-- Authors: Floris van Doorn import homotopy.smash ..move_to_lib .pushout homotopy.red_susp open bool pointed eq equiv is_equiv sum bool prod unit circle cofiber prod.ops wedge is_trunc function red_susp /- smash A (susp B) = susp (smash A B) <- this follows from associativity and smash with S¹ -/ /- To prove: Σ(X × Y) ≃ ΣX ∨ ΣY ∨ Σ(X ∧ Y) (notation means suspension, wedge, smash), and both are equivalent to the reduced join -/ /- To prove: associative -/ /- smash A B ≃ pcofiber (pprod_of_pwedge A B) -/ variables {A B : Type*} namespace smash theorem elim_gluel' {P : Type} {Pmk : Πa b, P} {Pl Pr : P} (Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (a a' : A) : ap (smash.elim Pmk Pl Pr Pgl Pgr) (gluel' a a') = Pgl a ⬝ (Pgl a')⁻¹ := !ap_con ⬝ !elim_gluel ◾ (!ap_inv ⬝ !elim_gluel⁻²) theorem elim_gluer' {P : Type} {Pmk : Πa b, P} {Pl Pr : P} (Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (b b' : B) : ap (smash.elim Pmk Pl Pr Pgl Pgr) (gluer' b b') = Pgr b ⬝ (Pgr b')⁻¹ := !ap_con ⬝ !elim_gluer ◾ (!ap_inv ⬝ !elim_gluer⁻²) definition prod_of_wedge [unfold 3] (v : pwedge A B) : A × B := begin induction v with a b , { exact (a, pt) }, { exact (pt, b) }, { reflexivity } end definition wedge_of_sum [unfold 3] (v : A + B) : pwedge A B := begin induction v with a b, { exact pushout.inl a }, { exact pushout.inr b } end definition prod_of_wedge_of_sum [unfold 3] (v : A + B) : prod_of_wedge (wedge_of_sum v) = prod_of_sum v := begin induction v with a b, { reflexivity }, { reflexivity } end end smash open smash namespace pushout definition eq_inl_pushout_wedge_of_sum [unfold 3] (v : pwedge A B) : inl pt = inl v :> pushout wedge_of_sum bool_of_sum := begin induction v with a b, { exact glue (sum.inl pt) ⬝ (glue (sum.inl a))⁻¹, }, { exact ap inl (glue ⋆) ⬝ glue (sum.inr pt) ⬝ (glue (sum.inr b))⁻¹, }, { apply eq_pathover_constant_left, refine !con.right_inv ⬝pv _ ⬝vp !con_inv_cancel_right⁻¹, exact square_of_eq idp } end variables (A B) definition eq_inr_pushout_wedge_of_sum [unfold 3] (b : bool) : inl pt = inr b :> pushout (@wedge_of_sum A B) bool_of_sum := begin induction b, { exact glue (sum.inl pt) }, { exact ap inl (glue ⋆) ⬝ glue (sum.inr pt) } end definition is_contr_pushout_wedge_of_sum : is_contr (pushout (@wedge_of_sum A B) bool_of_sum) := begin apply is_contr.mk (pushout.inl pt), intro x, induction x with v b w, { apply eq_inl_pushout_wedge_of_sum }, { apply eq_inr_pushout_wedge_of_sum }, { apply eq_pathover_constant_left_id_right, induction w with a b, { apply whisker_rt, exact vrfl }, { apply whisker_rt, exact vrfl }} end definition bool_of_sum_of_bool {A B : Type*} (b : bool) : bool_of_sum (sum_of_bool A B b) = b := by induction b: reflexivity /- a different proof, using pushout lemmas, and the fact that the wedge is the pushout of A + B <-- 2 --> 1 -/ definition pushout_wedge_of_sum_equiv_unit : pushout (@wedge_of_sum A B) bool_of_sum ≃ unit := begin refine pushout_hcompose_equiv (sum_of_bool A B) (wedge_equiv_pushout_sum A B ⬝e !pushout.symm) _ _ ⬝e _, exact erfl, reflexivity, exact bool_of_sum_of_bool, apply pushout_of_equiv_right end end pushout open pushout namespace smash variables (A B) definition smash_equiv_cofiber : smash A B ≃ cofiber (@prod_of_wedge A B) := begin unfold [smash, cofiber, smash'], symmetry, refine !pushout.symm ⬝e _, fapply pushout_vcompose_equiv wedge_of_sum, { symmetry, apply equiv_unit_of_is_contr, apply is_contr_pushout_wedge_of_sum }, { intro x, reflexivity }, { apply prod_of_wedge_of_sum } end definition pprod_of_pwedge [constructor] : pwedge A B →* A ×* B := begin fconstructor, { exact prod_of_wedge }, { reflexivity } end definition smash_pequiv_pcofiber [constructor] : smash A B ≃* pcofiber (pprod_of_pwedge A B) := begin apply pequiv_of_equiv (smash_equiv_cofiber A B), exact (cofiber.glue pt)⁻¹ end variables {A B} /- commutativity -/ definition smash_flip (x : smash A B) : smash B A := begin induction x, { exact smash.mk b a }, { exact auxr }, { exact auxl }, { exact gluer a }, { exact gluel b } end definition smash_flip_smash_flip (x : smash A B) : smash_flip (smash_flip x) = x := begin induction x, { reflexivity }, { reflexivity }, { reflexivity }, { apply eq_pathover_id_right, refine ap_compose' smash_flip _ _ ⬝ ap02 _ !elim_gluel ⬝ !elim_gluer ⬝ph _, apply hrfl }, { apply eq_pathover_id_right, refine ap_compose' smash_flip _ _ ⬝ ap02 _ !elim_gluer ⬝ !elim_gluel ⬝ph _, apply hrfl } end definition smash_comm : smash A B ≃* smash B A := begin fapply pequiv_of_equiv, { apply equiv.MK, do 2 exact smash_flip_smash_flip }, { reflexivity } end /- smash A S¹ = red_susp A -/ definition circle_elim_constant [unfold 5] {A : Type} {a : A} {p : a = a} (r : p = idp) (x : S¹) : circle.elim a p x = a := begin induction x, { reflexivity }, { apply eq_pathover_constant_right, apply hdeg_square, exact !elim_loop ⬝ r } end definition red_susp_of_smash_pcircle [unfold 2] (x : smash A S¹*) : red_susp A := begin induction x using smash.elim, { induction b, exact base, exact equator a }, { exact base }, { exact base }, { reflexivity }, { exact circle_elim_constant equator_pt b } end definition smash_pcircle_of_red_susp [unfold 2] (x : red_susp A) : smash A S¹* := begin induction x, { exact pt }, { exact gluel' pt a ⬝ ap (smash.mk a) loop ⬝ gluel' a pt }, { refine !con.right_inv ◾ _ ◾ !con.right_inv, exact ap_is_constant gluer loop ⬝ !con.right_inv } end definition smash_pcircle_of_psusp_of_smash_pcircle_pt [unfold 3] (a : A) (x : S¹*) : smash_pcircle_of_red_susp (red_susp_of_smash_pcircle (smash.mk a x)) = smash.mk a x := begin induction x, { exact gluel' pt a }, { exact abstract begin apply eq_pathover, refine ap_compose smash_pcircle_of_red_susp _ _ ⬝ph _, refine ap02 _ (elim_loop pt (equator a)) ⬝ !elim_equator ⬝ph _, -- make everything below this a lemma defined by path induction? refine !con_idp⁻¹ ⬝pv _, refine !con.assoc⁻¹ ⬝ph _, apply whisker_bl, apply whisker_lb, apply whisker_tl, apply hrfl end end } end definition concat2o [unfold 10] {A B : Type} {f g h : A → B} {q : f ~ g} {r : g ~ h} {a a' : A} {p : a = a'} (s : q a =[p] q a') (t : r a =[p] r a') : q a ⬝ r a =[p] q a' ⬝ r a' := by induction p; exact idpo definition apd_con_fn [unfold 10] {A B : Type} {f g h : A → B} {q : f ~ g} {r : g ~ h} {a a' : A} (p : a = a') : apd (λa, q a ⬝ r a) p = concat2o (apd q p) (apd r p) := by induction p; reflexivity -- definition apd_con_fn_constant [unfold 10] {A B : Type} {f : A → B} {b b' : B} {q : Πa, f a = b} -- {r : b = b'} {a a' : A} (p : a = a') : -- apd (λa, q a ⬝ r) p = concat2o (apd q p) (pathover_of_eq _ idp) := -- by induction p; reflexivity theorem apd_constant' {A A' : Type} {B : A' → Type} {a₁ a₂ : A} {a' : A'} (b : B a') (p : a₁ = a₂) : apd (λx, b) p = pathover_of_eq p idp := by induction p; reflexivity definition smash_pcircle_pequiv_red [constructor] (A : Type*) : smash A S¹* ≃* red_susp A := begin fapply pequiv_of_equiv, { fapply equiv.MK, { exact red_susp_of_smash_pcircle }, { exact smash_pcircle_of_red_susp }, { exact abstract begin intro x, induction x, { reflexivity }, { apply eq_pathover, apply hdeg_square, refine ap_compose red_susp_of_smash_pcircle _ _ ⬝ ap02 _ !elim_equator ⬝ _ ⬝ !ap_id⁻¹, refine !ap_con ⬝ (!ap_con ⬝ !elim_gluel' ◾ !ap_compose'⁻¹) ◾ !elim_gluel' ⬝ _, esimp, exact !idp_con ⬝ !elim_loop }, { exact sorry } end end }, { intro x, induction x, { exact smash_pcircle_of_psusp_of_smash_pcircle_pt a b }, { exact gluel pt }, { exact gluer pt }, { apply eq_pathover_id_right, refine ap_compose smash_pcircle_of_red_susp _ _ ⬝ph _, unfold [red_susp_of_smash_pcircle], refine ap02 _ !elim_gluel ⬝ph _, esimp, apply whisker_rt, exact vrfl }, { apply eq_pathover_id_right, refine ap_compose smash_pcircle_of_red_susp _ _ ⬝ph _, unfold [red_susp_of_smash_pcircle], -- not sure why so many implicit arguments are needed here... refine ap02 _ (@smash.elim_gluer A S¹* _ (λa, circle.elim red_susp.base (equator a)) red_susp.base red_susp.base (λa, refl red_susp.base) (circle_elim_constant equator_pt) b) ⬝ph _, apply square_of_eq, induction b, { exact whisker_right _ !con.right_inv }, { apply eq_pathover_dep, refine !apd_con_fn ⬝pho _ ⬝hop !apd_con_fn⁻¹, refine ap (λx, concat2o x _) !rec_loop ⬝pho _ ⬝hop (ap011 concat2o (apd_compose1 (λa b, ap smash_pcircle_of_red_susp b) (circle_elim_constant equator_pt) loop) !apd_constant')⁻¹, } }}}, { reflexivity } end print apd_constant print apd_compose2 print apd_compose1 print apd_con print eq_pathover_dep --set_option pp.all true print smash.elim_gluer /- smash A S¹ = susp A -/ open susp definition psusp_of_smash_pcircle [unfold 2] (x : smash A S¹*) : psusp A := begin induction x using smash.elim, { induction b, exact pt, exact merid a ⬝ (merid pt)⁻¹ }, { exact pt }, { exact pt }, { reflexivity }, { induction b, reflexivity, apply eq_pathover_constant_right, apply hdeg_square, exact !elim_loop ⬝ !con.right_inv } end definition smash_pcircle_of_psusp [unfold 2] (x : psusp A) : smash A S¹* := begin induction x, { exact pt }, { exact pt }, { exact gluel' pt a ⬝ (ap (smash.mk a) loop ⬝ gluel' a pt) }, end -- the definitions below compile, but take a long time to do so and have sorry's in them definition smash_pcircle_of_psusp_of_smash_pcircle_pt [unfold 3] (a : A) (x : S¹*) : smash_pcircle_of_psusp (psusp_of_smash_pcircle (smash.mk a x)) = smash.mk a x := begin induction x, { exact gluel' pt a }, { exact abstract begin apply eq_pathover, refine ap_compose smash_pcircle_of_psusp _ _ ⬝ph _, refine ap02 _ (elim_loop north (merid a ⬝ (merid pt)⁻¹)) ⬝ph _, refine !ap_con ⬝ (!elim_merid ◾ (!ap_inv ⬝ !elim_merid⁻²)) ⬝ph _, -- make everything below this a lemma defined by path induction? refine !con_idp⁻¹ ⬝pv _, apply whisker_tl, refine !con.assoc⁻¹ ⬝ph _, apply whisker_bl, apply whisker_lb, refine !con_idp⁻¹ ⬝pv _, apply whisker_tl, apply hrfl refine !con_idp⁻¹ ⬝pv _, apply whisker_tl, refine !con.assoc⁻¹ ⬝ph _, apply whisker_bl, apply whisker_lb, apply hrfl apply square_of_eq, rewrite [+con.assoc], apply whisker_left, apply whisker_left, symmetry, apply con_eq_of_eq_inv_con, esimp, apply con_eq_of_eq_con_inv, refine _⁻² ⬝ !con_inv, refine _ ⬝ !con.assoc, refine _ ⬝ whisker_right _ !inv_con_cancel_right⁻¹, refine _ ⬝ !con.right_inv⁻¹, refine !con.right_inv ◾ _, refine _ ◾ !con.right_inv, refine !ap_mk_right ⬝ !con.right_inv end end } end -- definition smash_pcircle_of_psusp_of_smash_pcircle_gluer_base (b : S¹*) -- : square (smash_pcircle_of_psusp_of_smash_pcircle_pt (Point A) b) -- (gluer pt) -- (ap smash_pcircle_of_psusp (ap (λ a, psusp_of_smash_pcircle a) (gluer b))) -- (gluer b) := -- begin -- refine ap02 _ !elim_gluer ⬝ph _, -- induction b, -- { apply square_of_eq, exact whisker_right _ !con.right_inv }, -- { apply square_pathover', exact sorry } -- end exit definition smash_pcircle_pequiv [constructor] (A : Type*) : smash A S¹* ≃* psusp A := begin fapply pequiv_of_equiv, { fapply equiv.MK, { exact psusp_of_smash_pcircle }, { exact smash_pcircle_of_psusp }, { exact abstract begin intro x, induction x, { reflexivity }, { exact merid pt }, { apply eq_pathover_id_right, refine ap_compose psusp_of_smash_pcircle _ _ ⬝ph _, refine ap02 _ !elim_merid ⬝ph _, rewrite [↑gluel', +ap_con, +ap_inv, -ap_compose'], refine (_ ◾ _⁻² ◾ _ ◾ (_ ◾ _⁻²)) ⬝ph _, rotate 5, do 2 (unfold [psusp_of_smash_pcircle]; apply elim_gluel), esimp, apply elim_loop, do 2 (unfold [psusp_of_smash_pcircle]; apply elim_gluel), refine idp_con (merid a ⬝ (merid (Point A))⁻¹) ⬝ph _, apply square_of_eq, refine !idp_con ⬝ _⁻¹, apply inv_con_cancel_right } end end }, { intro x, induction x using smash.rec, { exact smash_pcircle_of_psusp_of_smash_pcircle_pt a b }, { exact gluel pt }, { exact gluer pt }, { apply eq_pathover_id_right, refine ap_compose smash_pcircle_of_psusp _ _ ⬝ph _, unfold [psusp_of_smash_pcircle], refine ap02 _ !elim_gluel ⬝ph _, esimp, apply whisker_rt, exact vrfl }, { apply eq_pathover_id_right, refine ap_compose smash_pcircle_of_psusp _ _ ⬝ph _, unfold [psusp_of_smash_pcircle], refine ap02 _ !elim_gluer ⬝ph _, induction b, { apply square_of_eq, exact whisker_right _ !con.right_inv }, { exact sorry} }}}, { reflexivity } end end smash -- (X × A) → Y ≃ X → A → Y