import homotopy.sphere2 algebra.category.functor.attributes open eq pointed sigma is_equiv equiv fiber algebra group is_trunc function prod prod.ops iso functor namespace category section univ_subcat parameters {C : Precategory} {D : Category} (F : functor C D) (p : is_embedding F) (q : fully_faithful F) variables {a b : carrier C} include p q definition eq_equiv_iso_of_fully_faithful : a = b ≃ a ≅ b := equiv.mk !ap !p -- a = b ≃ F a = F b ⬝e equiv.mk iso_of_eq !iso_of_path_equiv -- F a = F b ≃ F a ≅ F b ⬝e equiv.symm !iso_equiv_F_iso_F -- F a ≅ F b ≃ a ≅ b definition eq_equiv_iso_of_fully_faithful_homot : @eq_equiv_iso_of_fully_faithful a b ~ iso_of_eq := begin intro r, esimp [eq_equiv_iso_of_fully_faithful], refine _ ⬝ left_inv (iso_equiv_F_iso_F F _ _) _, apply ap (inv (to_fun !iso_equiv_F_iso_F)), apply symm, induction r, apply respect_refl end definition is_univalent_domain_of_fully_faithful_embedding : is_univalent C := begin intros, apply homotopy_closed eq_equiv_iso_of_fully_faithful eq_equiv_iso_of_fully_faithful_homot end end univ_subcat definition precategory_Group.{u} [instance] [constructor] : precategory.{u+1 u} Group := begin fapply precategory.mk, { exact λG H, G →g H }, { exact _ }, { exact λG H K ψ φ, ψ ∘g φ }, { exact λG, gid G }, { intros, apply homomorphism_eq, esimp }, { intros, apply homomorphism_eq, esimp }, { intros, apply homomorphism_eq, esimp } end definition precategory_AbGroup.{u} [instance] [constructor] : precategory.{u+1 u} AbGroup := begin fapply precategory.mk, { exact λG H, G →g H }, { exact _ }, { exact λG H K ψ φ, ψ ∘g φ }, { exact λG, gid G }, { intros, apply homomorphism_eq, esimp }, { intros, apply homomorphism_eq, esimp }, { intros, apply homomorphism_eq, esimp } end definition Group_is_iso_of_is_equiv {G H : Group} (φ : G →g H) (H : is_equiv (group_fun φ)) : is_iso φ := begin fconstructor, { exact (isomorphism.mk φ H)⁻¹ᵍ }, { apply homomorphism_eq, rexact left_inv φ }, { apply homomorphism_eq, rexact right_inv φ } end definition Group_is_equiv_of_is_iso {G H : Group} (φ : G ⟶ H) (Hφ : is_iso φ) : is_equiv (group_fun φ) := begin fapply adjointify, { exact group_fun φ⁻¹ʰ }, { note p := right_inverse φ, exact ap010 group_fun p }, { note p := left_inverse φ, exact ap010 group_fun p } end definition Group_iso_equiv (G H : Group) : (G ≅ H) ≃ (G ≃g H) := begin fapply equiv.MK, { intro φ, induction φ with φ φi, constructor, exact Group_is_equiv_of_is_iso φ _ }, { intro v, induction v with φ φe, constructor, exact Group_is_iso_of_is_equiv φ _ }, { intro v, induction v with φ φe, apply isomorphism_eq, reflexivity }, { intro φ, induction φ with φ φi, apply iso_eq, reflexivity } end definition Group_props.{u} {A : Type.{u}} (v : (A → A → A) × (A → A) × A) : Prop.{u} := begin induction v with m v, induction v with i o, fapply trunctype.mk, { exact is_set A × (Πa, m a o = a) × (Πa, m o a = a) × (Πa b c, m (m a b) c = m a (m b c)) × (Πa, m (i a) a = o) }, { apply is_trunc_of_imp_is_trunc, intro v, induction v with H v, have is_prop (Πa, m a o = a), from _, have is_prop (Πa, m o a = a), from _, have is_prop (Πa b c, m (m a b) c = m a (m b c)), from _, have is_prop (Πa, m (i a) a = o), from _, apply is_trunc_prod } end definition AbGroup_props.{u} {A : Type.{u}} (v : (A → A → A) × (A → A) × A) : Prop.{u} := begin induction v with m v, induction v with i o, fapply trunctype.mk, { exact is_set A × (Πa, m a o = a) × (Πa, m o a = a) × (Πa b c, m (m a b) c = m a (m b c)) × (Πa, m (i a) a = o) × (Πa b, m a b = m b a)}, { apply is_trunc_of_imp_is_trunc, intro v, induction v with H v, have is_prop (Πa, m a o = a), from _, have is_prop (Πa, m o a = a), from _, have is_prop (Πa b c, m (m a b) c = m a (m b c)), from _, have is_prop (Πa, m (i a) a = o), from _, have is_prop (Πa b, m a b = m b a), from _, apply is_trunc_prod } end definition AbGroup_sigma.{u} : AbGroup.{u} ≃ Σ A : Type.{u}, ab_group A := begin repeat (assumption | induction a with a b | intro a | fconstructor) end definition Group_sigma.{u} : Group.{u} ≃ Σ A : Type.{u}, group A := begin fconstructor, exact λ a, dpair (Group.carrier a) (Group.struct' a), repeat (assumption | induction a with a b | intro a | fconstructor) end definition group.sigma_char.{u} (A : Type) : group.{u} A ≃ Σ (v : (A → A → A) × (A → A) × A), Group_props v := begin fapply equiv.MK, {intro g, induction g with m s ma o om mo i mi, repeat (fconstructor; do 2 try assumption), }, {intro v, induction v with x v, repeat induction x with y x, repeat induction v with x v, constructor, repeat assumption }, { intro, repeat induction b with b x, induction x, repeat induction x_1 with v x_1, reflexivity }, { intro v, repeat induction v with x v, reflexivity }, end definition Group.sigma_char2.{u} : Group.{u} ≃ Σ(A : Type.{u}) (v : (A → A → A) × (A → A) × A), Group_props v := Group_sigma ⬝e sigma_equiv_sigma_right group.sigma_char definition ab_group.sigma_char.{u} (A : Type) : ab_group.{u} A ≃ Σ (v : (A → A → A) × (A → A) × A), AbGroup_props v := begin fapply equiv.MK, {intro g, induction g with m s ma o om mo i mi, repeat (fconstructor; do 2 try assumption), }, {intro v, induction v with x v, repeat induction x with y x, repeat induction v with x v, constructor, repeat assumption }, { intro, repeat induction b with b x, induction x, repeat induction x_1 with v x_1, reflexivity }, { intro v, repeat induction v with x v, reflexivity }, end definition AbGroup_Group_props {A : Type} (v : (A → A → A) × (A → A) × A) : AbGroup_props v ≃ Group_props v × ∀ a b, v.1 a b = v.1 b a := begin fapply equiv.MK, induction v with m v, induction v with i e, intro, fconstructor, repeat induction a with b a, repeat (fconstructor; assumption), assumption, exact a.2.2.2.2.2, intro, induction a, repeat induction v with b v, repeat induction a with b a, repeat (fconstructor; assumption), assumption, intro b, assert H : is_prop (Group_props v × ∀ a b, v.1 a b = v.1 b a), apply is_trunc_prod, assert K : is_set A, induction b, induction v, induction a_1, induction a_2_1, assumption, exact _, apply is_prop.elim, intro, apply is_prop.elim, end open sigma.ops definition sigma_prod_equiv_sigma_sigma {A} {B C : A→Type} : (Σa, B a × C a) ≃ Σ p : (Σa, B a), C p.1 := sigma_equiv_sigma_right (λa, !sigma.equiv_prod⁻¹ᵉ) ⬝e !sigma_assoc_equiv definition ab_group_equiv_group_comm (A : Type) : ab_group A ≃ Σ (g : group A), ∀ a b : A, a * b = b * a := begin refine !ab_group.sigma_char ⬝e _, refine sigma_equiv_sigma_right AbGroup_Group_props ⬝e _, refine sigma_prod_equiv_sigma_sigma ⬝e _, apply equiv.symm, apply sigma_equiv_sigma !group.sigma_char, intros, induction a, reflexivity end section local attribute group.to_has_mul group.to_has_inv [coercion] theorem inv_eq_of_mul_eq {A : Type} (G H : group A) (p : @mul A G ~2 @mul A H) : @inv A G ~ @inv A H := begin have foo : Π(g : A), @inv A G g = (@inv A G g * g) * @inv A H g, from λg, !mul_inv_cancel_right⁻¹, cases G with Gs Gm Gh1 G1 Gh2 Gh3 Gi Gh4, cases H with Hs Hm Hh1 H1 Hh2 Hh3 Hi Hh4, change Gi ~ Hi, intro g, have p' : Gm ~2 Hm, from p, calc Gi g = Hm (Hm (Gi g) g) (Hi g) : foo ... = Hm (Gm (Gi g) g) (Hi g) : by rewrite p' ... = Hm G1 (Hi g) : by rewrite Gh4 ... = Gm G1 (Hi g) : by rewrite p' ... = Hi g : Gh2 end theorem one_eq_of_mul_eq {A : Type} (G H : group A) (p : @mul A (group.to_has_mul G) ~2 @mul A (group.to_has_mul H)) : @one A (group.to_has_one G) = @one A (group.to_has_one H) := begin cases G with Gm Gs Gh1 G1 Gh2 Gh3 Gi Gh4, cases H with Hm Hs Hh1 H1 Hh2 Hh3 Hi Hh4, exact (Hh2 G1)⁻¹ ⬝ (p H1 G1)⁻¹ ⬝ Gh3 H1, end end definition group_of_Group_props.{u} {A : Type.{u}} {m : A → A → A} {i : A → A} {o : A} (H : Group_props (m, (i, o))) : group A := ⦃group, mul := m, inv := i, one := o, is_set_carrier := H.1, mul_one := H.2.1, one_mul := H.2.2.1, mul_assoc := H.2.2.2.1, mul_left_inv := H.2.2.2.2⦄ theorem Group_eq_equiv_lemma2 {A : Type} {m m' : A → A → A} {i i' : A → A} {o o' : A} (H : Group_props (m, (i, o))) (H' : Group_props (m', (i', o'))) : (m, (i, o)) = (m', (i', o')) ≃ (m ~2 m') := begin have is_set A, from pr1 H, apply equiv_of_is_prop, { intro p, exact apd100 (eq_pr1 p)}, { intro p, apply prod_eq (eq_of_homotopy2 p), apply prod_eq: esimp [Group_props] at *; esimp, { apply eq_of_homotopy, exact inv_eq_of_mul_eq (group_of_Group_props H) (group_of_Group_props H') p }, { exact one_eq_of_mul_eq (group_of_Group_props H) (group_of_Group_props H') p }} end open Group theorem Group_eq_equiv_lemma {G H : Group} (p : (sigma_char2 G).1 = (sigma_char2 H).1) : ((sigma_char2 G).2 =[p] (sigma_char2 H).2) ≃ (is_mul_hom (equiv_of_eq (proof p qed : Group.carrier G = Group.carrier H))) := begin refine !sigma_pathover_equiv_of_is_prop ⬝e _, induction G with G g, induction H with H h, esimp [sigma_char2] at p, esimp [sigma_functor] at p, esimp [Group_sigma] at *, induction p, refine !pathover_idp ⬝e _, induction g with s m ma o om mo i mi, induction h with σ μ μa ε εμ με ι μι, exact Group_eq_equiv_lemma2 (sigma_char2 (Group.mk G (group.mk s m ma o om mo i mi))).2.2 (sigma_char2 (Group.mk G (group.mk σ μ μa ε εμ με ι μι))).2.2 end definition isomorphism.sigma_char (G H : Group) : (G ≃g H) ≃ Σ(e : G ≃ H), is_mul_hom e := begin fapply equiv.MK, { intro φ, exact ⟨equiv_of_isomorphism φ, to_respect_mul φ⟩ }, { intro v, induction v with e p, exact isomorphism_of_equiv e p }, { intro v, induction v with e p, induction e, reflexivity }, { intro φ, induction φ with φ H, induction φ, reflexivity }, end definition Group_eq_equiv (G H : Group) : G = H ≃ (G ≃g H) := begin refine (eq_equiv_fn_eq sigma_char2 G H) ⬝e _, refine !sigma_eq_equiv ⬝e _, refine sigma_equiv_sigma_right Group_eq_equiv_lemma ⬝e _, transitivity (Σ(e : (sigma_char2 G).1 ≃ (sigma_char2 H).1), @is_mul_hom _ _ _ _ (to_fun e)), apply sigma_ua, exact !isomorphism.sigma_char⁻¹ᵉ end definition to_fun_Group_eq_equiv {G H : Group} (p : G = H) : Group_eq_equiv G H p ~ isomorphism_of_eq p := begin induction p, reflexivity end definition Group_eq2 {G H : Group} {p q : G = H} (r : isomorphism_of_eq p ~ isomorphism_of_eq q) : p = q := begin apply inj (Group_eq_equiv G H), apply isomorphism_eq, intro g, refine to_fun_Group_eq_equiv p g ⬝ r g ⬝ (to_fun_Group_eq_equiv q g)⁻¹, end definition Group_eq_equiv_Group_iso (G₁ G₂ : Group) : G₁ = G₂ ≃ G₁ ≅ G₂ := Group_eq_equiv G₁ G₂ ⬝e (Group_iso_equiv G₁ G₂)⁻¹ᵉ definition category_Group.{u} : category Group.{u} := category.mk precategory_Group begin intro G H, apply is_equiv_of_equiv_of_homotopy (Group_eq_equiv_Group_iso G H), intro p, induction p, fapply iso_eq, apply homomorphism_eq, reflexivity end definition AbGroup_to_Group [constructor] : functor (Precategory.mk AbGroup _) (Category.mk Group category_Group) := mk (λ x : AbGroup, (x : Group)) (λ a b x, x) (λ x, rfl) begin intros, reflexivity end definition is_set_group (X : Type) : is_set (group X) := begin apply is_trunc_of_imp_is_trunc, intros, assert H : is_set X, exact @group.is_set_carrier X a, clear a, exact is_trunc_equiv_closed_rev _ !group.sigma_char _ end definition ab_group_to_group (A : Type) (g : ab_group A) : group A := _ definition group_comm_to_group (A : Type) : (Σ g : group A, ∀ (a b : A), a*b = b*a) → group A := pr1 definition is_embedding_group_comm_to_group (A : Type) : is_embedding (group_comm_to_group A) := begin unfold group_comm_to_group, intros, induction a, assert H : is_set A, induction a, assumption, assert H :is_set (group A), apply is_set_group, induction a', fconstructor, intros, apply sigma_eq, apply is_prop.elimo, intro, esimp at *, assumption, intros, apply is_prop.elim, intros, apply is_prop.elim, intros, apply is_prop.elim end definition ab_group_to_group_homot (A : Type) : @ab_group_to_group A ~ group_comm_to_group A ∘ ab_group_equiv_group_comm A := begin intro, induction x, reflexivity end definition is_embedding_ab_group_to_group (A : Type) : is_embedding (@ab_group_to_group A) := begin apply is_embedding_homotopy_closed_rev (ab_group_to_group_homot A), apply is_embedding_compose, exact is_embedding_group_comm_to_group A, apply is_embedding_of_is_equiv end definition is_embedding_total_of_is_embedding_fiber {A} {B C : A → Type} {f : Π a, B a → C a} : (∀ a, is_embedding (f a)) → is_embedding (total f) := begin intro e, fapply is_embedding_of_is_prop_fiber, intro p, induction p with a c, assert H : (fiber (total f) ⟨a, c⟩)≃ fiber (f a) c, apply fiber_total_equiv, assert H2 : is_prop (fiber (f a) c), apply is_prop_fiber_of_is_embedding, exact is_trunc_equiv_closed -1 (H⁻¹ᵉ) _ end definition AbGroup_to_Group_homot : AbGroup_to_Group ~ Group_sigma⁻¹ ∘ total ab_group_to_group ∘ AbGroup_sigma := begin intro g, induction g, reflexivity end definition is_embedding_AbGroup_to_Group : is_embedding AbGroup_to_Group := begin apply is_embedding_homotopy_closed_rev AbGroup_to_Group_homot, apply is_embedding_compose, apply is_embedding_of_is_equiv, apply is_embedding_compose, apply is_embedding_total_of_is_embedding_fiber is_embedding_ab_group_to_group, apply is_embedding_of_is_equiv end definition is_univalent_AbGroup : is_univalent precategory_AbGroup := begin apply is_univalent_domain_of_fully_faithful_embedding AbGroup_to_Group is_embedding_AbGroup_to_Group, intros, apply is_equiv_id end definition category_AbGroup : category AbGroup := category.mk precategory_AbGroup is_univalent_AbGroup definition Grp.{u} [constructor] : Category := category.Mk Group.{u} category_Group definition AbGrp [constructor] : Category := category.Mk AbGroup category_AbGroup end category