/- Copyright (c) 2017 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad -/ import types.trunc .logic open funext eq trunc is_trunc logic definition set (X : Type) := X → Prop namespace set variable {X : Type} /- membership and subset -/ definition mem (x : X) (a : set X) := a x infix ∈ := mem notation a ∉ b := ¬ mem a b /-theorem ext {a b : set X} (H : ∀x, x ∈ a ↔ x ∈ b) : a = b := eq_of_homotopy (take x, propext (H x)) -/ definition subset (a b : set X) : Prop := Prop.mk (∀⦃x⦄, x ∈ a → x ∈ b) _ infix ⊆ := subset definition superset (s t : set X) : Prop := t ⊆ s infix ⊇ := superset theorem subset.refl (a : set X) : a ⊆ a := take x, assume H, H theorem subset.trans {a b c : set X} (subab : a ⊆ b) (subbc : b ⊆ c) : a ⊆ c := take x, assume ax, subbc (subab ax) /- theorem subset.antisymm {a b : set X} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b := ext (λ x, iff.intro (λ ina, h₁ ina) (λ inb, h₂ inb)) -/ -- an alterantive name /- theorem eq_of_subset_of_subset {a b : set X} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b := subset.antisymm h₁ h₂ -/ theorem mem_of_subset_of_mem {s₁ s₂ : set X} {a : X} : s₁ ⊆ s₂ → a ∈ s₁ → a ∈ s₂ := assume h₁ h₂, h₁ _ h₂ /- empty set -/ definition empty : set X := λx, false notation `∅` := set.empty theorem not_mem_empty (x : X) : ¬ (x ∈ ∅) := assume H : x ∈ ∅, false.elim H theorem mem_empty_eq (x : X) : x ∈ ∅ = false := rfl /- theorem eq_empty_of_forall_not_mem {s : set X} (H : ∀ x, x ∉ s) : s = ∅ := ext (take x, iff.intro (assume xs, absurd xs (H x)) (assume xe, absurd xe (not_mem_empty x))) -/ set_option formatter.hide_full_terms false theorem ne_empty_of_mem {s : set X} {x : X} (H : x ∈ s) : s ≠ ∅ := begin intro Hs, rewrite Hs at H, apply not_mem_empty x H end theorem empty_subset (s : set X) : ∅ ⊆ s := take x, assume H, false.elim H /-theorem eq_empty_of_subset_empty {s : set X} (H : s ⊆ ∅) : s = ∅ := subset.antisymm H (empty_subset s) theorem subset_empty_iff (s : set X) : s ⊆ ∅ ↔ s = ∅ := iff.intro eq_empty_of_subset_empty (take xeq, by rewrite xeq; apply subset.refl ∅) -/ /- universal set -/ definition univ : set X := λx, true theorem mem_univ (x : X) : x ∈ univ := trivial theorem mem_univ_eq (x : X) : x ∈ univ = true := rfl theorem empty_ne_univ [h : inhabited X] : (empty : set X) ≠ univ := assume H : empty = univ, absurd (mem_univ (inhabited.value h)) (eq.rec_on H (not_mem_empty (arbitrary X))) theorem subset_univ (s : set X) : s ⊆ univ := λ x H, trivial /- theorem eq_univ_of_univ_subset {s : set X} (H : univ ⊆ s) : s = univ := eq_of_subset_of_subset (subset_univ s) H -/ /- theorem eq_univ_of_forall {s : set X} (H : ∀ x, x ∈ s) : s = univ := ext (take x, iff.intro (assume H', trivial) (assume H', H x)) -/ /- set-builder notation -/ -- {x : X | P} definition set_of (P : X → Prop) : set X := P notation `{` binder ` | ` r:(scoped:1 P, set_of P) `}` := r theorem mem_set_of {P : X → Prop} {a : X} (h : P a) : a ∈ {x | P x} := h theorem of_mem_set_of {P : X → Prop} {a : X} (h : a ∈ {x | P x}) : P a := h -- {x ∈ s | P} definition sep (P : X → Prop) (s : set X) : set X := λx, x ∈ s ∧ P x notation `{` binder ` ∈ ` s ` | ` r:(scoped:1 p, sep p s) `}` := r /- insert -/ definition insert (x : X) (a : set X) : set X := {y : X | y = x ∨ y ∈ a} abbreviation insert_same_level.{u} := @insert.{u u} -- '{x, y, z} notation `'{`:max a:(foldr `, ` (x b, insert_same_level x b) ∅) `}`:0 := a theorem subset_insert (x : X) (a : set X) : a ⊆ insert x a := take y, assume ys, or.inr ys theorem mem_insert (x : X) (s : set X) : x ∈ insert x s := or.inl rfl theorem mem_insert_of_mem {x : X} {s : set X} (y : X) : x ∈ s → x ∈ insert y s := assume h, or.inr h theorem eq_or_mem_of_mem_insert {x a : X} {s : set X} : x ∈ insert a s → x = a ∨ x ∈ s := assume h, h /- singleton -/ open trunc_index theorem mem_singleton_iff {X : Type} [is_set X] (a b : X) : a ∈ '{b} ↔ a = b := iff.intro (assume ainb, or.elim ainb (λ aeqb, aeqb) (λ f, false.elim f)) (assume aeqb, or.inl aeqb) theorem mem_singleton (a : X) : a ∈ '{a} := !mem_insert theorem eq_of_mem_singleton {X : Type} [is_set X] {x y : X} (h : x ∈ '{y}) : x = y := or.elim (eq_or_mem_of_mem_insert h) (suppose x = y, this) (suppose x ∈ ∅, absurd this (not_mem_empty x)) theorem mem_singleton_of_eq {x y : X} (H : x = y) : x ∈ '{y} := eq.symm H ▸ mem_singleton y /- theorem insert_eq (x : X) (s : set X) : insert x s = '{x} ∪ s := ext (take y, iff.intro (suppose y ∈ insert x s, or.elim this (suppose y = x, or.inl (or.inl this)) (suppose y ∈ s, or.inr this)) (suppose y ∈ '{x} ∪ s, or.elim this (suppose y ∈ '{x}, or.inl (eq_of_mem_singleton this)) (suppose y ∈ s, or.inr this))) -/ /- theorem pair_eq_singleton (a : X) : '{a, a} = '{a} := by rewrite [insert_eq_of_mem !mem_singleton] -/ /- theorem singleton_ne_empty (a : X) : '{a} ≠ ∅ := begin intro H, apply not_mem_empty a, rewrite -H, apply mem_insert end -/ end set