compose (shift_up f) (shift_down f), ↑shift_down, elim_glue], apply square_of_eq, apply whisker_right, exact !elim_glue⁻¹ } end end abstract begin intro x, induction x, { exact glue _ a }, { apply eq_pathover, rewrite [▸*, ap_id, ap_compose (shift_down f) (shift_up f), ↑shift_up, elim_glue], apply square_of_eq, apply whisker_right, exact !elim_glue⁻¹ } end end -- definition kshift_equiv [constructor] (k : ℕ) -- : seq_colim A ≃ @seq_colim (λn, A (k + n)) (kshift_diag A k) := -- equiv.MK (kshift_up k) -- (kshift_down k) -- abstract begin -- intro a, exact sorry, -- -- induction a, -- -- { esimp, exact glue a}, -- -- { apply eq_pathover, -- -- rewrite [▸*, ap_id, ap_compose shift_up shift_down, ↑shift_down, -- -- @elim_glue (λk, A (succ k)) _, ↑shift_up], -- -- apply square_of_eq, apply whisker_right, exact !elim_glue⁻¹} -- end end -- abstract begin -- intro a, exact sorry -- -- induction a, -- -- { exact glue a}, -- -- { apply eq_pathover, -- -- rewrite [▸*, ap_id, ap_compose shift_down shift_up, ↑shift_up, -- -- @elim_glue A _, ↑shift_down], -- -- apply square_of_eq, apply whisker_right, exact !elim_glue⁻¹} -- end end -- definition kshift_equiv' [constructor] (k : ℕ) : seq_colim f ≃ seq_colim (kshift_diag' f k) := -- equiv.MK (kshift_up' f k) -- (kshift_down' f k) -- abstract begin -- intro a, exact sorry, -- -- induction a, -- -- { esimp, exact glue a}, -- -- { apply eq_pathover, -- -- rewrite [▸*, ap_id, ap_compose shift_up shift_down, ↑shift_down, -- -- @elim_glue (λk, A (succ k)) _, ↑shift_up], -- -- apply square_of_eq, apply whisker_right, exact !elim_glue⁻¹} -- end end -- abstract begin -- intro a, exact sorry -- -- induction a, -- -- { exact glue a}, -- -- { apply eq_pathover, -- -- rewrite [▸*, ap_id, ap_compose shift_down shift_up, ↑shift_up, -- -- @elim_glue A _, ↑shift_down], -- -- apply square_of_eq, apply whisker_right, exact !elim_glue⁻¹} -- end end /- todo: define functions back and forth explicitly -/ definition kshift'_equiv (k : ℕ) : seq_colim f ≃ seq_colim (kshift_diag' f k) := begin induction k with k IH, { reflexivity }, { exact IH ⬝e shift_equiv (kshift_diag' f k) ⬝e seq_colim_equiv (λn, equiv_ap A (succ_add n k)) (λn a, proof !tr_inv_tr ⬝ !transport_lemma⁻¹ qed) } end definition kshift_equiv_inv (k : ℕ) : seq_colim (kshift_diag f k) ≃ seq_colim f := begin induction k with k IH, { exact seq_colim_equiv (λn, equiv_ap A (nat.zero_add n)) (λn a, !transport_lemma2) }, { exact seq_colim_equiv (λn, equiv_ap A (succ_add k n)) (λn a, transport_lemma2 (succ_add k n) f a) ⬝e (shift_equiv (kshift_diag f k))⁻¹ᵉ ⬝e IH } end definition kshift_equiv [constructor] (k : ℕ) : seq_colim f ≃ seq_colim (kshift_diag f k) := (kshift_equiv_inv f k)⁻¹ᵉ -- definition kshift_equiv2 [constructor] (k : ℕ) : seq_colim f ≃ seq_colim (kshift_diag f k) := -- begin -- refine equiv_change_fun (kshift_equiv f k) _, -- end variable {f} definition seq_colim_constant_seq [constructor] (X : Type) : seq_colim (constant_seq X) ≃ X := equiv_of_is_equiseq (λn, !is_equiv_id) variable (f) definition is_contr_seq_colim {A : ℕ → Type} (f : seq_diagram A) [Πk, is_contr (A k)] : is_contr (seq_colim f) := begin apply @is_trunc_is_equiv_closed (A 0), apply is_equiv_inclusion0, intro n, apply is_equiv_of_is_contr end definition seq_colim_equiv_of_is_equiv [constructor] {n : ℕ} (H : Πk, k ≥ n → is_equiv (@f k)) : seq_colim f ≃ A n := kshift_equiv f n ⬝e equiv_of_is_equiseq (λk, H (n+k) !le_add_right) /- colimits of dependent sequences, sigma's commute with colimits -/ section over variable {f} definition rep_f_equiv_natural {k : ℕ} (p : P (rep f k (f a))) : transporto P (rep_f f (succ k) a) (g p) = g (transporto P (rep_f f k a) p) := (fn_tro_eq_tro_fn2 (rep_f f k a) g p)⁻¹ variable (a) definition over_f_equiv [constructor] : seq_colim (seq_diagram_of_over g (f a)) ≃ seq_colim (shift_diag (seq_diagram_of_over g a)) := seq_colim_equiv (rep_f_equiv f P a) (λk p, rep_f_equiv_natural g p) definition seq_colim_over_equiv : seq_colim (seq_diagram_of_over g (f a)) ≃ seq_colim (seq_diagram_of_over g a) := over_f_equiv g a ⬝e (shift_equiv (seq_diagram_of_over g a))⁻¹ᵉ definition seq_colim_over_equiv_glue {k : ℕ} (x : P (rep f k (f a))) : ap (seq_colim_over_equiv g a) (glue (seq_diagram_of_over g (f a)) x) = ap (ι' (seq_diagram_of_over g a) (k+2)) (rep_f_equiv_natural g x) ⬝ glue (seq_diagram_of_over g a) (rep_f f k a ▸o x) := begin refine ap_compose (shift_down (seq_diagram_of_over g a)) _ _ ⬝ _, exact ap02 _ !elim_glue ⬝ !ap_con ⬝ !ap_compose' ◾ !elim_glue end variable {a} include g definition seq_colim_over [unfold 5] (x : seq_colim f) : Type.{v} := begin refine seq_colim.elim_type f _ _ x, { intro n a, exact seq_colim (seq_diagram_of_over g a)}, { intro n a, exact seq_colim_over_equiv g a } end omit g definition ιo [constructor] (p : P a) : seq_colim_over g (ι f a) := ι' _ 0 p -- Warning: the order of addition has changed in rep_rep -- definition rep_equiv_rep_rep (l : ℕ) -- : @seq_colim (λk, P (rep (k + l) a)) (kshift_diag' _ _) ≃ -- @seq_colim (λk, P (rep k (rep l a))) (seq_diagram_of_over P (rep l a)) := -- seq_colim_equiv (λk, rep_rep_equiv P a k l) abstract (λk p, -- begin -- esimp, -- rewrite [+cast_apd011], -- refine _ ⬝ (fn_tro_eq_tro_fn (rep_f k a)⁻¹ᵒ g p)⁻¹ᵖ, -- rewrite [↑rep_f,↓rep_f k a], -- refine !pathover_ap_invo_tro ⬝ _, -- rewrite [apo_invo,apo_tro] -- end) end variable {P} theorem seq_colim_over_glue /- r -/ (x : seq_colim_over g (ι f (f a))) : transport (seq_colim_over g) (glue f a) x = shift_down _ (over_f_equiv g a x) := ap10 (elim_type_glue _ _ _ a) x theorem seq_colim_over_glue_inv (x : seq_colim_over g (ι f a)) : transport (seq_colim_over g) (glue f a)⁻¹ x = to_inv (over_f_equiv g a) (shift_up _ x) := ap10 (elim_type_glue_inv _ _ _ a) x definition glue_over (p : P (f a)) : pathover (seq_colim_over g) (ιo g p) (glue f a) (ι' _ 1 p) := pathover_of_tr_eq !seq_colim_over_glue -- we can define a function from the colimit of total spaces to the total space of the colimit. /- TO DO: define glue' in the same way as glue' -/ definition glue' (p : P a) : ⟨ι f (f a), ιo g (g p)⟩ = ⟨ι f a, ιo g p⟩ := sigma_eq (glue f a) (glue_over g (g p) ⬝op glue (seq_diagram_of_over g a) p) definition glue_star (k : ℕ) (x : P (rep f k (f a))) : ⟨ι f (f a), ι (seq_diagram_of_over g (f a)) x⟩ = ⟨ι f a, ι (seq_diagram_of_over g a) (to_fun (rep_f_equiv f P a k) x)⟩ :> sigma (seq_colim_over g) := begin apply dpair_eq_dpair (glue f a), apply pathover_of_tr_eq, refine seq_colim_over_glue g (ι (seq_diagram_of_over g (f a)) x) end definition sigma_colim_of_colim_sigma [unfold 5] (a : seq_colim (seq_diagram_sigma g)) : Σ(x : seq_colim f), seq_colim_over g x := begin induction a with n v n v, { induction v with a p, exact ⟨ι f a, ιo g p⟩}, { induction v with a p, exact glue' g p } end definition colim_sigma_triangle [unfold 5] (a : seq_colim (seq_diagram_sigma g)) : (sigma_colim_of_colim_sigma g a).1 = seq_colim_functor (λn, sigma.pr1) (λn, homotopy.rfl) a := begin induction a with n v n v, { induction v with a p, reflexivity }, { induction v with a p, apply eq_pathover, apply hdeg_square, refine ap_compose sigma.pr1 _ _ ⬝ ap02 _ !elim_glue ⬝ _ ⬝ !elim_glue⁻¹, exact !sigma_eq_pr1 ⬝ !idp_con⁻¹ } end -- we now want to show that this function is an equivalence. /- Kristina's proof of the induction principle of colim-sigma for sigma-colim. It's a double induction, so we have 4 cases: point-point, point-path, path-point and path-path. The main idea of the proof is that for the path-path case you need to fill a square, but we can define the point-path case as a filler for this square. -/ open sigma /- dictionary: Kristina | Lean VARIABLE NAMES (A, P, k, n, e, w are the same) x : A_n | a : A n a : A_n → A_{n+1} | f : A n → A (n+1) y : P(n, x) | x : P a (maybe other variables) f : P(n, x) → P(n+1, a_n x) | g : P a → P (f a) DEFINITION NAMES κ | glue U | rep_f_equiv : P (n+1+k, rep f k (f x)) ≃ P (n+k+1, rep f (k+1) x) δ | rep_f_equiv_natural F | over_f_equiv g a ⬝e (shift_equiv (λk, P (rep f k a)) (seq_diagram_of_over g a))⁻¹ᵉ g_* | g_star g | sigma_colim_rec_point -/ definition glue_star_eq (k : ℕ) (x : P (rep f k (f a))) : glue_star g k x = dpair_eq_dpair (glue f a) (pathover_tr (glue f a) (ι (seq_diagram_of_over g (f a)) x)) ⬝ ap (dpair (ι f a)) (seq_colim_over_glue g (ι (seq_diagram_of_over g (f a)) x)) := ap (sigma_eq _) !pathover_of_tr_eq_eq_concato ⬝ !sigma_eq_con ⬝ whisker_left _ !ap_dpair⁻¹ definition g_star_step {E : (Σ(x : seq_colim f), seq_colim_over g x) → Type} (e : Πn (a : A n) (x : P a), E ⟨ι f a, ιo g x⟩) {k : ℕ} (IH : Π{n} {a : A n} (x : P (rep f k a)), E ⟨ι f a, ι (seq_diagram_of_over g a) x⟩) : Σ(gs : Π⦃n : ℕ⦄ {a : A n} (x : P (rep f (k+1) a)), E ⟨ι f a, ι (seq_diagram_of_over g a) x⟩), Π⦃n : ℕ⦄ {a : A n} (x : P (rep f k (f a))), pathover E (IH x) (glue_star g k x) (gs (transporto P (rep_f f k a) x)) := begin fconstructor, { intro n a, refine equiv_rect (rep_f_equiv f P a k) _ _, intro z, refine transport E _ (IH z), exact glue_star g k z }, { intro n a x, exact !pathover_tr ⬝op !equiv_rect_comp⁻¹ } end definition g_star /- g_* -/ {E : (Σ(x : seq_colim f), seq_colim_over g x) → Type} (e : Πn (a : A n) (x : P a), E ⟨ι f a, ιo g x⟩) {k : ℕ} : Π {n : ℕ} {a : A n} (x : P (rep f k a)), E ⟨ι f a, ι (seq_diagram_of_over g a) x⟩ := begin induction k with k IH: intro n a x, { exact e n a x }, { apply (g_star_step g e @IH).1 } end definition g_star_path_left {E : (Σ(x : seq_colim f), seq_colim_over g x) → Type} (e : Π⦃n⦄ ⦃a : A n⦄ (x : P a), E ⟨ι f a, ιo g x⟩) (w : Π⦃n⦄ ⦃a : A n⦄ (x : P a), pathover E (e (g x)) (glue' g x) (e x)) {k : ℕ} {n : ℕ} {a : A n} (x : P (rep f k (f a))) : pathover E (g_star g e x) (glue_star g k x) (g_star g e (transporto P (rep_f f k a) x)) := by apply (g_star_step g e (@(g_star g e) k)).2 /- this is the bottom of the square we have to fill in the end -/ definition bottom_square {E : (Σ(x : seq_colim f), seq_colim_over g x) → Type} (e : Π⦃n⦄ ⦃a : A n⦄ (x : P a), E ⟨ι f a, ιo g x⟩) (w : Π⦃n⦄ ⦃a : A n⦄ (x : P a), pathover E (e (g x)) (glue' g x) (e x)) (k : ℕ) {n : ℕ} {a : A n} (x : P (rep f k (f a))) := move_top_of_right (natural_square (λ b, dpair_eq_dpair (glue f a) (pathover_tr (glue f a) b) ⬝ ap (dpair (ι f a)) (seq_colim_over_glue g b)) (glue (seq_diagram_of_over g (f a)) x) ⬝hp ap_compose (dpair (ι f a)) (to_fun (seq_colim_over_equiv g a)) (glue (seq_diagram_of_over g (f a)) x) ⬝hp (ap02 (dpair (ι f a)) (seq_colim_over_equiv_glue g a x)⁻¹)⁻¹ ⬝hp ap_con (dpair (ι f a)) (ap (λx, shift_down (seq_diagram_of_over g a) (ι (shift_diag (seq_diagram_of_over g a)) x)) (rep_f_equiv_natural g x)) (glue (seq_diagram_of_over g a) (to_fun (rep_f_equiv f P a k) x))) /- this is the composition + filler -/ definition g_star_path_right_step {E : (Σ(x : seq_colim f), seq_colim_over g x) → Type} (e : Π⦃n⦄ ⦃a : A n⦄ (x : P a), E ⟨ι f a, ιo g x⟩) (w : Π⦃n⦄ ⦃a : A n⦄ (x : P a), pathover E (e (g x)) (glue' g x) (e x)) (k : ℕ) {n : ℕ} {a : A n} (x : P (rep f k (f a))) (IH : Π(n : ℕ) (a : A n) (x : P (rep f k a)), pathover E (g_star g e (seq_diagram_of_over g a x)) (ap (dpair (ι f a)) (glue (seq_diagram_of_over g a) x)) (g_star g e x)) := squareover_fill_r (bottom_square g e w k x) (change_path (glue_star_eq g (succ k) (g x)) (g_star_path_left g e w (g x)) ⬝o pathover_ap E (dpair (ι f a)) (pathover_ap (λ (b : seq_colim (seq_diagram_of_over g a)), E ⟨ι f a, b⟩) (ι (seq_diagram_of_over g a)) (apd (g_star g e) (rep_f_equiv_natural g x)))) (change_path (glue_star_eq g k x) (g_star_path_left g e w x)) (IH (n+1) (f a) x) /- this is just the composition -/ definition g_star_path_right_step1 {E : (Σ(x : seq_colim f), seq_colim_over g x) → Type} (e : Π⦃n⦄ ⦃a : A n⦄ (x : P a), E ⟨ι f a, ιo g x⟩) (w : Π⦃n⦄ ⦃a : A n⦄ (x : P a), pathover E (e (g x)) (glue' g x) (e x)) (k : ℕ) {n : ℕ} {a : A n} (x : P (rep f k (f a))) (IH : Π(n : ℕ) (a : A n) (x : P (rep f k a)), pathover E (g_star g e (seq_diagram_of_over g a x)) (ap (dpair (ι f a)) (glue (seq_diagram_of_over g a) x)) (g_star g e x)) := (g_star_path_right_step g e w k x IH).1 definition g_star_path_right {E : (Σ(x : seq_colim f), seq_colim_over g x) → Type} (e : Π⦃n⦄ ⦃a : A n⦄ (x : P a), E ⟨ι f a, ιo g x⟩) (w : Π⦃n⦄ ⦃a : A n⦄ (x : P a), pathover E (e (g x)) (glue' g x) (e x)) (k : ℕ) {n : ℕ} {a : A n} (x : P (rep f k a)) : pathover E (g_star g e (seq_diagram_of_over g a x)) (ap (dpair (ι f a)) (glue (seq_diagram_of_over g a) x)) (g_star g e x) := begin revert n a x, induction k with k IH: intro n a x, { exact abstract begin refine pathover_cancel_left !pathover_tr⁻¹ᵒ (change_path _ (w x)), apply sigma_eq_concato_eq end end }, { revert x, refine equiv_rect (rep_f_equiv f P a k) _ _, intro x, exact g_star_path_right_step1 g e w k x IH } end definition sigma_colim_rec_point [unfold 10] /- g -/ {E : (Σ(x : seq_colim f), seq_colim_over g x) → Type} (e : Π⦃n⦄ ⦃a : A n⦄ (x : P a), E ⟨ι f a, ιo g x⟩) (w : Π⦃n⦄ ⦃a : A n⦄ (x : P a), pathover E (e (g x)) (glue' g x) (e x)) {n : ℕ} {a : A n} (x : seq_colim_over g (ι f a)) : E ⟨ι f a, x⟩ := begin induction x with k x k x, { exact g_star g e x }, { apply pathover_of_pathover_ap E (dpair (ι f a)), exact g_star_path_right g e w k x } end definition sigma_colim_rec {E : (Σ(x : seq_colim f), seq_colim_over g x) → Type} (e : Π⦃n⦄ ⦃a : A n⦄ (x : P a), E ⟨ι f a, ιo g x⟩) (w : Π⦃n⦄ ⦃a : A n⦄ (x : P a), pathover E (e (g x)) (glue' g x) (e x)) (v : Σ(x : seq_colim f), seq_colim_over g x) : E v := begin induction v with x y, induction x with n a n a, { exact sigma_colim_rec_point g e w y }, { apply pi_pathover_left, intro x, refine change_path (whisker_left _ !ap_inv ⬝ !con_inv_cancel_right) (_ ⬝o pathover_ap E (dpair _) (apd (sigma_colim_rec_point g e w) !seq_colim_over_glue⁻¹)), /- we can simplify the squareover we need to fill a bit if we apply this rule here -/ -- refine change_path (ap (sigma_eq (glue f a)) !pathover_of_tr_eq_eq_concato ⬝ !sigma_eq_con ⬝ whisker_left _ !ap_dpair⁻¹) _, induction x with k x k x, { exact change_path !glue_star_eq (g_star_path_left g e w x) }, -- { exact g_star_path_left g e w x }, { apply pathover_pathover, esimp, refine _ ⬝hop (ap (pathover_ap E _) (apd_compose2 (sigma_colim_rec_point g e w) _ _) ⬝ pathover_ap_pathover_of_pathover_ap E (dpair (ι f a)) (seq_colim_over_equiv g a) _)⁻¹, apply squareover_change_path_right', refine _ ⬝hop !pathover_ap_change_path⁻¹ ⬝ ap (pathover_ap E _) (apd02 _ !seq_colim_over_equiv_glue⁻¹), apply squareover_change_path_right, refine _ ⬝hop (ap (pathover_ap E _) (!apd_con ⬝ (!apd_ap ◾o idp)) ⬝ !pathover_ap_cono)⁻¹, apply squareover_change_path_right', apply move_right_of_top_over, refine _ ⬝hop (ap (pathover_ap E _) !rec_glue ⬝ to_right_inv !pathover_compose _)⁻¹, refine ap (pathover_ap E _) !rec_glue ⬝ to_right_inv !pathover_compose _ ⬝pho _, refine _ ⬝hop !equiv_rect_comp⁻¹, exact (g_star_path_right_step g e w k x @(g_star_path_right g e w k)).2 }} end /- We now define the map back, and show using this induction principle that the composites are the identity -/ variable {P} definition colim_sigma_of_sigma_colim_constructor [unfold 7] (p : seq_colim_over g (ι f a)) : seq_colim (seq_diagram_sigma g) := begin induction p with k p k p, { exact ι _ ⟨rep f k a, p⟩}, { apply glue} end definition colim_sigma_of_sigma_colim_path1 /- μ -/ {k : ℕ} (p : P (rep f k (f a))) : ι (seq_diagram_sigma g) ⟨rep f k (f a), p⟩ = ι (seq_diagram_sigma g) ⟨rep f (succ k) a, transporto P (rep_f f k a) p⟩ := begin apply apd0111 (λn a p, ι' (seq_diagram_sigma g) n ⟨a, p⟩) (succ_add n k) (rep_f f k a), apply pathover_tro end definition colim_sigma_of_sigma_colim_path2 {k : ℕ} (p : P (rep f k (f a))) : square (colim_sigma_of_sigma_colim_path1 g (g p)) (colim_sigma_of_sigma_colim_path1 g p) (ap (colim_sigma_of_sigma_colim_constructor g) (glue (seq_diagram_of_over g (f a)) p)) (ap (λx, colim_sigma_of_sigma_colim_constructor g (shift_down (seq_diagram_of_over g a) (seq_colim_functor (λk, transporto P (rep_f f k a)) (λk p, rep_f_equiv_natural g p) x))) (glue (seq_diagram_of_over g (f a)) p)) := begin refine !elim_glue ⬝ph _, refine _ ⬝hp (ap_compose' (colim_sigma_of_sigma_colim_constructor g) _ _), refine _ ⬝hp ap02 _ !seq_colim_over_equiv_glue⁻¹, refine _ ⬝hp !ap_con⁻¹, refine _ ⬝hp !ap_compose ◾ !elim_glue⁻¹, refine _ ⬝pv whisker_rt _ (natural_square0111 P (pathover_tro (rep_f f k a) p) g (λn a p, glue (seq_diagram_sigma g) ⟨a, p⟩)), refine _ ⬝ whisker_left _ (ap02 _ !inv_inv⁻¹ ⬝ !ap_inv), symmetry, apply apd0111_precompose end definition colim_sigma_of_sigma_colim [unfold 5] (v : Σ(x : seq_colim f), seq_colim_over g x) : seq_colim (seq_diagram_sigma g) := begin induction v with x p, induction x with n a n a, { exact colim_sigma_of_sigma_colim_constructor g p }, apply arrow_pathover_constant_right, intro x, esimp at x, refine _ ⬝ ap (colim_sigma_of_sigma_colim_constructor g) !seq_colim_over_glue⁻¹, induction x with k p k p, { exact colim_sigma_of_sigma_colim_path1 g p }, apply eq_pathover, apply colim_sigma_of_sigma_colim_path2 end /- TODO: prove and merge these theorems -/ definition colim_sigma_of_sigma_colim_glue' [unfold 5] (p : P a) : ap (colim_sigma_of_sigma_colim g) (glue' g p) = glue (seq_diagram_sigma g) ⟨a, p⟩ := begin refine !ap_dpair_eq_dpair ⬝ _, refine !apd011_eq_apo11_apd ⬝ _, refine ap (λx, apo11_constant_right x _) !rec_glue ⬝ _, refine !apo11_arrow_pathover_constant_right ⬝ _, esimp, refine whisker_right _ !idp_con ⬝ _, rewrite [▸*, tr_eq_of_pathover_concato_eq, ap_con, ↑glue_over, to_right_inv !pathover_equiv_tr_eq, ap_inv, inv_con_cancel_left], apply elim_glue end theorem colim_sigma_of_sigma_colim_of_colim_sigma (a : seq_colim (seq_diagram_sigma g)) : colim_sigma_of_sigma_colim g (sigma_colim_of_colim_sigma g a) = a := begin induction a with n v n v, { induction v with a p, reflexivity }, { induction v with a p, esimp, apply eq_pathover_id_right, apply hdeg_square, refine ap_compose (colim_sigma_of_sigma_colim g) _ _ ⬝ _, refine ap02 _ !elim_glue ⬝ _, exact colim_sigma_of_sigma_colim_glue' g p } end theorem sigma_colim_of_colim_sigma_of_sigma_colim (v : Σ(x : seq_colim f), seq_colim_over g x) : sigma_colim_of_colim_sigma g (colim_sigma_of_sigma_colim g v) = v := begin revert v, refine sigma_colim_rec _ _ _, { intro n a x, reflexivity }, { intro n a x, apply eq_pathover_id_right, apply hdeg_square, refine ap_compose (sigma_colim_of_colim_sigma g) _ _ ⬝ _, refine ap02 _ (colim_sigma_of_sigma_colim_glue' g x) ⬝ _, apply elim_glue } end variable (P) definition sigma_seq_colim_over_equiv [constructor] : (Σ(x : seq_colim f), seq_colim_over g x) ≃ seq_colim (seq_diagram_sigma g) := equiv.MK (colim_sigma_of_sigma_colim g) (sigma_colim_of_colim_sigma g) (colim_sigma_of_sigma_colim_of_colim_sigma g) (sigma_colim_of_colim_sigma_of_sigma_colim g) end over definition seq_colim_id_equiv_seq_colim_id0 (a₀ a₁ : A 0) : seq_colim (id_seq_diagram f 0 a₀ a₁) ≃ seq_colim (id0_seq_diagram f a₀ a₁) := seq_colim_equiv (λn, !lrep_eq_lrep_irrel (nat.zero_add n)) (λn p, !lrep_eq_lrep_irrel_natural) definition kshift_equiv_inv_incl_kshift_diag {n k : ℕ} (x : A (n + k)) : kshift_equiv_inv f n (ι' (kshift_diag f n) k x) = ι f x := begin revert A f k x, induction n with n IH: intro A f k x, { exact apd011 (ι' f) !nat.zero_add⁻¹ !pathover_tr⁻¹ᵒ }, { exact !IH ⬝ apd011 (ι' f) !succ_add⁻¹ !pathover_tr⁻¹ᵒ } end definition incl_kshift_diag {n k : ℕ} (x : A (n + k)) : ι' (kshift_diag f n) k x = kshift_equiv f n (ι f x) := eq_inv_of_eq (kshift_equiv_inv_incl_kshift_diag f x) definition incl_kshift_diag0 {n : ℕ} (x : A n) : ι' (kshift_diag f n) 0 x = kshift_equiv f n (ι f x) := incl_kshift_diag f x definition seq_colim_eq_equiv0' (a₀ a₁ : A 0) : ι f a₀ = ι f a₁ ≃ seq_colim (id_seq_diagram f 0 a₀ a₁) := begin refine total_space_method (ι f a₀) (seq_colim_over (id0_seq_diagram_over f a₀)) _ _ (ι f a₁) ⬝e _, { apply @(is_trunc_equiv_closed_rev _ (sigma_seq_colim_over_equiv _ _)), apply is_contr_seq_colim }, { exact ιo _ idp }, /- In the next equivalence we have to show that seq_colim_over (id0_seq_diagram_over f a₀) (ι f a₁) ≃ seq_colim (id_seq_diagram f 0 a₀ a₁). This looks trivial, because both of them reduce to seq_colim (f^{0 ≤ 0+k}(a₀) = f^{0 ≤ 0+k}(a₁), ap_f). However, not all proofs of these inequalities are definitionally equal. 3 of them are proven by zero_le : 0 ≤ n, but one of them (the RHS of seq_colim_over (id0_seq_diagram_over f a₀) (ι f a₁)) uses le_add_right : n ≤ n+k Alternatively, we could redefine le_add_right so that for n=0, it reduces to `zero_le (0+k)`. -/ { refine seq_colim_equiv (λn, eq_equiv_eq_closed !lrep_irrel idp) _, intro n p, refine whisker_right _ (!lrep_irrel2⁻² ⬝ !ap_inv⁻¹) ⬝ !ap_con⁻¹ } end -- definition seq_colim_eq_equiv0'_natural {a₀ a₁ : A 0} {a₀' a₁' : A' 0} (p₀ : τ a₀ = a₀') -- (p₁ : τ a₁ = a₁') : -- hsquare (seq_colim_eq_equiv0' f a₀ a₁) (seq_colim_eq_equiv0' f' a₀' a₁') -- (pointed.ap1_gen (seq_colim_functor τ p) (ap (ι' f' 0) p₀) (ap (ι' f' 0) p₁)) -- (seq_colim_functor (λn, pointed.ap1_gen (@τ _)) _) := -- _ definition seq_colim_eq_equiv0 (a₀ a₁ : A 0) : ι f a₀ = ι f a₁ ≃ seq_colim (id0_seq_diagram f a₀ a₁) := seq_colim_eq_equiv0' f a₀ a₁ ⬝e seq_colim_id_equiv_seq_colim_id0 f a₀ a₁ definition seq_colim_eq_equiv {n : ℕ} (a₀ a₁ : A n) : ι f a₀ = ι f a₁ ≃ seq_colim (id_seq_diagram f n a₀ a₁) := eq_equiv_fn_eq (kshift_equiv f n) (ι f a₀) (ι f a₁) ⬝e eq_equiv_eq_closed (incl_kshift_diag0 f a₀)⁻¹ (incl_kshift_diag0 f a₁)⁻¹ ⬝e seq_colim_eq_equiv0' (kshift_diag f n) a₀ a₁ ⬝e @seq_colim_equiv _ _ _ (λk, ap (@f _)) (λm, eq_equiv_eq_closed !lrep_kshift_diag !lrep_kshift_diag) (λm p, whisker_right _ (whisker_right _ !ap_inv⁻¹ ⬝ !ap_con⁻¹) ⬝ !ap_con⁻¹) ⬝e seq_colim_equiv (λm, !lrep_eq_lrep_irrel (ap (add n) (nat.zero_add m))) begin intro m q, refine _ ⬝ lrep_eq_lrep_irrel_natural f (le_add_right n m) (ap (add n) (nat.zero_add m)) q, exact ap (λx, lrep_eq_lrep_irrel f _ _ _ _ x _) !is_prop.elim end open algebra theorem is_trunc_seq_colim [instance] (k : ℕ₋₂) [H : Πn, is_trunc k (A n)] : is_trunc k (seq_colim f) := begin revert A f H, induction k with k IH: intro A f H, { apply is_contr_seq_colim }, { apply is_trunc_succ_intro, intro x y, induction x using seq_colim.rec_prop with n a, induction y using seq_colim.rec_prop with m a', apply is_trunc_equiv_closed, exact eq_equiv_eq_closed (lrep_glue _ (le_max_left n m) _) (lrep_glue _ (le_max_right n m) _), apply is_trunc_equiv_closed_rev, apply seq_colim_eq_equiv, apply IH, intro l, apply is_trunc_eq } end definition seq_colim_trunc_of_trunc_seq_colim [unfold 4] (k : ℕ₋₂) (x : trunc k (seq_colim f)) : seq_colim (trunc_diagram k f) := begin induction x with x, exact seq_colim_functor (λn, tr) (λn y, idp) x end definition trunc_seq_colim_of_seq_colim_trunc [unfold 4] (k : ℕ₋₂) (x : seq_colim (trunc_diagram k f)) : trunc k (seq_colim f) := begin induction x with n x n x, { induction x with a, exact tr (ι f a) }, { induction x with a, exact ap tr (glue f a) } end definition trunc_seq_colim_equiv [constructor] (k : ℕ₋₂) : trunc k (seq_colim f) ≃ seq_colim (trunc_diagram k f) := equiv.MK (seq_colim_trunc_of_trunc_seq_colim f k) (trunc_seq_colim_of_seq_colim_trunc f k) abstract begin intro x, induction x with n x n x, { induction x with a, reflexivity }, { induction x with a, apply eq_pathover_id_right, apply hdeg_square, refine ap_compose (seq_colim_trunc_of_trunc_seq_colim f k) _ _ ⬝ ap02 _ !elim_glue ⬝ _, refine !ap_compose' ⬝ !elim_glue ⬝ _, exact !idp_con } end end abstract begin intro x, induction x with x, induction x with n a n a, { reflexivity }, { apply eq_pathover, apply hdeg_square, refine ap_compose (trunc_seq_colim_of_seq_colim_trunc f k) _ _ ⬝ ap02 _ !elim_glue ⬝ _, refine !ap_compose' ⬝ !elim_glue } end end theorem is_conn_seq_colim [instance] (k : ℕ₋₂) [H : Πn, is_conn k (A n)] : is_conn k (seq_colim f) := is_trunc_equiv_closed_rev -2 (trunc_seq_colim_equiv f k) _ /- the colimit of a sequence of fibers is the fiber of the functorial action of the colimit -/ definition domain_seq_colim_functor {A A' : ℕ → Type} {f : seq_diagram A} {f' : seq_diagram A'} (τ : Πn, A' n → A n) (p : Π⦃n⦄, τ (n+1) ∘ @f' n ~ @f n ∘ @τ n) : (Σ(x : seq_colim f), seq_colim_over (seq_diagram_over_fiber τ p) x) ≃ seq_colim f' := begin transitivity seq_colim (seq_diagram_sigma (seq_diagram_over_fiber τ p)), exact sigma_seq_colim_over_equiv _ (seq_diagram_over_fiber τ p), exact seq_colim_equiv (λn, sigma_fiber_equiv (τ n)) (λn x, idp) end definition fiber_seq_colim_functor {A A' : ℕ → Type} {f : seq_diagram A} {f' : seq_diagram A'} (τ : Πn, A' n → A n) (p : Π⦃n⦄, τ (n+1) ∘ @f' n ~ @f n ∘ @τ n) {n : ℕ} (a : A n) : fiber (seq_colim_functor τ p) (ι f a) ≃ seq_colim (seq_diagram_fiber τ p a) := begin refine _ ⬝e fiber_pr1 (seq_colim_over (seq_diagram_over_fiber τ p)) (ι f a), apply fiber_equiv_of_triangle (domain_seq_colim_functor τ p)⁻¹ᵉ, refine _ ⬝hty λx, (colim_sigma_triangle _ _)⁻¹, apply homotopy_inv_of_homotopy_pre (seq_colim_equiv _ _) (seq_colim_functor _ _) (seq_colim_functor _ _), refine (λx, !seq_colim_functor_compose⁻¹) ⬝hty _, refine seq_colim_functor_homotopy _ _, intro n x, exact point_eq x.2, intro n x, induction x with x y, induction y with y q, induction q, apply square_of_eq, refine !idp_con⁻¹ end definition fiber_seq_colim_functor0 {A A' : ℕ → Type} {f : seq_diagram A} {f' : seq_diagram A'} (τ : Πn, A' n → A n) (p : Π⦃n⦄, τ (n+1) ∘ @f' n ~ @f n ∘ @τ n) (a : A 0) : fiber (seq_colim_functor τ p) (ι f a) ≃ seq_colim (seq_diagram_fiber0 τ p a) := fiber_seq_colim_functor τ p a ⬝e seq_colim_equiv (λn, equiv_apd011 (λx y, fiber (τ x) y) (rep_pathover_rep0 f a)) (λn x, sorry) -- maybe use fn_tro_eq_tro_fn2 variables {f f'} definition fiber_inclusion (x : seq_colim f) : fiber (ι' f 0) x ≃ fiber (seq_colim_functor (rep0 f) (λn a, idp)) x := fiber_equiv_of_triangle (seq_colim_constant_seq (A 0))⁻¹ᵉ homotopy.rfl theorem is_trunc_fun_seq_colim_functor (k : ℕ₋₂) (H : Πn, is_trunc_fun k (@τ n)) : is_trunc_fun k (seq_colim_functor τ p) := begin intro x, induction x using seq_colim.rec_prop, exact is_trunc_equiv_closed_rev k (fiber_seq_colim_functor τ p a) _ end open is_conn theorem is_conn_fun_seq_colim_functor (k : ℕ₋₂) (H : Πn, is_conn_fun k (@τ n)) : is_conn_fun k (seq_colim_functor τ p) := begin intro x, induction x using seq_colim.rec_prop, exact is_conn_equiv_closed_rev k (fiber_seq_colim_functor τ p a) _ end variables (f f') theorem is_trunc_fun_inclusion (k : ℕ₋₂) (H : Πn, is_trunc_fun k (@f n)) : is_trunc_fun k (ι' f 0) := begin intro x, apply @(is_trunc_equiv_closed_rev k (fiber_inclusion x)), apply is_trunc_fun_seq_colim_functor, intro n, apply is_trunc_fun_lrep, exact H end theorem is_conn_fun_inclusion (k : ℕ₋₂) (H : Πn, is_conn_fun k (@f n)) : is_conn_fun k (ι' f 0) := begin intro x, apply is_conn_equiv_closed_rev k (fiber_inclusion x), apply is_conn_fun_seq_colim_functor, intro n, apply is_conn_fun_lrep, exact H end /- the sequential colimit of standard finite types is ℕ -/ open fin definition nat_of_seq_colim_fin [unfold 1] (x : seq_colim seq_diagram_fin) : ℕ := begin induction x with n x n x, { exact x }, { reflexivity } end definition seq_colim_fin_of_nat (n : ℕ) : seq_colim seq_diagram_fin := ι' _ (n+1) (fin.mk n (self_lt_succ n)) definition lrep_seq_diagram_fin {n : ℕ} (x : fin n) : lrep seq_diagram_fin (is_lt x) (fin.mk x (self_lt_succ x)) = x := begin induction x with k H, esimp, induction H with n H p, reflexivity, exact ap (@lift_succ2 _) p end definition lrep_seq_diagram_fin_lift_succ {n : ℕ} (x : fin n) : lrep_seq_diagram_fin (lift_succ2 x) = ap (@lift_succ2 _) (lrep_seq_diagram_fin x) := begin induction x with k H, reflexivity end definition seq_colim_fin_equiv [constructor] : seq_colim seq_diagram_fin ≃ ℕ := equiv.MK nat_of_seq_colim_fin seq_colim_fin_of_nat abstract begin intro n, reflexivity end end abstract begin intro x, induction x with n x n x, { esimp, refine (lrep_glue _ (is_lt x) _)⁻¹ ⬝ ap (ι _) (lrep_seq_diagram_fin x), }, { apply eq_pathover_id_right, refine ap_compose seq_colim_fin_of_nat _ _ ⬝ ap02 _ !elim_glue ⬝ph _, esimp, refine (square_of_eq !con_idp)⁻¹ʰ ⬝h _, refine _ ⬝pv natural_square_tr (@glue _ (seq_diagram_fin) n) (lrep_seq_diagram_fin x), refine ap02 _ !lrep_seq_diagram_fin_lift_succ ⬝ !ap_compose⁻¹ } end end /- the sequential colimit of embeddings is an embedding -/ definition seq_colim_eq_equiv0'_inv_refl (a₀ : A 0) : (seq_colim_eq_equiv0' f a₀ a₀)⁻¹ᵉ (ι' (id_seq_diagram f 0 a₀ a₀) 0 proof (refl a₀) qed) = refl (ι f a₀) := begin apply inv_eq_of_eq, reflexivity, end definition is_embedding_ι (H : Πn, is_embedding (@f n)) : is_embedding (ι' f 0) := begin intro x y, fapply is_equiv_of_equiv_of_homotopy, { symmetry, refine seq_colim_eq_equiv0' f x y ⬝e _, apply equiv_of_is_equiseq, intro n, apply H }, { intro p, induction p, apply seq_colim_eq_equiv0'_inv_refl } end end seq_colim