/- Copyright (c) 2016 Michael Shulman. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Michael Shulman, Floris van Doorn -/ import homotopy.LES_of_homotopy_groups .splice ..colim types.pointed2 .EM ..pointed_pi .smash_adjoint ..algebra.seq_colim open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc_index pi group seq_colim succ_str EM EM.ops function /--------------------- Basic definitions ---------------------/ /- The basic definitions of spectra and prespectra make sense for any successor-structure. -/ structure gen_prespectrum (N : succ_str) := (deloop : N → Type*) (glue : Π(n:N), (deloop n) →* (Ω (deloop (S n)))) attribute gen_prespectrum.deloop [coercion] structure is_spectrum [class] {N : succ_str} (E : gen_prespectrum N) := (is_equiv_glue : Πn, is_equiv (gen_prespectrum.glue E n)) attribute is_spectrum.is_equiv_glue [instance] structure gen_spectrum (N : succ_str) := (to_prespectrum : gen_prespectrum N) (to_is_spectrum : is_spectrum to_prespectrum) attribute gen_spectrum.to_prespectrum [coercion] attribute gen_spectrum.to_is_spectrum [instance] -- Classically, spectra and prespectra use the successor structure +ℕ. -- But we will use +ℤ instead, to reduce case analysis later on. abbreviation prespectrum := gen_prespectrum +ℤ definition prespectrum.mk (Y : ℤ → Type*) (e : Π(n : ℤ), Y n →* Ω (Y (n+1))) : prespectrum := gen_prespectrum.mk Y e abbreviation spectrum := gen_spectrum +ℤ abbreviation spectrum.mk (Y : prespectrum) (e : is_spectrum Y) : spectrum := gen_spectrum.mk Y e namespace spectrum definition glue {{N : succ_str}} := @gen_prespectrum.glue N --definition glue := (@gen_prespectrum.glue +ℤ) definition equiv_glue {N : succ_str} (E : gen_prespectrum N) [H : is_spectrum E] (n:N) : (E n) ≃* (Ω (E (S n))) := pequiv_of_pmap (glue E n) (is_spectrum.is_equiv_glue E n) definition equiv_glue2 (Y : spectrum) (n : ℤ) : Ω (Ω (Y (n+2))) ≃* Y n := begin refine (!equiv_glue ⬝e* loop_pequiv_loop (!equiv_glue ⬝e* loop_pequiv_loop _))⁻¹ᵉ*, refine pequiv_of_eq (ap Y _), exact add.assoc n 1 1 end -- a square when we compose glue with transporting over a path in N definition glue_ptransport {N : succ_str} (X : gen_prespectrum N) {n n' : N} (p : n = n') : glue X n' ∘* ptransport X p ~* Ω→ (ptransport X (ap S p)) ∘* glue X n := by induction p; exact !pcompose_pid ⬝* !pid_pcompose⁻¹* ⬝* pwhisker_right _ !ap1_pid⁻¹* -- Sometimes an ℕ-indexed version does arise naturally, however, so -- we give a standard way to extend an ℕ-indexed (pre)spectrum to a -- ℤ-indexed one. definition psp_of_nat_indexed [constructor] (E : gen_prespectrum +ℕ) : gen_prespectrum +ℤ := gen_prespectrum.mk (λ(n:ℤ), match n with | of_nat k := E k | neg_succ_of_nat k := Ω[succ k] (E 0) end) begin intros n, cases n with n n: esimp, { exact (gen_prespectrum.glue E n) }, cases n with n, { exact (pid _) }, { exact (pid _) } end definition is_spectrum_of_nat_indexed [instance] (E : gen_prespectrum +ℕ) [H : is_spectrum E] : is_spectrum (psp_of_nat_indexed E) := begin apply is_spectrum.mk, intros n, cases n with n n: esimp, { apply is_spectrum.is_equiv_glue }, cases n with n: apply is_equiv_id end protected definition of_nat_indexed (E : gen_prespectrum +ℕ) [H : is_spectrum E] : spectrum := spectrum.mk (psp_of_nat_indexed E) (is_spectrum_of_nat_indexed E) -- In fact, a (pre)spectrum indexed on any pointed successor structure -- gives rise to one indexed on +ℕ, so in this sense +ℤ is a -- "universal" successor structure for indexing spectra. definition succ_str.of_nat {N : succ_str} (z : N) : ℕ → N | succ_str.of_nat zero := z | succ_str.of_nat (succ k) := S (succ_str.of_nat k) definition psp_of_gen_indexed [constructor] {N : succ_str} (z : N) (E : gen_prespectrum N) : gen_prespectrum +ℤ := psp_of_nat_indexed (gen_prespectrum.mk (λn, E (succ_str.of_nat z n)) (λn, gen_prespectrum.glue E (succ_str.of_nat z n))) definition is_spectrum_of_gen_indexed [instance] {N : succ_str} (z : N) (E : gen_prespectrum N) [H : is_spectrum E] : is_spectrum (psp_of_gen_indexed z E) := begin apply is_spectrum_of_nat_indexed, apply is_spectrum.mk, intros n, esimp, apply is_spectrum.is_equiv_glue end protected definition of_gen_indexed [constructor] {N : succ_str} (z : N) (E : gen_spectrum N) : spectrum := gen_spectrum.mk (psp_of_gen_indexed z E) (is_spectrum_of_gen_indexed z E) -- Generally it's easiest to define a spectrum by giving 'equiv's -- directly. This works for any indexing succ_str. protected definition MK [constructor] {N : succ_str} (deloop : N → Type*) (glue : Π(n:N), (deloop n) ≃* (Ω (deloop (S n)))) : gen_spectrum N := gen_spectrum.mk (gen_prespectrum.mk deloop (λ(n:N), glue n)) (begin apply is_spectrum.mk, intros n, esimp, apply pequiv.to_is_equiv -- Why doesn't typeclass inference find this? end) -- Finally, we combine them and give a way to produce a (ℤ-)spectrum from a ℕ-indexed family of 'equiv's. protected definition Mk [constructor] (deloop : ℕ → Type*) (glue : Π(n:ℕ), (deloop n) ≃* (Ω (deloop (nat.succ n)))) : spectrum := spectrum.of_nat_indexed (spectrum.MK deloop glue) ------------------------------ -- Maps and homotopies of (pre)spectra ------------------------------ -- These make sense for any succ_str. structure smap {N : succ_str} (E F : gen_prespectrum N) := (to_fun : Π(n:N), E n →* F n) (glue_square : Π(n:N), psquare (to_fun n) (Ω→ (to_fun (S n))) (glue E n) (glue F n) ) open smap infix ` →ₛ `:30 := smap attribute smap.to_fun [coercion] -- A version of 'glue_square' in the spectrum case that uses 'equiv_glue' definition sglue_square {N : succ_str} {E F : gen_spectrum N} (f : E →ₛ F) (n : N) : equiv_glue F n ∘* f n ~* Ω→ (f (S n)) ∘* equiv_glue E n -- I guess this manual eta-expansion is necessary because structures lack definitional eta? := phomotopy.mk (glue_square f n) (to_homotopy_pt (glue_square f n)) definition sid {N : succ_str} (E : gen_prespectrum N) : E →ₛ E := smap.mk (λn, pid (E n)) (λn, calc glue E n ∘* pid (E n) ~* glue E n : pcompose_pid ... ~* pid (Ω(E (S n))) ∘* glue E n : pid_pcompose ... ~* Ω→(pid (E (S n))) ∘* glue E n : pwhisker_right (glue E n) ap1_pid⁻¹*) definition scompose {N : succ_str} {X Y Z : gen_prespectrum N} (g : Y →ₛ Z) (f : X →ₛ Y) : X →ₛ Z := smap.mk (λn, g n ∘* f n) (λn, calc glue Z n ∘* to_fun g n ∘* to_fun f n ~* (glue Z n ∘* to_fun g n) ∘* to_fun f n : passoc ... ~* (Ω→(to_fun g (S n)) ∘* glue Y n) ∘* to_fun f n : pwhisker_right (to_fun f n) (glue_square g n) ... ~* Ω→(to_fun g (S n)) ∘* (glue Y n ∘* to_fun f n) : passoc ... ~* Ω→(to_fun g (S n)) ∘* (Ω→ (f (S n)) ∘* glue X n) : pwhisker_left (Ω→(to_fun g (S n))) (glue_square f n) ... ~* (Ω→(to_fun g (S n)) ∘* Ω→(f (S n))) ∘* glue X n : passoc ... ~* Ω→(to_fun g (S n) ∘* to_fun f (S n)) ∘* glue X n : pwhisker_right (glue X n) (ap1_pcompose _ _)) infixr ` ∘ₛ `:60 := scompose definition szero [constructor] {N : succ_str} (E F : gen_prespectrum N) : E →ₛ F := smap.mk (λn, pconst (E n) (F n)) (λn, calc glue F n ∘* pconst (E n) (F n) ~* pconst (E n) (Ω(F (S n))) : pcompose_pconst ... ~* pconst (Ω(E (S n))) (Ω(F (S n))) ∘* glue E n : pconst_pcompose ... ~* Ω→(pconst (E (S n)) (F (S n))) ∘* glue E n : pwhisker_right (glue E n) (ap1_pconst _ _)) definition stransport [constructor] {N : succ_str} {A : Type} {a a' : A} (p : a = a') (E : A → gen_prespectrum N) : E a →ₛ E a' := smap.mk (λn, ptransport (λa, E a n) p) begin intro n, induction p, exact !pcompose_pid ⬝* !pid_pcompose⁻¹* ⬝* pwhisker_right _ !ap1_pid⁻¹*, end structure shomotopy {N : succ_str} {E F : gen_prespectrum N} (f g : E →ₛ F) := (to_phomotopy : Πn, f n ~* g n) (glue_homotopy : Πn, phsquare (pwhisker_left (glue F n) (to_phomotopy n)) (pwhisker_right (glue E n) (ap1_phomotopy (to_phomotopy (S n)))) (glue_square f n) (glue_square g n) ) infix ` ~ₛ `:50 := shomotopy definition shomotopy_compose {N : succ_str} {E F : gen_prespectrum N} {f g h : E →ₛ F} (p : g ~ₛ h) (q : f ~ₛ g) : f ~ₛ h := shomotopy.mk (λn, (shomotopy.to_phomotopy q n) ⬝* (shomotopy.to_phomotopy p n)) begin intro n, rewrite (pwhisker_left_trans _), rewrite ap1_phomotopy_trans, rewrite (pwhisker_right_trans _), exact phhconcat ((shomotopy.glue_homotopy q) n) ((shomotopy.glue_homotopy p) n) end definition shomotopy_inverse {N : succ_str} {E F : gen_prespectrum N} {f g : E →ₛ F} (p : f ~ₛ g) : g ~ₛ f := shomotopy.mk (λn, (shomotopy.to_phomotopy p n)⁻¹*) begin intro n, rewrite (pwhisker_left_symm _ _), rewrite [-ap1_phomotopy_symm], rewrite (pwhisker_right_symm _ _), exact phhinverse ((shomotopy.glue_homotopy p) n) end ------------------------------ -- Suspension prespectra ------------------------------ -- This should probably go in 'susp' definition psuspn : ℕ → Type* → Type* | psuspn 0 X := X | psuspn (succ n) X := psusp (psuspn n X) -- Suspension prespectra are one that's naturally indexed on the natural numbers definition psp_susp (X : Type*) : gen_prespectrum +ℕ := gen_prespectrum.mk (λn, psuspn n X) (λn, loop_psusp_unit (psuspn n X)) /- Truncations -/ -- We could truncate prespectra too, but since the operation -- preserves spectra and isn't "correct" acting on prespectra -- without spectrifying them first anyway, why bother? definition strunc (k : ℕ₋₂) (E : spectrum) : spectrum := spectrum.Mk (λ(n:ℕ), ptrunc (k + n) (E n)) (λ(n:ℕ), (loop_ptrunc_pequiv (k + n) (E (succ n)))⁻¹ᵉ* ∘*ᵉ (ptrunc_pequiv_ptrunc (k + n) (equiv_glue E (int.of_nat n)))) /--------------------- Homotopy groups ---------------------/ -- Here we start to reap the rewards of using ℤ-indexing: we can -- read off the homotopy groups without any tedious case-analysis of -- n. We increment by 2 in order to ensure that they are all -- automatically abelian groups. definition shomotopy_group (n : ℤ) (E : spectrum) : AbGroup := πag[2] (E (2 - n)) notation `πₛ[`:95 n:0 `]`:0 := shomotopy_group n definition shomotopy_group_fun (n : ℤ) {E F : spectrum} (f : E →ₛ F) : πₛ[n] E →g πₛ[n] F := π→g[2] (f (2 - n)) notation `πₛ→[`:95 n:0 `]`:0 := shomotopy_group_fun n /- homotopy group of a prespectrum -/ definition pshomotopy_group (n : ℤ) (E : prespectrum) : AbGroup := group.seq_colim (λ(k : ℕ), πag[k+2] (E (-n - 2 + k))) begin intro k, refine _ ∘ π→g[k+2] (glue E _), refine (homotopy_group_succ_in _ (k+2))⁻¹ᵉ* ∘ _, refine homotopy_group_pequiv (k+2) (loop_pequiv_loop (pequiv_of_eq (ap E !add.assoc))) end notation `πₚₛ[`:95 n:0 `]`:0 := pshomotopy_group n definition pshomotopy_group_fun (n : ℤ) {E F : prespectrum} (f : E →ₛ F) : πₚₛ[n] E →g πₚₛ[n] F := sorry --group.seq_colim_functor _ _ notation `πₚₛ→[`:95 n:0 `]`:0 := pshomotopy_group_fun n /------------------------------- Cotensor of spectra by types -------------------------------/ -- Makes sense for any indexing succ_str. Could be done for -- prespectra too, but as with truncation, why bother? definition sp_cotensor [constructor] {N : succ_str} (A : Type*) (B : gen_spectrum N) : gen_spectrum N := spectrum.MK (λn, ppmap A (B n)) (λn, (loop_ppmap_commute A (B (S n)))⁻¹ᵉ* ∘*ᵉ (pequiv_ppcompose_left (equiv_glue B n))) ---------------------------------------- -- Sections of parametrized spectra ---------------------------------------- definition spi [constructor] {N : succ_str} (A : Type*) (E : A -> gen_spectrum N) : gen_spectrum N := spectrum.MK (λn, Π*a, E a n) (λn, !ppi_loop_pequiv⁻¹ᵉ* ∘*ᵉ ppi_pequiv_right (λa, equiv_glue (E a) n)) /----------------------------------------- Fibers and long exact sequences -----------------------------------------/ definition sfiber {N : succ_str} {X Y : gen_spectrum N} (f : X →ₛ Y) : gen_spectrum N := spectrum.MK (λn, pfiber (f n)) (λn, (loop_pfiber (f (S n)))⁻¹ᵉ* ∘*ᵉ pfiber_pequiv_of_square _ _ (sglue_square f n)) /- the map from the fiber to the domain -/ definition spoint {N : succ_str} {X Y : gen_spectrum N} (f : X →ₛ Y) : sfiber f →ₛ X := smap.mk (λn, ppoint (f n)) begin intro n, refine _ ⬝* !passoc, refine _ ⬝* pwhisker_right _ !ppoint_loop_pfiber_inv⁻¹*, rexact (pfiber_pequiv_of_square_ppoint (equiv_glue X n) (equiv_glue Y n) (sglue_square f n))⁻¹* end definition scompose_spoint {N : succ_str} {X Y : gen_spectrum N} (f : X →ₛ Y) : f ∘ₛ spoint f ~ₛ szero (sfiber f) Y := begin fapply shomotopy.mk, { intro n, exact pcompose_ppoint (f n) }, { intro n, exact sorry } end definition equiv_glue_neg (X : spectrum) (n : ℤ) : X (2 - succ n) ≃* Ω (X (2 - n)) := have H : succ (2 - succ n) = 2 - n, from ap succ !sub_sub⁻¹ ⬝ sub_add_cancel (2-n) 1, equiv_glue X (2 - succ n) ⬝e* loop_pequiv_loop (pequiv_of_eq (ap X H)) definition π_glue (X : spectrum) (n : ℤ) : π[2] (X (2 - succ n)) ≃* π[3] (X (2 - n)) := homotopy_group_pequiv 2 (equiv_glue_neg X n) definition πg_glue (X : spectrum) (n : ℤ) : πg[2] (X (2 - succ n)) ≃g πg[3] (X (2 - n)) := by rexact homotopy_group_isomorphism_of_pequiv _ (equiv_glue_neg X n) definition πg_glue_homotopy_π_glue (X : spectrum) (n : ℤ) : πg_glue X n ~ π_glue X n := by reflexivity definition π_glue_square {X Y : spectrum} (f : X →ₛ Y) (n : ℤ) : π_glue Y n ∘* π→[2] (f (2 - succ n)) ~* π→[3] (f (2 - n)) ∘* π_glue X n := begin change π→[2] (equiv_glue_neg Y n) ∘* π→[2] (f (2 - succ n)) ~* π→[2] (Ω→ (f (2 - n))) ∘* π→[2] (equiv_glue_neg X n), refine homotopy_group_functor_psquare 2 _, refine !sglue_square ⬝v* ap1_psquare !pequiv_of_eq_commute end section open chain_complex prod fin group universe variable u parameters {X Y : spectrum.{u}} (f : X →ₛ Y) definition LES_of_shomotopy_groups : chain_complex +3ℤ := splice (λ(n : ℤ), LES_of_homotopy_groups (f (2 - n))) (2, 0) (π_glue Y) (π_glue X) (π_glue_square f) -- This LES is definitionally what we want: example (n : ℤ) : LES_of_shomotopy_groups (n, 0) = πₛ[n] Y := idp example (n : ℤ) : LES_of_shomotopy_groups (n, 1) = πₛ[n] X := idp example (n : ℤ) : LES_of_shomotopy_groups (n, 2) = πₛ[n] (sfiber f) := idp example (n : ℤ) : cc_to_fn LES_of_shomotopy_groups (n, 0) = πₛ→[n] f := idp example (n : ℤ) : cc_to_fn LES_of_shomotopy_groups (n, 1) = πₛ→[n] (spoint f) := idp -- the maps are ugly for (n, 2) definition ab_group_LES_of_shomotopy_groups : Π(v : +3ℤ), ab_group (LES_of_shomotopy_groups v) | (n, fin.mk 0 H) := proof AbGroup.struct (πₛ[n] Y) qed | (n, fin.mk 1 H) := proof AbGroup.struct (πₛ[n] X) qed | (n, fin.mk 2 H) := proof AbGroup.struct (πₛ[n] (sfiber f)) qed | (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end local attribute ab_group_LES_of_shomotopy_groups [instance] definition is_mul_hom_LES_of_shomotopy_groups : Π(v : +3ℤ), is_mul_hom (cc_to_fn LES_of_shomotopy_groups v) | (n, fin.mk 0 H) := proof homomorphism.struct (πₛ→[n] f) qed | (n, fin.mk 1 H) := proof homomorphism.struct (πₛ→[n] (spoint f)) qed | (n, fin.mk 2 H) := proof homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun (f (2 - n)) (1, 2) ∘g πg_glue Y n) qed | (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end definition is_exact_LES_of_shomotopy_groups : is_exact LES_of_shomotopy_groups := begin apply is_exact_splice, intro n, apply is_exact_LES_of_homotopy_groups, end -- In the comments below is a start on an explicit description of the LES for spectra -- Maybe it's slightly nicer to work with than the above version definition shomotopy_groups [reducible] : +3ℤ → AbGroup | (n, fin.mk 0 H) := πₛ[n] Y | (n, fin.mk 1 H) := πₛ[n] X | (n, fin.mk k H) := πₛ[n] (sfiber f) definition shomotopy_groups_fun : Π(v : +3ℤ), shomotopy_groups (S v) →g shomotopy_groups v | (n, fin.mk 0 H) := proof πₛ→[n] f qed | (n, fin.mk 1 H) := proof πₛ→[n] (spoint f) qed | (n, fin.mk 2 H) := proof homomorphism_LES_of_homotopy_groups_fun (f (2 - n)) (nat.succ nat.zero, 2) ∘g πg_glue Y n ∘g (by reflexivity) qed | (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end --(homomorphism_LES_of_homotopy_groups_fun (f (2 - n)) (1, 2) ∘g πg_glue Y n) end structure sp_chain_complex (N : succ_str) : Type := (car : N → spectrum) (fn : Π(n : N), car (S n) →ₛ car n) (is_chain_complex : Πn, fn n ∘ₛ fn (S n) ~ₛ szero _ _) section variables {N : succ_str} (X : sp_chain_complex N) (n : N) definition scc_to_car [unfold 2] [coercion] := @sp_chain_complex.car definition scc_to_fn [unfold 2] : X (S n) →ₛ X n := sp_chain_complex.fn X n definition scc_is_chain_complex [unfold 2] : scc_to_fn X n ∘ₛ scc_to_fn X (S n) ~ₛ szero _ _ := sp_chain_complex.is_chain_complex X n end /- Mapping spectra -/ -- note: see also cotensor above /- Spectrification -/ open chain_complex definition spectrify_type_term {N : succ_str} (X : gen_prespectrum N) (n : N) (k : ℕ) : Type* := Ω[k] (X (n +' k)) definition spectrify_type_fun' {N : succ_str} (X : gen_prespectrum N) (n : N) (k : ℕ) : Ω[k] (X n) →* Ω[k+1] (X (S n)) := !loopn_succ_in⁻¹ᵉ* ∘* Ω→[k] (glue X n) definition spectrify_type_fun {N : succ_str} (X : gen_prespectrum N) (n : N) (k : ℕ) : spectrify_type_term X n k →* spectrify_type_term X n (k+1) := spectrify_type_fun' X (n +' k) k definition spectrify_type_fun_zero {N : succ_str} (X : gen_prespectrum N) (n : N) : spectrify_type_fun X n 0 ~* glue X n := !pid_pcompose definition spectrify_type {N : succ_str} (X : gen_prespectrum N) (n : N) : Type* := pseq_colim (spectrify_type_fun X n) /- Let Y = spectify X ≡ colim_k Ω^k X (n + k). Then Ω Y (n+1) ≡ Ω colim_k Ω^k X ((n + 1) + k) ... = colim_k Ω^{k+1} X ((n + 1) + k) ... = colim_k Ω^{k+1} X (n + (k + 1)) ... = colim_k Ω^k X(n + k) ... ≡ Y n -/ definition spectrify_type_fun'_succ {N : succ_str} (X : gen_prespectrum N) (n : N) (k : ℕ) : spectrify_type_fun' X n (succ k) ~* Ω→ (spectrify_type_fun' X n k) := begin refine _ ⬝* !ap1_pcompose⁻¹*, apply !pwhisker_right, refine !to_pinv_pequiv_MK2 end definition spectrify_pequiv {N : succ_str} (X : gen_prespectrum N) (n : N) : spectrify_type X n ≃* Ω (spectrify_type X (S n)) := begin refine !pshift_equiv ⬝e* _, transitivity pseq_colim (λk, spectrify_type_fun' X (S n +' k) (succ k)), fapply pseq_colim_pequiv, { intro n, apply loopn_pequiv_loopn, apply pequiv_ap X, apply succ_str.add_succ }, { exact abstract begin intro k, refine !passoc⁻¹* ⬝* _, refine pwhisker_right _ (loopn_succ_in_inv_natural (succ k) _) ⬝* _, refine !passoc ⬝* _ ⬝* !passoc⁻¹*, apply pwhisker_left, refine !apn_pcompose⁻¹* ⬝* _ ⬝* !apn_pcompose, apply apn_phomotopy, exact !glue_ptransport⁻¹* end end }, refine _ ⬝e* !pseq_colim_loop⁻¹ᵉ*, exact pseq_colim_equiv_constant (λn, !spectrify_type_fun'_succ), end definition spectrify [constructor] {N : succ_str} (X : gen_prespectrum N) : gen_spectrum N := spectrum.MK (spectrify_type X) (spectrify_pequiv X) definition gluen {N : succ_str} (X : gen_prespectrum N) (n : N) (k : ℕ) : X n →* Ω[k] (X (n +' k)) := by induction k with k f; reflexivity; exact !loopn_succ_in⁻¹ᵉ* ∘* Ω→[k] (glue X (n +' k)) ∘* f -- note: the forward map is (currently) not definitionally equal to gluen. Is that a problem? definition equiv_gluen {N : succ_str} (X : gen_spectrum N) (n : N) (k : ℕ) : X n ≃* Ω[k] (X (n +' k)) := by induction k with k f; reflexivity; exact f ⬝e* (loopn_pequiv_loopn k (equiv_glue X (n +' k)) ⬝e* !loopn_succ_in⁻¹ᵉ*) definition equiv_gluen_inv_succ {N : succ_str} (X : gen_spectrum N) (n : N) (k : ℕ) : (equiv_gluen X n (k+1))⁻¹ᵉ* ~* (equiv_gluen X n k)⁻¹ᵉ* ∘* Ω→[k] (equiv_glue X (n +' k))⁻¹ᵉ* ∘* !loopn_succ_in := begin refine !trans_pinv ⬝* pwhisker_left _ _, refine !trans_pinv ⬝* _, refine !to_pinv_pequiv_MK2 ◾* !pinv_pinv end definition spectrify_map {N : succ_str} {X : gen_prespectrum N} : X →ₛ spectrify X := begin fapply smap.mk, { intro n, exact pinclusion _ 0 }, { intro n, apply phomotopy_of_psquare, refine !pid_pcompose⁻¹* ⬝ph* _, refine !passoc ⬝* pwhisker_left _ (pshift_equiv_pinclusion (spectrify_type_fun X n) 0) ⬝* _, refine !passoc⁻¹* ⬝* _, refine _ ◾* (spectrify_type_fun_zero X n ⬝* !pid_pcompose⁻¹*), refine !passoc ⬝* pwhisker_left _ !pseq_colim_pequiv_pinclusion ⬝* _, refine pwhisker_left _ (pwhisker_left _ (ap1_pid) ⬝* !pcompose_pid) ⬝* _, refine !passoc ⬝* pwhisker_left _ !seq_colim_equiv_constant_pinclusion ⬝* _, apply pinv_left_phomotopy_of_phomotopy, exact !pseq_colim_loop_pinclusion⁻¹* } end definition spectrify.elim_n {N : succ_str} {X : gen_prespectrum N} {Y : gen_spectrum N} (f : X →ₛ Y) (n : N) : (spectrify X) n →* Y n := begin fapply pseq_colim.elim, { intro k, refine !equiv_gluen⁻¹ᵉ* ∘* apn k (f (n +' k)) }, { intro k, refine !passoc ⬝* pwhisker_right _ !equiv_gluen_inv_succ ⬝* _, refine !passoc ⬝* _, apply pwhisker_left, refine !passoc ⬝* _, refine pwhisker_left _ ((passoc _ _ (_ ∘* _))⁻¹*) ⬝* _, refine pwhisker_left _ !passoc⁻¹* ⬝* _, refine pwhisker_left _ (pwhisker_right _ (phomotopy_pinv_right_of_phomotopy (!loopn_succ_in_natural)⁻¹*)⁻¹*) ⬝* _, refine pwhisker_right _ !apn_pinv ⬝* _, refine (phomotopy_pinv_left_of_phomotopy _)⁻¹*, refine pwhisker_right _ !pmap_eta⁻¹* ⬝* _, refine apn_psquare k _, refine pwhisker_right _ _ ⬝* psquare_of_phomotopy !smap.glue_square, exact !pmap_eta⁻¹* } end definition spectrify.elim {N : succ_str} {X : gen_prespectrum N} {Y : gen_spectrum N} (f : X →ₛ Y) : spectrify X →ₛ Y := begin fapply smap.mk, { intro n, exact spectrify.elim_n f n }, { intro n, exact sorry } end definition phomotopy_spectrify.elim {N : succ_str} {X : gen_prespectrum N} {Y : gen_spectrum N} (f : X →ₛ Y) (n : N) : spectrify.elim_n f n ∘* spectrify_map n ~* f n := begin refine pseq_colim.elim_pinclusion _ _ 0 ⬝* _, exact !pid_pcompose end definition spectrify_fun {N : succ_str} {X Y : gen_prespectrum N} (f : X →ₛ Y) : spectrify X →ₛ spectrify Y := spectrify.elim ((@spectrify_map _ Y) ∘ₛ f) /- Tensor by spaces -/ /- Smash product of spectra -/ open smash definition smash_prespectrum (X : Type*) (Y : prespectrum) : prespectrum := prespectrum.mk (λ z, X ∧ Y z) begin intro n, refine loop_psusp_pintro (X ∧ Y n) (X ∧ Y (n + 1)) _, refine _ ∘* (smash_psusp X (Y n))⁻¹ᵉ*, refine smash_functor !pid _, refine psusp_pelim (Y n) (Y (n + 1)) _, exact !glue end definition smash_prespectrum_fun {X X' : Type*} {Y Y' : prespectrum} (f : X →* X') (g : Y →ₛ Y') : smash_prespectrum X Y →ₛ smash_prespectrum X' Y' := smap.mk (λn, smash_functor f (g n)) begin intro n, refine susp_to_loop_psquare _ _ _ _ _, refine pvconcat (psquare_transpose (phinverse (smash_psusp_natural f (g n)))) _, refine vconcat_phomotopy _ (smash_functor_split f (g (S n))), refine phomotopy_vconcat (smash_functor_split f (psusp_functor (g n))) _, refine phconcat _ _, let glue_adjoint := psusp_pelim (Y n) (Y (S n)) (glue Y n), exact pid X' ∧→ glue_adjoint, exact smash_functor_psquare (pvrefl f) (phrefl glue_adjoint), refine smash_functor_psquare (phrefl (pid X')) _, refine loop_to_susp_square _ _ _ _ _, exact smap.glue_square g n end definition smash_spectrum (X : Type*) (Y : spectrum) : spectrum := spectrify (smash_prespectrum X Y) definition smash_spectrum_fun {X X' : Type*} {Y Y' : spectrum} (f : X →* X') (g : Y →ₛ Y') : smash_spectrum X Y →ₛ smash_spectrum X' Y' := spectrify_fun (smash_prespectrum_fun f g) /- Cofibers and stability -/ /- The Eilenberg-MacLane spectrum -/ definition EM_spectrum /-[constructor]-/ (G : AbGroup) : spectrum := spectrum.Mk (K G) (λn, (loop_EM G n)⁻¹ᵉ*) end spectrum