/- Copyright (c) 2016 Michael Shulman. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Michael Shulman -/ import types.int types.pointed types.trunc homotopy.susp algebra.homotopy_group homotopy.chain_complex cubical open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc_index pi /----------------------------------------- Stuff that should go in other files -----------------------------------------/ attribute equiv.symm equiv.trans is_equiv.is_equiv_ap fiber.equiv_postcompose fiber.equiv_precompose pequiv.to_pmap pequiv._trans_of_to_pmap [constructor] attribute is_equiv.eq_of_fn_eq_fn' [unfold 3] namespace sigma definition sigma_equiv_sigma_left' [constructor] {A A' : Type} {B : A' → Type} (Hf : A ≃ A') : (Σa, B (Hf a)) ≃ (Σa', B a') := sigma_equiv_sigma Hf (λa, erfl) end sigma open sigma namespace eq definition pathover_eq_Fl' {A B : Type} {f : A → B} {a₁ a₂ : A} {b : B} (p : a₁ = a₂) (q : f a₂ = b) : (ap f p) ⬝ q =[p] q := by induction p; induction q; exact idpo end eq open eq namespace pointed definition pequiv_compose {A B C : Type*} (g : B ≃* C) (f : A ≃* B) : A ≃* C := pequiv_of_pmap (g ∘* f) (is_equiv_compose g f) infixr ` ∘*ᵉ `:60 := pequiv_compose definition pmap.sigma_char [constructor] {A B : Type*} : (A →* B) ≃ Σ(f : A → B), f pt = pt := begin fapply equiv.MK : intros f, { exact ⟨to_fun f , resp_pt f⟩ }, all_goals cases f with f p, { exact pmap.mk f p }, all_goals reflexivity end definition phomotopy.sigma_char [constructor] {A B : Type*} (f g : A →* B) : (f ~* g) ≃ Σ(p : f ~ g), p pt ⬝ resp_pt g = resp_pt f := begin fapply equiv.MK : intros h, { exact ⟨h , to_homotopy_pt h⟩ }, all_goals cases h with h p, { exact phomotopy.mk h p }, all_goals reflexivity end definition pmap_eq_equiv {A B : Type*} (f g : A →* B) : (f = g) ≃ (f ~* g) := calc (f = g) ≃ pmap.sigma_char f = pmap.sigma_char g : eq_equiv_fn_eq pmap.sigma_char f g ... ≃ Σ(p : pmap.to_fun f = pmap.to_fun g), pathover (λh, h pt = pt) (resp_pt f) p (resp_pt g) : sigma_eq_equiv _ _ ... ≃ Σ(p : pmap.to_fun f = pmap.to_fun g), resp_pt f = ap (λh, h pt) p ⬝ resp_pt g : sigma_equiv_sigma_right (λp, pathover_eq_equiv_Fl p (resp_pt f) (resp_pt g)) ... ≃ Σ(p : pmap.to_fun f = pmap.to_fun g), resp_pt f = ap10 p pt ⬝ resp_pt g : sigma_equiv_sigma_right (λp, equiv_eq_closed_right _ (whisker_right (ap_eq_apd10 p _) _)) ... ≃ Σ(p : pmap.to_fun f ~ pmap.to_fun g), resp_pt f = p pt ⬝ resp_pt g : sigma_equiv_sigma_left' eq_equiv_homotopy ... ≃ Σ(p : pmap.to_fun f ~ pmap.to_fun g), p pt ⬝ resp_pt g = resp_pt f : sigma_equiv_sigma_right (λp, eq_equiv_eq_symm _ _) ... ≃ (f ~* g) : phomotopy.sigma_char f g definition loop_pmap_commute (A B : Type*) : Ω(ppmap A B) ≃* (ppmap A (Ω B)) := pequiv_of_equiv (calc Ω(ppmap A B) /- ≃ (pconst A B = pconst A B) : erfl ... -/ ≃ (pconst A B ~* pconst A B) : pmap_eq_equiv _ _ ... ≃ Σ(p : pconst A B ~ pconst A B), p pt ⬝ rfl = rfl : phomotopy.sigma_char ... /- ≃ Σ(f : A → Ω B), f pt = pt : erfl ... -/ ≃ (A →* Ω B) : pmap.sigma_char) (by reflexivity) definition ppcompose_left {A B C : Type*} (g : B →* C) : ppmap A B →* ppmap A C := pmap.mk (pcompose g) (eq_of_phomotopy (phomotopy.mk (λa, resp_pt g) (idp_con _)⁻¹)) definition is_equiv_ppcompose_left [instance] {A B C : Type*} (g : B →* C) [H : is_equiv g] : is_equiv (@ppcompose_left A B C g) := begin fapply is_equiv.adjointify, { exact (ppcompose_left (pequiv_of_pmap g H)⁻¹ᵉ*) }, all_goals (intros f; esimp; apply eq_of_phomotopy), { exact calc g ∘* ((pequiv_of_pmap g H)⁻¹ᵉ* ∘* f) ~* (g ∘* (pequiv_of_pmap g H)⁻¹ᵉ*) ∘* f : passoc ... ~* pid _ ∘* f : pwhisker_right f (pright_inv (pequiv_of_pmap g H)) ... ~* f : pid_comp f }, { exact calc (pequiv_of_pmap g H)⁻¹ᵉ* ∘* (g ∘* f) ~* ((pequiv_of_pmap g H)⁻¹ᵉ* ∘* g) ∘* f : passoc ... ~* pid _ ∘* f : pwhisker_right f (pleft_inv (pequiv_of_pmap g H)) ... ~* f : pid_comp f } end definition equiv_ppcompose_left {A B C : Type*} (g : B ≃* C) : ppmap A B ≃* ppmap A C := pequiv_of_pmap (ppcompose_left g) _ definition pcompose_pconst {A B C : Type*} (f : B →* C) : f ∘* pconst A B ~* pconst A C := phomotopy.mk (λa, respect_pt f) (idp_con _)⁻¹ definition pconst_pcompose {A B C : Type*} (f : A →* B) : pconst B C ∘* f ~* pconst A C := phomotopy.mk (λa, rfl) (ap_constant _ _)⁻¹ definition ap1_pconst (A B : Type*) : Ω→(pconst A B) ~* pconst (Ω A) (Ω B) := phomotopy.mk (λp, idp_con _ ⬝ ap_constant p pt) rfl definition pfiber_loop_space {A B : Type*} (f : A →* B) : pfiber (Ω→ f) ≃* Ω (pfiber f) := pequiv_of_equiv (calc pfiber (Ω→ f) ≃ Σ(p : Point A = Point A), ap1 f p = rfl : (fiber.sigma_char (ap1 f) (Point (Ω B))) ... ≃ Σ(p : Point A = Point A), (respect_pt f) = ap f p ⬝ (respect_pt f) : (sigma_equiv_sigma_right (λp, calc (ap1 f p = rfl) ≃ !respect_pt⁻¹ ⬝ (ap f p ⬝ !respect_pt) = rfl : equiv_eq_closed_left _ (con.assoc _ _ _) ... ≃ ap f p ⬝ (respect_pt f) = (respect_pt f) : eq_equiv_inv_con_eq_idp ... ≃ (respect_pt f) = ap f p ⬝ (respect_pt f) : eq_equiv_eq_symm)) ... ≃ fiber.mk (Point A) (respect_pt f) = fiber.mk pt (respect_pt f) : fiber_eq_equiv ... ≃ Ω (pfiber f) : erfl) (begin cases f with f p, cases A with A a, cases B with B b, esimp at p, esimp at f, induction p, reflexivity end) definition pfiber_equiv_of_phomotopy {A B : Type*} {f g : A →* B} (h : f ~* g) : pfiber f ≃* pfiber g := begin fapply pequiv_of_equiv, { refine (fiber.sigma_char f pt ⬝e _ ⬝e (fiber.sigma_char g pt)⁻¹ᵉ), apply sigma_equiv_sigma_right, intros a, apply equiv_eq_closed_left, apply (to_homotopy h) }, { refine (fiber_eq rfl _), change (h pt)⁻¹ ⬝ respect_pt f = idp ⬝ respect_pt g, rewrite idp_con, apply inv_con_eq_of_eq_con, symmetry, exact (to_homotopy_pt h) } end definition transport_fiber_equiv [constructor] {A B : Type} (f : A → B) {b1 b2 : B} (p : b1 = b2) : fiber f b1 ≃ fiber f b2 := calc fiber f b1 ≃ Σa, f a = b1 : fiber.sigma_char ... ≃ Σa, f a = b2 : sigma_equiv_sigma_right (λa, equiv_eq_closed_right (f a) p) ... ≃ fiber f b2 : fiber.sigma_char definition pequiv_postcompose {A B B' : Type*} (f : A →* B) (g : B ≃* B') : pfiber (g ∘* f) ≃* pfiber f := begin fapply pequiv_of_equiv, esimp, refine transport_fiber_equiv (g ∘* f) (respect_pt g)⁻¹ ⬝e fiber.equiv_postcompose f g (Point B), esimp, apply (ap (fiber.mk (Point A))), refine !con.assoc ⬝ _, apply inv_con_eq_of_eq_con, rewrite [con.assoc, con.right_inv, con_idp, -ap_compose'], apply ap_con_eq_con end definition pequiv_precompose {A A' B : Type*} (f : A →* B) (g : A' ≃* A) : pfiber (f ∘* g) ≃* pfiber f := begin fapply pequiv_of_equiv, esimp, refine fiber.equiv_precompose f g (Point B), esimp, apply (eq_of_fn_eq_fn (fiber.sigma_char _ _)), fapply sigma_eq: esimp, { apply respect_pt g }, { apply pathover_eq_Fl' } end definition pfiber_equiv_of_square {A B C D : Type*} {f : A →* B} {g : C →* D} {h : A ≃* C} {k : B ≃* D} (s : k ∘* f ~* g ∘* h) : pfiber f ≃* pfiber g := calc pfiber f ≃* pfiber (k ∘* f) : pequiv_postcompose ... ≃* pfiber (g ∘* h) : pfiber_equiv_of_phomotopy s ... ≃* pfiber g : pequiv_precompose definition loop_ppi_commute {A : Type} (B : A → Type*) : Ω(ppi B) ≃* Π*a, Ω (B a) := pequiv_of_equiv eq_equiv_homotopy rfl definition equiv_ppi_right {A : Type} {P Q : A → Type*} (g : Πa, P a ≃* Q a) : (Π*a, P a) ≃* (Π*a, Q a) := pequiv_of_equiv (pi_equiv_pi_right g) begin esimp, apply eq_of_homotopy, intros a, esimp, exact (respect_pt (g a)) end end pointed open pointed /--------------------- Basic definitions ---------------------/ open succ_str /- The basic definitions of spectra and prespectra make sense for any successor-structure. -/ structure gen_prespectrum (N : succ_str) := (deloop : N → Type*) (glue : Π(n:N), (deloop n) →* (Ω (deloop (S n)))) attribute gen_prespectrum.deloop [coercion] structure is_spectrum [class] {N : succ_str} (E : gen_prespectrum N) := (is_equiv_glue : Πn, is_equiv (gen_prespectrum.glue E n)) attribute is_spectrum.is_equiv_glue [instance] structure gen_spectrum (N : succ_str) := (to_prespectrum : gen_prespectrum N) (to_is_spectrum : is_spectrum to_prespectrum) attribute gen_spectrum.to_prespectrum [coercion] attribute gen_spectrum.to_is_spectrum [instance] -- Classically, spectra and prespectra use the successor structure +ℕ. -- But we will use +ℤ instead, to reduce case analysis later on. abbreviation spectrum := gen_spectrum +ℤ abbreviation spectrum.mk := @gen_spectrum.mk +ℤ namespace spectrum definition glue {{N : succ_str}} := @gen_prespectrum.glue N --definition glue := (@gen_prespectrum.glue +ℤ) definition equiv_glue {N : succ_str} (E : gen_prespectrum N) [H : is_spectrum E] (n:N) : (E n) ≃* (Ω (E (S n))) := pequiv_of_pmap (glue E n) (is_spectrum.is_equiv_glue E n) -- Sometimes an ℕ-indexed version does arise naturally, however, so -- we give a standard way to extend an ℕ-indexed (pre)spectrum to a -- ℤ-indexed one. definition psp_of_nat_indexed [constructor] (E : gen_prespectrum +ℕ) : gen_prespectrum +ℤ := gen_prespectrum.mk (λ(n:ℤ), match n with | of_nat k := E k | neg_succ_of_nat k := Ω[succ k] (E 0) end) begin intros n, cases n with n n: esimp, { exact (gen_prespectrum.glue E n) }, cases n with n, { exact (pid _) }, { exact (pid _) } end definition is_spectrum_of_nat_indexed [instance] (E : gen_prespectrum +ℕ) [H : is_spectrum E] : is_spectrum (psp_of_nat_indexed E) := begin apply is_spectrum.mk, intros n, cases n with n n: esimp, { apply is_spectrum.is_equiv_glue }, cases n with n: apply is_equiv_id end protected definition of_nat_indexed (E : gen_prespectrum +ℕ) [H : is_spectrum E] : spectrum := spectrum.mk (psp_of_nat_indexed E) (is_spectrum_of_nat_indexed E) -- In fact, a (pre)spectrum indexed on any pointed successor structure -- gives rise to one indexed on +ℕ, so in this sense +ℤ is a -- "universal" successor structure for indexing spectra. definition succ_str.of_nat {N : succ_str} (z : N) : ℕ → N | succ_str.of_nat zero := z | succ_str.of_nat (succ k) := S (succ_str.of_nat k) definition psp_of_gen_indexed [constructor] {N : succ_str} (z : N) (E : gen_prespectrum N) : gen_prespectrum +ℤ := psp_of_nat_indexed (gen_prespectrum.mk (λn, E (succ_str.of_nat z n)) (λn, gen_prespectrum.glue E (succ_str.of_nat z n))) definition is_spectrum_of_gen_indexed [instance] {N : succ_str} (z : N) (E : gen_prespectrum N) [H : is_spectrum E] : is_spectrum (psp_of_gen_indexed z E) := begin apply is_spectrum_of_nat_indexed, apply is_spectrum.mk, intros n, esimp, apply is_spectrum.is_equiv_glue end protected definition of_gen_indexed [constructor] {N : succ_str} (z : N) (E : gen_spectrum N) : spectrum := spectrum.mk (psp_of_gen_indexed z E) (is_spectrum_of_gen_indexed z E) -- Generally it's easiest to define a spectrum by giving 'equiv's -- directly. This works for any indexing succ_str. protected definition MK {N : succ_str} (deloop : N → Type*) (glue : Π(n:N), (deloop n) ≃* (Ω (deloop (S n)))) : gen_spectrum N := gen_spectrum.mk (gen_prespectrum.mk deloop (λ(n:N), glue n)) (begin apply is_spectrum.mk, intros n, esimp, apply pequiv.to_is_equiv -- Why doesn't typeclass inference find this? end) -- Finally, we combine them and give a way to produce a (ℤ-)spectrum from a ℕ-indexed family of 'equiv's. protected definition Mk (deloop : ℕ → Type*) (glue : Π(n:ℕ), (deloop n) ≃* (Ω (deloop (nat.succ n)))) : spectrum := spectrum.of_nat_indexed (spectrum.MK deloop glue) ------------------------------ -- Maps and homotopies of (pre)spectra ------------------------------ -- These make sense for any succ_str. structure smap {N : succ_str} (E F : gen_prespectrum N) := (to_fun : Π(n:N), E n →* F n) (glue_square : Π(n:N), glue F n ∘* to_fun n ~* Ω→ (to_fun (S n)) ∘* glue E n) open smap infix ` →ₛ `:30 := smap attribute smap.to_fun [coercion] -- A version of 'glue_square' in the spectrum case that uses 'equiv_glue' definition sglue_square {N : succ_str} {E F : gen_spectrum N} (f : E →ₛ F) (n : N) : equiv_glue F n ∘* f n ~* Ω→ (f (S n)) ∘* equiv_glue E n -- I guess this manual eta-expansion is necessary because structures lack definitional eta? := phomotopy.mk (glue_square f n) (to_homotopy_pt (glue_square f n)) definition sid {N : succ_str} (E : gen_spectrum N) : E →ₛ E := smap.mk (λn, pid (E n)) (λn, calc glue E n ∘* pid (E n) ~* glue E n : comp_pid ... ~* pid (Ω(E (S n))) ∘* glue E n : pid_comp ... ~* Ω→(pid (E (S n))) ∘* glue E n : pwhisker_right (glue E n) ap1_id⁻¹*) definition scompose {N : succ_str} {X Y Z : gen_prespectrum N} (g : Y →ₛ Z) (f : X →ₛ Y) : X →ₛ Z := smap.mk (λn, g n ∘* f n) (λn, calc glue Z n ∘* to_fun g n ∘* to_fun f n ~* (glue Z n ∘* to_fun g n) ∘* to_fun f n : passoc ... ~* (Ω→(to_fun g (S n)) ∘* glue Y n) ∘* to_fun f n : pwhisker_right (to_fun f n) (glue_square g n) ... ~* Ω→(to_fun g (S n)) ∘* (glue Y n ∘* to_fun f n) : passoc ... ~* Ω→(to_fun g (S n)) ∘* (Ω→ (f (S n)) ∘* glue X n) : pwhisker_left Ω→(to_fun g (S n)) (glue_square f n) ... ~* (Ω→(to_fun g (S n)) ∘* Ω→(f (S n))) ∘* glue X n : passoc ... ~* Ω→(to_fun g (S n) ∘* to_fun f (S n)) ∘* glue X n : pwhisker_right (glue X n) (ap1_compose _ _)) infixr ` ∘ₛ `:60 := scompose definition szero {N : succ_str} (E F : gen_prespectrum N) : E →ₛ F := smap.mk (λn, pconst (E n) (F n)) (λn, calc glue F n ∘* pconst (E n) (F n) ~* pconst (E n) (Ω(F (S n))) : pcompose_pconst ... ~* pconst (Ω(E (S n))) (Ω(F (S n))) ∘* glue E n : pconst_pcompose ... ~* Ω→(pconst (E (S n)) (F (S n))) ∘* glue E n : pwhisker_right (glue E n) (ap1_pconst _ _)) structure shomotopy {N : succ_str} {E F : gen_prespectrum N} (f g : E →ₛ F) := (to_phomotopy : Πn, f n ~* g n) (glue_homotopy : Πn, pwhisker_left (glue F n) (to_phomotopy n) ⬝* glue_square g n = -- Ideally this should be a "phomotopy2" glue_square f n ⬝* pwhisker_right (glue E n) (ap1_phomotopy (to_phomotopy (S n)))) infix ` ~ₛ `:50 := shomotopy ------------------------------ -- Suspension prespectra ------------------------------ -- This should probably go in 'susp' definition psuspn : ℕ → Type* → Type* | psuspn 0 X := X | psuspn (succ n) X := psusp (psuspn n X) -- Suspension prespectra are one that's naturally indexed on the natural numbers definition psp_susp (X : Type*) : gen_prespectrum +ℕ := gen_prespectrum.mk (λn, psuspn n X) (λn, loop_susp_unit (psuspn n X)) /- Truncations -/ -- We could truncate prespectra too, but since the operation -- preserves spectra and isn't "correct" acting on prespectra -- without spectrifying them first anyway, why bother? definition strunc (k : ℕ₋₂) (E : spectrum) : spectrum := spectrum.Mk (λ(n:ℕ), ptrunc (k + n) (E n)) (λ(n:ℕ), (loop_ptrunc_pequiv (k + n) (E (succ n)))⁻¹ᵉ* ∘*ᵉ (ptrunc_pequiv_ptrunc (k + n) (equiv_glue E (int.of_nat n)))) /--------------------- Homotopy groups ---------------------/ -- Here we start to reap the rewards of using ℤ-indexing: we can -- read off the homotopy groups without any tedious case-analysis of -- n. We increment by 2 in order to ensure that they are all -- automatically abelian groups. definition shomotopy_group [constructor] (n : ℤ) (E : spectrum) : CommGroup := πag[0+2] (E (2 + n)) notation `πₛ[`:95 n:0 `] `:0 E:95 := shomotopy_group n E /------------------------------- Cotensor of spectra by types -------------------------------/ -- Makes sense for any indexing succ_str. Could be done for -- prespectra too, but as with truncation, why bother? definition sp_cotensor {N : succ_str} (A : Type*) (B : gen_spectrum N) : gen_spectrum N := spectrum.MK (λn, ppmap A (B n)) (λn, (loop_pmap_commute A (B (S n)))⁻¹ᵉ* ∘*ᵉ (equiv_ppcompose_left (equiv_glue B n))) ---------------------------------------- -- Sections of parametrized spectra ---------------------------------------- definition spi {N : succ_str} (A : Type) (E : A -> gen_spectrum N) : gen_spectrum N := spectrum.MK (λn, ppi (λa, E a n)) (λn, (loop_ppi_commute (λa, E a (S n)))⁻¹ᵉ* ∘*ᵉ equiv_ppi_right (λa, equiv_glue (E a) n)) /----------------------------------------- Fibers and long exact sequences -----------------------------------------/ definition sfiber {N : succ_str} (E F : gen_spectrum N) (f : E →ₛ F) : gen_spectrum N := spectrum.MK (λn, pfiber (f n)) (λn, pfiber_loop_space (f (S n)) ∘*ᵉ pfiber_equiv_of_square (sglue_square f n)) structure sp_chain_complex (N : succ_str) : Type := (car : N → spectrum) (fn : Π(n : N), car (S n) →ₛ car n) (is_chain_complex : Πn, fn n ∘ₛ fn (S n) ~ₛ szero _ _) section variables {N : succ_str} (X : sp_chain_complex N) (n : N) definition scc_to_car [unfold 2] [coercion] := @sp_chain_complex.car definition scc_to_fn [unfold 2] : X (S n) →ₛ X n := sp_chain_complex.fn X n definition scc_is_chain_complex [unfold 2] : scc_to_fn X n ∘ₛ scc_to_fn X (S n) ~ₛ szero _ _ := sp_chain_complex.is_chain_complex X n end /- Mapping spectra -/ /- Spectrification -/ /- Tensor by spaces -/ /- Smash product of spectra -/ /- Cofibers and stability -/ end spectrum