-- definitions, theorems and attributes which should be moved to files in the HoTT library import homotopy.sphere2 homotopy.cofiber homotopy.wedge hit.prop_trunc hit.set_quotient eq2 types.pointed2 algebra.graph open eq nat int susp pointed sigma is_equiv equiv fiber algebra trunc pi group is_trunc function unit prod bool attribute pType.sigma_char sigma_pi_equiv_pi_sigma sigma.coind_unc [constructor] attribute ap1_gen [unfold 8 9 10] attribute ap010 [unfold 7] attribute tro_invo_tro [unfold 9] -- TODO: move -- TODO: homotopy_of_eq and apd10 should be the same -- TODO: there is also apd10_eq_of_homotopy in both pi and eq(?) universe variable u namespace algebra variables {A : Type} [add_ab_inf_group A] definition add_sub_cancel_middle (a b : A) : a + (b - a) = b := !add.comm ⬝ !sub_add_cancel end algebra namespace eq definition pathover_tr_pathover_idp_of_eq {A : Type} {B : A → Type} {a a' : A} {b : B a} {b' : B a'} {p : a = a'} (q : b =[p] b') : pathover_tr p b ⬝o pathover_idp_of_eq (tr_eq_of_pathover q) = q := begin induction q; reflexivity end -- rename pathover_of_tr_eq_idp definition pathover_of_tr_eq_idp' {A : Type} {B : A → Type} {a a₂ : A} (p : a = a₂) (b : B a) : pathover_of_tr_eq idp = pathover_tr p b := by induction p; constructor definition homotopy.symm_symm {A : Type} {P : A → Type} {f g : Πx, P x} (H : f ~ g) : H⁻¹ʰᵗʸ⁻¹ʰᵗʸ = H := begin apply eq_of_homotopy, intro x, apply inv_inv end definition apd10_prepostcompose_nondep {A B C D : Type} (h : C → D) {g g' : B → C} (p : g = g') (f : A → B) (a : A) : apd10 (ap (λg a, h (g (f a))) p) a = ap h (apd10 p (f a)) := begin induction p, reflexivity end definition apd10_prepostcompose {A B : Type} {C : B → Type} {D : A → Type} (f : A → B) (h : Πa, C (f a) → D a) {g g' : Πb, C b} (p : g = g') (a : A) : apd10 (ap (λg a, h a (g (f a))) p) a = ap (h a) (apd10 p (f a)) := begin induction p, reflexivity end definition eq.rec_to {A : Type} {a₀ : A} {P : Π⦃a₁⦄, a₀ = a₁ → Type} {a₁ : A} (p₀ : a₀ = a₁) (H : P p₀) ⦃a₂ : A⦄ (p : a₀ = a₂) : P p := begin induction p₀, induction p, exact H end definition eq.rec_to2 {A : Type} {P : Π⦃a₀ a₁⦄, a₀ = a₁ → Type} {a₀ a₀' a₁' : A} (p' : a₀' = a₁') (p₀ : a₀ = a₀') (H : P p') ⦃a₁ : A⦄ (p : a₀ = a₁) : P p := begin induction p₀, induction p', induction p, exact H end definition eq.rec_right_inv {A : Type} (f : A ≃ A) {P : Π⦃a₀ a₁⦄, f a₀ = a₁ → Type} (H : Πa, P (right_inv f a)) ⦃a₀ a₁ : A⦄ (p : f a₀ = a₁) : P p := begin revert a₀ p, refine equiv_rect f⁻¹ᵉ _ _, intro a₀ p, exact eq.rec_to (right_inv f a₀) (H a₀) p, end definition eq.rec_equiv {A B : Type} {a₀ : A} (f : A ≃ B) {P : Π{a₁}, f a₀ = f a₁ → Type} (H : P (idpath (f a₀))) ⦃a₁ : A⦄ (p : f a₀ = f a₁) : P p := begin assert qr : Σ(q : a₀ = a₁), ap f q = p, { exact ⟨eq_of_fn_eq_fn f p, ap_eq_of_fn_eq_fn' f p⟩ }, cases qr with q r, apply transport P r, induction q, exact H end definition eq.rec_equiv_symm {A B : Type} {a₁ : A} (f : A ≃ B) {P : Π{a₀}, f a₀ = f a₁ → Type} (H : P (idpath (f a₁))) ⦃a₀ : A⦄ (p : f a₀ = f a₁) : P p := begin assert qr : Σ(q : a₀ = a₁), ap f q = p, { exact ⟨eq_of_fn_eq_fn f p, ap_eq_of_fn_eq_fn' f p⟩ }, cases qr with q r, apply transport P r, induction q, exact H end definition eq.rec_equiv_to_same {A B : Type} {a₀ : A} (f : A ≃ B) {P : Π{a₁}, f a₀ = f a₁ → Type} ⦃a₁' : A⦄ (p' : f a₀ = f a₁') (H : P p') ⦃a₁ : A⦄ (p : f a₀ = f a₁) : P p := begin revert a₁' p' H a₁ p, refine eq.rec_equiv f _, exact eq.rec_equiv f end definition eq.rec_equiv_to {A A' B : Type} {a₀ : A} (f : A ≃ B) (g : A' ≃ B) {P : Π{a₁}, f a₀ = g a₁ → Type} ⦃a₁' : A'⦄ (p' : f a₀ = g a₁') (H : P p') ⦃a₁ : A'⦄ (p : f a₀ = g a₁) : P p := begin assert qr : Σ(q : g⁻¹ (f a₀) = a₁), (right_inv g (f a₀))⁻¹ ⬝ ap g q = p, { exact ⟨eq_of_fn_eq_fn g (right_inv g (f a₀) ⬝ p), whisker_left _ (ap_eq_of_fn_eq_fn' g _) ⬝ !inv_con_cancel_left⟩ }, assert q'r' : Σ(q' : g⁻¹ (f a₀) = a₁'), (right_inv g (f a₀))⁻¹ ⬝ ap g q' = p', { exact ⟨eq_of_fn_eq_fn g (right_inv g (f a₀) ⬝ p'), whisker_left _ (ap_eq_of_fn_eq_fn' g _) ⬝ !inv_con_cancel_left⟩ }, induction qr with q r, induction q'r' with q' r', induction q, induction q', induction r, induction r', exact H end definition eq.rec_grading {A A' B : Type} {a : A} (f : A ≃ B) (g : A' ≃ B) {P : Π{b}, f a = b → Type} {a' : A'} (p' : f a = g a') (H : P p') ⦃b : B⦄ (p : f a = b) : P p := begin revert b p, refine equiv_rect g _ _, exact eq.rec_equiv_to f g p' H end definition eq.rec_grading_unbased {A B B' C : Type} (f : A ≃ B) (g : B ≃ C) (h : B' ≃ C) {P : Π{b c}, g b = c → Type} {a' : A} {b' : B'} (p' : g (f a') = h b') (H : P p') ⦃b : B⦄ ⦃c : C⦄ (q : f a' = b) (p : g b = c) : P p := begin induction q, exact eq.rec_grading (f ⬝e g) h p' H p end -- definition homotopy_group_homomorphism_pinv (n : ℕ) {A B : Type*} (f : A ≃* B) : -- π→g[n+1] f⁻¹ᵉ* ~ (homotopy_group_isomorphism_of_pequiv n f)⁻¹ᵍ := -- begin -- -- refine ptrunc_functor_phomotopy 0 !apn_pinv ⬝hty _, -- -- intro x, esimp, -- end -- definition natural_square_tr_eq {A B : Type} {a a' : A} {f g : A → B} -- (p : f ~ g) (q : a = a') : natural_square p q = square_of_pathover (apd p q) := -- idp lemma homotopy_group_isomorphism_of_ptrunc_pequiv {A B : Type*} (n k : ℕ) (H : n+1 ≤[ℕ] k) (f : ptrunc k A ≃* ptrunc k B) : πg[n+1] A ≃g πg[n+1] B := (ghomotopy_group_ptrunc_of_le H A)⁻¹ᵍ ⬝g homotopy_group_isomorphism_of_pequiv n f ⬝g ghomotopy_group_ptrunc_of_le H B definition fundamental_group_isomorphism {X : Type*} {G : Group} (e : Ω X ≃ G) (hom_e : Πp q, e (p ⬝ q) = e p * e q) : π₁ X ≃g G := isomorphism_of_equiv (trunc_equiv_trunc 0 e ⬝e (trunc_equiv 0 G)) begin intro p q, induction p with p, induction q with q, exact hom_e p q end definition equiv_pathover2 {A : Type} {a a' : A} (p : a = a') {B : A → Type} {C : A → Type} (f : B a ≃ C a) (g : B a' ≃ C a') (r : to_fun f =[p] to_fun g) : f =[p] g := begin fapply pathover_of_fn_pathover_fn, { intro a, apply equiv.sigma_char }, { apply sigma_pathover _ _ _ r, apply is_prop.elimo } end definition equiv_pathover_inv {A : Type} {a a' : A} (p : a = a') {B : A → Type} {C : A → Type} (f : B a ≃ C a) (g : B a' ≃ C a') (r : to_inv f =[p] to_inv g) : f =[p] g := begin /- this proof is a bit weird, but it works -/ apply equiv_pathover2, change f⁻¹ᶠ⁻¹ᶠ =[p] g⁻¹ᶠ⁻¹ᶠ, apply apo (λ(a: A) (h : C a ≃ B a), h⁻¹ᶠ), apply equiv_pathover2, exact r end definition transport_lemma {A : Type} {C : A → Type} {g₁ : A → A} {x y : A} (p : x = y) (f : Π⦃x⦄, C x → C (g₁ x)) (z : C x) : transport C (ap g₁ p)⁻¹ (f (transport C p z)) = f z := by induction p; reflexivity definition transport_lemma2 {A : Type} {C : A → Type} {g₁ : A → A} {x y : A} (p : x = y) (f : Π⦃x⦄, C x → C (g₁ x)) (z : C x) : transport C (ap g₁ p) (f z) = f (transport C p z) := by induction p; reflexivity definition eq_of_pathover_apo {A C : Type} {B : A → Type} {a a' : A} {b : B a} {b' : B a'} {p : a = a'} (g : Πa, B a → C) (q : b =[p] b') : eq_of_pathover (apo g q) = apd011 g p q := by induction q; reflexivity definition apd02 [unfold 8] {A : Type} {B : A → Type} (f : Πa, B a) {a a' : A} {p q : a = a'} (r : p = q) : change_path r (apd f p) = apd f q := by induction r; reflexivity definition pathover_ap_cono {A A' : Type} {a₁ a₂ a₃ : A} {p₁ : a₁ = a₂} {p₂ : a₂ = a₃} (B' : A' → Type) (f : A → A') {b₁ : B' (f a₁)} {b₂ : B' (f a₂)} {b₃ : B' (f a₃)} (q₁ : b₁ =[p₁] b₂) (q₂ : b₂ =[p₂] b₃) : pathover_ap B' f (q₁ ⬝o q₂) = change_path !ap_con⁻¹ (pathover_ap B' f q₁ ⬝o pathover_ap B' f q₂) := by induction q₁; induction q₂; reflexivity definition concato_eq_eq {A : Type} {B : A → Type} {a₁ a₂ : A} {p₁ : a₁ = a₂} {b₁ : B a₁} {b₂ b₂' : B a₂} (r : b₁ =[p₁] b₂) (q : b₂ = b₂') : r ⬝op q = r ⬝o pathover_idp_of_eq q := by induction q; reflexivity definition ap_apd0111 {A₁ A₂ A₃ : Type} {B : A₁ → Type} {C : Π⦃a⦄, B a → Type} {a a₂ : A₁} {b : B a} {b₂ : B a₂} {c : C b} {c₂ : C b₂} (g : A₂ → A₃) (f : Πa b, C b → A₂) (Ha : a = a₂) (Hb : b =[Ha] b₂) (Hc : c =[apd011 C Ha Hb] c₂) : ap g (apd0111 f Ha Hb Hc) = apd0111 (λa b c, (g (f a b c))) Ha Hb Hc := by induction Hb; induction Hc using idp_rec_on; reflexivity section squareover variables {A A' : Type} {B : A → Type} {a a' a'' a₀₀ a₂₀ a₄₀ a₀₂ a₂₂ a₂₄ a₀₄ a₄₂ a₄₄ : A} /-a₀₀-/ {p₁₀ : a₀₀ = a₂₀} /-a₂₀-/ {p₃₀ : a₂₀ = a₄₀} /-a₄₀-/ {p₀₁ : a₀₀ = a₀₂} /-s₁₁-/ {p₂₁ : a₂₀ = a₂₂} /-s₃₁-/ {p₄₁ : a₄₀ = a₄₂} /-a₀₂-/ {p₁₂ : a₀₂ = a₂₂} /-a₂₂-/ {p₃₂ : a₂₂ = a₄₂} /-a₄₂-/ {p₀₃ : a₀₂ = a₀₄} /-s₁₃-/ {p₂₃ : a₂₂ = a₂₄} /-s₃₃-/ {p₄₃ : a₄₂ = a₄₄} /-a₀₄-/ {p₁₄ : a₀₄ = a₂₄} /-a₂₄-/ {p₃₄ : a₂₄ = a₄₄} /-a₄₄-/ {s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁} {s₃₁ : square p₃₀ p₃₂ p₂₁ p₄₁} {s₁₃ : square p₁₂ p₁₄ p₀₃ p₂₃} {s₃₃ : square p₃₂ p₃₄ p₂₃ p₄₃} {b : B a} {b₀₀ : B a₀₀} {b₂₀ : B a₂₀} {b₄₀ : B a₄₀} {b₀₂ : B a₀₂} {b₂₂ : B a₂₂} {b₄₂ : B a₄₂} {b₀₄ : B a₀₄} {b₂₄ : B a₂₄} {b₄₄ : B a₄₄} /-b₀₀-/ {q₁₀ : b₀₀ =[p₁₀] b₂₀} /-b₂₀-/ {q₃₀ : b₂₀ =[p₃₀] b₄₀} /-b₄₀-/ /-b₀₂-/ {q₁₂ : b₀₂ =[p₁₂] b₂₂} /-b₂₂-/ {q₃₂ : b₂₂ =[p₃₂] b₄₂} /-b₄₂-/ /-b₀₄-/ {q₁₄ : b₀₄ =[p₁₄] b₂₄} /-b₂₄-/ {q₃₄ : b₂₄ =[p₃₄] b₄₄} /-b₄₄-/ {q₀₁ : b₀₀ =[p₀₁] b₀₂} /-t₁₁-/ {q₂₁ : b₂₀ =[p₂₁] b₂₂} /-t₃₁-/ {q₄₁ : b₄₀ =[p₄₁] b₄₂} {q₀₃ : b₀₂ =[p₀₃] b₀₄} /-t₁₃-/ {q₂₃ : b₂₂ =[p₂₃] b₂₄} /-t₃₃-/ {q₄₃ : b₄₂ =[p₄₃] b₄₄} definition move_right_of_top_over {p : a₀₀ = a} {p' : a = a₂₀} {s : square p p₁₂ p₀₁ (p' ⬝ p₂₁)} {q : b₀₀ =[p] b} {q' : b =[p'] b₂₀} (t : squareover B (move_top_of_right s) (q ⬝o q') q₁₂ q₀₁ q₂₁) : squareover B s q q₁₂ q₀₁ (q' ⬝o q₂₁) := begin induction q', induction q, induction q₂₁, exact t end /- TODO: replace the version in the library by this -/ definition hconcato_pathover' {p : a₂₀ = a₂₂} {sp : p = p₂₁} {s : square p₁₀ p₁₂ p₀₁ p} {q : b₂₀ =[p] b₂₂} (t₁₁ : squareover B (s ⬝hp sp) q₁₀ q₁₂ q₀₁ q₂₁) (r : change_path sp q = q₂₁) : squareover B s q₁₀ q₁₂ q₀₁ q := by induction sp; induction r; exact t₁₁ variables (s₁₁ q₀₁ q₁₀ q₂₁ q₁₂) definition squareover_fill_t : Σ (q : b₀₀ =[p₁₀] b₂₀), squareover B s₁₁ q q₁₂ q₀₁ q₂₁ := begin induction s₁₁, induction q₀₁ using idp_rec_on, induction q₂₁ using idp_rec_on, induction q₁₂ using idp_rec_on, exact ⟨idpo, idso⟩ end definition squareover_fill_b : Σ (q : b₀₂ =[p₁₂] b₂₂), squareover B s₁₁ q₁₀ q q₀₁ q₂₁ := begin induction s₁₁, induction q₀₁ using idp_rec_on, induction q₂₁ using idp_rec_on, induction q₁₀ using idp_rec_on, exact ⟨idpo, idso⟩ end definition squareover_fill_l : Σ (q : b₀₀ =[p₀₁] b₀₂), squareover B s₁₁ q₁₀ q₁₂ q q₂₁ := begin induction s₁₁, induction q₁₀ using idp_rec_on, induction q₂₁ using idp_rec_on, induction q₁₂ using idp_rec_on, exact ⟨idpo, idso⟩ end definition squareover_fill_r : Σ (q : b₂₀ =[p₂₁] b₂₂) , squareover B s₁₁ q₁₀ q₁₂ q₀₁ q := begin induction s₁₁, induction q₀₁ using idp_rec_on, induction q₁₀ using idp_rec_on, induction q₁₂ using idp_rec_on, exact ⟨idpo, idso⟩ end end squareover /- move this to types.eq, and replace the proof there -/ section parameters {A : Type} (a₀ : A) (code : A → Type) (H : is_contr (Σa, code a)) (c₀ : code a₀) include H c₀ protected definition encode2 {a : A} (q : a₀ = a) : code a := transport code q c₀ protected definition decode2' {a : A} (c : code a) : a₀ = a := have ⟨a₀, c₀⟩ = ⟨a, c⟩ :> Σa, code a, from !is_prop.elim, this..1 protected definition decode2 {a : A} (c : code a) : a₀ = a := (decode2' c₀)⁻¹ ⬝ decode2' c open sigma.ops definition total_space_method2 (a : A) : (a₀ = a) ≃ code a := begin fapply equiv.MK, { exact encode2 }, { exact decode2 }, { intro c, unfold [encode2, decode2, decode2'], rewrite [is_prop_elim_self, ▸*, idp_con], apply tr_eq_of_pathover, apply eq_pr2 }, { intro q, induction q, esimp, apply con.left_inv, }, end end definition total_space_method2_refl {A : Type} (a₀ : A) (code : A → Type) (H : is_contr (Σa, code a)) (c₀ : code a₀) : total_space_method2 a₀ code H c₀ a₀ idp = c₀ := begin reflexivity end section hsquare variables {A₀₀ A₂₀ A₄₀ A₀₂ A₂₂ A₄₂ A₀₄ A₂₄ A₄₄ : Type} {f₁₀ : A₀₀ → A₂₀} {f₃₀ : A₂₀ → A₄₀} {f₀₁ : A₀₀ → A₀₂} {f₂₁ : A₂₀ → A₂₂} {f₄₁ : A₄₀ → A₄₂} {f₁₂ : A₀₂ → A₂₂} {f₃₂ : A₂₂ → A₄₂} {f₀₃ : A₀₂ → A₀₄} {f₂₃ : A₂₂ → A₂₄} {f₄₃ : A₄₂ → A₄₄} {f₁₄ : A₀₄ → A₂₄} {f₃₄ : A₂₄ → A₄₄} definition trunc_functor_hsquare (n : ℕ₋₂) (h : hsquare f₁₀ f₁₂ f₀₁ f₂₁) : hsquare (trunc_functor n f₁₀) (trunc_functor n f₁₂) (trunc_functor n f₀₁) (trunc_functor n f₂₁) := λa, !trunc_functor_compose⁻¹ ⬝ trunc_functor_homotopy n h a ⬝ !trunc_functor_compose attribute hhconcat hvconcat [unfold_full] definition rfl_hhconcat (q : hsquare f₃₀ f₃₂ f₂₁ f₄₁) : homotopy.rfl ⬝htyh q ~ q := homotopy.rfl definition hhconcat_rfl (q : hsquare f₃₀ f₃₂ f₂₁ f₄₁) : q ⬝htyh homotopy.rfl ~ q := λx, !idp_con ⬝ ap_id (q x) definition rfl_hvconcat (q : hsquare f₃₀ f₃₂ f₂₁ f₄₁) : homotopy.rfl ⬝htyv q ~ q := λx, !idp_con definition hvconcat_rfl (q : hsquare f₃₀ f₃₂ f₂₁ f₄₁) : q ⬝htyv homotopy.rfl ~ q := λx, !ap_id end hsquare definition homotopy_group_succ_in_natural (n : ℕ) {A B : Type*} (f : A →* B) : hsquare (homotopy_group_succ_in A n) (homotopy_group_succ_in B n) (π→[n+1] f) (π→[n] (Ω→ f)) := trunc_functor_hsquare _ (loopn_succ_in_natural n f)⁻¹* definition homotopy2.refl {A} {B : A → Type} {C : Π⦃a⦄, B a → Type} (f : Πa (b : B a), C b) : f ~2 f := λa b, idp definition homotopy2.rfl [refl] {A} {B : A → Type} {C : Π⦃a⦄, B a → Type} {f : Πa (b : B a), C b} : f ~2 f := λa b, idp definition homotopy3.refl {A} {B : A → Type} {C : Πa, B a → Type} {D : Π⦃a⦄ ⦃b : B a⦄, C a b → Type} (f : Πa b (c : C a b), D c) : f ~3 f := λa b c, idp definition homotopy3.rfl {A} {B : A → Type} {C : Πa, B a → Type} {D : Π⦃a⦄ ⦃b : B a⦄, C a b → Type} {f : Πa b (c : C a b), D c} : f ~3 f := λa b c, idp definition eq_tr_of_pathover_con_tr_eq_of_pathover {A : Type} {B : A → Type} {a₁ a₂ : A} (p : a₁ = a₂) {b₁ : B a₁} {b₂ : B a₂} (q : b₁ =[p] b₂) : eq_tr_of_pathover q ⬝ tr_eq_of_pathover q⁻¹ᵒ = idp := by induction q; reflexivity end eq open eq namespace nat protected definition rec_down (P : ℕ → Type) (s : ℕ) (H0 : P s) (Hs : Πn, P (n+1) → P n) : P 0 := begin induction s with s IH, { exact H0 }, { exact IH (Hs s H0) } end /- have Hp : Πn, P n → P (pred n), begin intro n p, cases n with n, { exact p }, { exact Hs n p } end, have H : Πn, P (s - n), begin intro n, induction n with n p, { exact H0 }, { exact Hp (s - n) p } end, transport P (nat.sub_self s) (H s)-/ /- this generalizes iterate_commute -/ definition iterate_hsquare {A B : Type} {f : A → A} {g : B → B} (h : A → B) (p : hsquare f g h h) (n : ℕ) : hsquare (f^[n]) (g^[n]) h h := begin induction n with n q, exact homotopy.rfl, exact q ⬝htyh p end definition iterate_equiv2 {A : Type} {C : A → Type} (f : A → A) (h : Πa, C a ≃ C (f a)) (k : ℕ) (a : A) : C a ≃ C (f^[k] a) := begin induction k with k IH, reflexivity, exact IH ⬝e h (f^[k] a) end /- replace proof of le_of_succ_le by this -/ definition le_step_left {n m : ℕ} (H : succ n ≤ m) : n ≤ m := by induction H with H m H'; exact le_succ n; exact le.step H' /- TODO: make proof of le_succ_of_le simpler -/ definition nat.add_le_add_left2 {n m : ℕ} (H : n ≤ m) (k : ℕ) : k + n ≤ k + m := by induction H with m H H₂; reflexivity; exact le.step H₂ end nat namespace trunc_index open is_conn nat trunc is_trunc lemma minus_two_add_plus_two (n : ℕ₋₂) : -2+2+n = n := by induction n with n p; reflexivity; exact ap succ p protected definition of_nat_monotone {n k : ℕ} : n ≤ k → of_nat n ≤ of_nat k := begin intro H, induction H with k H K, { apply le.tr_refl }, { apply le.step K } end lemma add_plus_two_comm (n k : ℕ₋₂) : n +2+ k = k +2+ n := begin induction n with n IH, { exact minus_two_add_plus_two k }, { exact !succ_add_plus_two ⬝ ap succ IH} end end trunc_index namespace int private definition maxm2_le.lemma₁ {n k : ℕ} : n+(1:int) + -[1+ k] ≤ n := le.intro ( calc n + 1 + -[1+ k] + k = n + 1 + (-(k + 1)) + k : by reflexivity ... = n + 1 + (- 1 - k) + k : by krewrite (neg_add_rev k 1) ... = n + 1 + (- 1 - k + k) : add.assoc ... = n + 1 + (- 1 + -k + k) : by reflexivity ... = n + 1 + (- 1 + (-k + k)) : add.assoc ... = n + 1 + (- 1 + 0) : add.left_inv ... = n + (1 + (- 1 + 0)) : add.assoc ... = n : int.add_zero) private definition maxm2_le.lemma₂ {n : ℕ} {k : ℤ} : -[1+ n] + 1 + k ≤ k := le.intro ( calc -[1+ n] + 1 + k + n = - (n + 1) + 1 + k + n : by reflexivity ... = -n - 1 + 1 + k + n : by rewrite (neg_add n 1) ... = -n + (- 1 + 1) + k + n : by krewrite (int.add_assoc (-n) (- 1) 1) ... = -n + 0 + k + n : add.left_inv 1 ... = -n + k + n : int.add_zero ... = k + -n + n : int.add_comm ... = k + (-n + n) : int.add_assoc ... = k + 0 : add.left_inv n ... = k : int.add_zero) open trunc_index /- The function from integers to truncation indices which sends positive numbers to themselves, and negative numbers to negative 2. In particular -1 is sent to -2, but since we only work with pointed types, that doesn't matter for us -/ definition maxm2 [unfold 1] : ℤ → ℕ₋₂ := λ n, int.cases_on n trunc_index.of_nat (λk, -2) -- we also need the max -1 - function definition maxm1 [unfold 1] : ℤ → ℕ₋₂ := λ n, int.cases_on n trunc_index.of_nat (λk, -1) definition maxm2_le_maxm1 (n : ℤ) : maxm2 n ≤ maxm1 n := begin induction n with n n, { exact le.tr_refl n }, { exact minus_two_le -1 } end -- the is maxm1 minus 1 definition maxm1m1 [unfold 1] : ℤ → ℕ₋₂ := λ n, int.cases_on n (λ k, k.-1) (λ k, -2) definition maxm1_eq_succ (n : ℤ) : maxm1 n = (maxm1m1 n).+1 := begin induction n with n n, { reflexivity }, { reflexivity } end definition maxm2_le_maxm0 (n : ℤ) : maxm2 n ≤ max0 n := begin induction n with n n, { exact le.tr_refl n }, { exact minus_two_le 0 } end definition max0_le_of_le {n : ℤ} {m : ℕ} (H : n ≤ of_nat m) : nat.le (max0 n) m := begin induction n with n n, { exact le_of_of_nat_le_of_nat H }, { exact nat.zero_le m } end definition not_neg_succ_le_of_nat {n m : ℕ} : ¬m ≤ -[1+n] := by cases m: exact id definition maxm2_monotone {n m : ℤ} (H : n ≤ m) : maxm2 n ≤ maxm2 m := begin induction n with n n, { induction m with m m, { apply of_nat_le_of_nat, exact le_of_of_nat_le_of_nat H }, { exfalso, exact not_neg_succ_le_of_nat H }}, { apply minus_two_le } end definition sub_nat_le (n : ℤ) (m : ℕ) : n - m ≤ n := le.intro !sub_add_cancel definition sub_nat_lt (n : ℤ) (m : ℕ) : n - m < n + 1 := add_le_add_right (sub_nat_le n m) 1 definition sub_one_le (n : ℤ) : n - 1 ≤ n := sub_nat_le n 1 definition le_add_nat (n : ℤ) (m : ℕ) : n ≤ n + m := le.intro rfl definition le_add_one (n : ℤ) : n ≤ n + 1:= le_add_nat n 1 open trunc_index definition maxm2_le (n k : ℤ) : maxm2 (n+1+k) ≤ (maxm1m1 n).+1+2+(maxm1m1 k) := begin rewrite [-(maxm1_eq_succ n)], induction n with n n, { induction k with k k, { induction k with k IH, { apply le.tr_refl }, { exact succ_le_succ IH } }, { exact trunc_index.le_trans (maxm2_monotone maxm2_le.lemma₁) (maxm2_le_maxm1 n) } }, { krewrite (add_plus_two_comm -1 (maxm1m1 k)), rewrite [-(maxm1_eq_succ k)], exact trunc_index.le_trans (maxm2_monotone maxm2_le.lemma₂) (maxm2_le_maxm1 k) } end end int open int namespace pmap /- rename: pmap_eta in namespace pointed -/ definition eta {A B : Type*} (f : A →* B) : pmap.mk f (respect_pt f) = f := begin induction f, reflexivity end end pmap namespace lift definition is_trunc_plift [instance] [priority 1450] (A : Type*) (n : ℕ₋₂) [H : is_trunc n A] : is_trunc n (plift A) := is_trunc_lift A n definition lift_functor2 {A B C : Type} (f : A → B → C) (x : lift A) (y : lift B) : lift C := up (f (down x) (down y)) end lift -- definition ppi_eq_equiv_internal : (k = l) ≃ (k ~* l) := -- calc (k = l) ≃ ppi.sigma_char P p₀ k = ppi.sigma_char P p₀ l -- : eq_equiv_fn_eq (ppi.sigma_char P p₀) k l -- ... ≃ Σ(p : k = l), -- pathover (λh, h pt = p₀) (respect_pt k) p (respect_pt l) -- : sigma_eq_equiv _ _ -- ... ≃ Σ(p : k = l), -- respect_pt k = ap (λh, h pt) p ⬝ respect_pt l -- : sigma_equiv_sigma_right -- (λp, eq_pathover_equiv_Fl p (respect_pt k) (respect_pt l)) -- ... ≃ Σ(p : k = l), -- respect_pt k = apd10 p pt ⬝ respect_pt l -- : sigma_equiv_sigma_right -- (λp, equiv_eq_closed_right _ (whisker_right _ (ap_eq_apd10 p _))) -- ... ≃ Σ(p : k ~ l), respect_pt k = p pt ⬝ respect_pt l -- : sigma_equiv_sigma_left' eq_equiv_homotopy -- ... ≃ Σ(p : k ~ l), p pt ⬝ respect_pt l = respect_pt k -- : sigma_equiv_sigma_right (λp, eq_equiv_eq_symm _ _) -- ... ≃ (k ~* l) : phomotopy.sigma_char k l namespace pointed /- move to pointed -/ open sigma.ops definition pType.sigma_char' [constructor] : pType.{u} ≃ Σ(X : Type.{u}), X := begin fapply equiv.MK, { intro X, exact ⟨X, pt⟩ }, { intro X, exact pointed.MK X.1 X.2 }, { intro x, induction x with X x, reflexivity }, { intro x, induction x with X x, reflexivity }, end definition ap_equiv_eq {X Y : Type} {e e' : X ≃ Y} (p : e ~ e') (x : X) : ap (λ(e : X ≃ Y), e x) (equiv_eq p) = p x := begin cases e with e He, cases e' with e' He', esimp at *, esimp [equiv_eq], refine homotopy.rec_on' p _, intro q, induction q, esimp [equiv_eq', equiv_mk_eq], assert H : He = He', apply is_prop.elim, induction H, rewrite [is_prop_elimo_self] end definition pequiv.sigma_char_equiv [constructor] (X Y : Type*) : (X ≃* Y) ≃ Σ(e : X ≃ Y), e pt = pt := begin fapply equiv.MK, { intro e, exact ⟨equiv_of_pequiv e, respect_pt e⟩ }, { intro e, exact pequiv_of_equiv e.1 e.2 }, { intro e, induction e with e p, fapply sigma_eq, apply equiv_eq, reflexivity, esimp, apply eq_pathover_constant_right, esimp, refine _ ⬝ph vrfl, apply ap_equiv_eq }, { intro e, apply pequiv_eq, fapply phomotopy.mk, intro x, reflexivity, refine !idp_con ⬝ _, reflexivity }, end definition pequiv.sigma_char_equiv' [constructor] (X Y : Type*) : (X ≃* Y) ≃ Σ(f : X →* Y), is_equiv f := begin fapply equiv.MK, { intro e, exact ⟨ pequiv.to_pmap e , pequiv.to_is_equiv e ⟩ }, { intro w, exact pequiv_of_pmap w.1 w.2 }, { intro w, induction w with f p, fapply sigma_eq, { reflexivity }, { apply is_prop.elimo } }, { intro e, apply pequiv_eq, fapply phomotopy.mk, { intro x, reflexivity }, { refine !idp_con ⬝ _, reflexivity } } end definition pType_eq_equiv (X Y : Type*) : (X = Y) ≃ (X ≃* Y) := begin refine eq_equiv_fn_eq pType.sigma_char' X Y ⬝e !sigma_eq_equiv ⬝e _, esimp, transitivity Σ(p : X = Y), cast p pt = pt, apply sigma_equiv_sigma_right, intro p, apply pathover_equiv_tr_eq, transitivity Σ(e : X ≃ Y), e pt = pt, refine sigma_equiv_sigma (eq_equiv_equiv X Y) (λp, equiv.rfl), exact (pequiv.sigma_char_equiv X Y)⁻¹ᵉ end end pointed open pointed namespace trunc open trunc_index sigma.ops definition ptrunctype.sigma_char [constructor] (n : ℕ₋₂) : n-Type* ≃ Σ(X : Type*), is_trunc n X := equiv.MK (λX, ⟨ptrunctype.to_pType X, _⟩) (λX, ptrunctype.mk (carrier X.1) X.2 pt) begin intro X, induction X with X HX, induction X, reflexivity end begin intro X, induction X, reflexivity end definition is_embedding_ptrunctype_to_pType (n : ℕ₋₂) : is_embedding (@ptrunctype.to_pType n) := begin intro X Y, fapply is_equiv_of_equiv_of_homotopy, { exact eq_equiv_fn_eq (ptrunctype.sigma_char n) _ _ ⬝e subtype_eq_equiv _ _ }, intro p, induction p, reflexivity end definition ptrunctype_eq_equiv {n : ℕ₋₂} (X Y : n-Type*) : (X = Y) ≃ (X ≃* Y) := equiv.mk _ (is_embedding_ptrunctype_to_pType n X Y) ⬝e pType_eq_equiv X Y /- replace trunc_trunc_equiv_left by this -/ definition trunc_trunc_equiv_left' [constructor] (A : Type) {n m : ℕ₋₂} (H : n ≤ m) : trunc n (trunc m A) ≃ trunc n A := begin note H2 := is_trunc_of_le (trunc n A) H, fapply equiv.MK, { intro x, induction x with x, induction x with x, exact tr x }, { exact trunc_functor n tr }, { intro x, induction x with x, reflexivity}, { intro x, induction x with x, induction x with x, reflexivity} end definition is_equiv_ptrunc_functor_ptr [constructor] (A : Type*) {n m : ℕ₋₂} (H : n ≤ m) : is_equiv (ptrunc_functor n (ptr m A)) := to_is_equiv (trunc_trunc_equiv_left' A H)⁻¹ᵉ definition Prop_eq {P Q : Prop} (H : P ↔ Q) : P = Q := tua (equiv_of_is_prop (iff.mp H) (iff.mpr H)) definition trunc_index_equiv_nat [constructor] : ℕ₋₂ ≃ ℕ := equiv.MK add_two sub_two add_two_sub_two sub_two_add_two definition is_set_trunc_index [instance] : is_set ℕ₋₂ := is_trunc_equiv_closed_rev 0 trunc_index_equiv_nat definition is_contr_ptrunc_minus_one (A : Type*) : is_contr (ptrunc -1 A) := is_contr_of_inhabited_prop pt -- TODO: redefine loopn_ptrunc_pequiv definition apn_ptrunc_functor (n : ℕ₋₂) (k : ℕ) {A B : Type*} (f : A →* B) : Ω→[k] (ptrunc_functor (n+k) f) ∘* (loopn_ptrunc_pequiv n k A)⁻¹ᵉ* ~* (loopn_ptrunc_pequiv n k B)⁻¹ᵉ* ∘* ptrunc_functor n (Ω→[k] f) := begin revert n, induction k with k IH: intro n, { reflexivity }, { exact sorry } end definition ptrunc_pequiv_natural [constructor] (n : ℕ₋₂) {A B : Type*} (f : A →* B) [is_trunc n A] [is_trunc n B] : f ∘* ptrunc_pequiv n A ~* ptrunc_pequiv n B ∘* ptrunc_functor n f := begin fapply phomotopy.mk, { intro a, induction a with a, reflexivity }, { refine !idp_con ⬝ _ ⬝ !idp_con⁻¹, refine !ap_compose'⁻¹ ⬝ _, apply ap_id } end definition ptr_natural [constructor] (n : ℕ₋₂) {A B : Type*} (f : A →* B) : ptrunc_functor n f ∘* ptr n A ~* ptr n B ∘* f := begin fapply phomotopy.mk, { intro a, reflexivity }, { reflexivity } end definition ptrunc_elim_pcompose (n : ℕ₋₂) {A B C : Type*} (g : B →* C) (f : A →* B) [is_trunc n B] [is_trunc n C] : ptrunc.elim n (g ∘* f) ~* g ∘* ptrunc.elim n f := begin fapply phomotopy.mk, { intro a, induction a with a, reflexivity }, { apply idp_con } end definition ptrunc_elim_ptr_phomotopy_pid (n : ℕ₋₂) (A : Type*): ptrunc.elim n (ptr n A) ~* pid (ptrunc n A) := begin fapply phomotopy.mk, { intro a, induction a with a, reflexivity }, { apply idp_con } end definition is_trunc_ptrunc_of_is_trunc [instance] [priority 500] (A : Type*) (n m : ℕ₋₂) [H : is_trunc n A] : is_trunc n (ptrunc m A) := is_trunc_trunc_of_is_trunc A n m definition ptrunc_pequiv_ptrunc_of_is_trunc {n m k : ℕ₋₂} {A : Type*} (H1 : n ≤ m) (H2 : n ≤ k) (H : is_trunc n A) : ptrunc m A ≃* ptrunc k A := have is_trunc m A, from is_trunc_of_le A H1, have is_trunc k A, from is_trunc_of_le A H2, pequiv.MK (ptrunc.elim _ (ptr k A)) (ptrunc.elim _ (ptr m A)) abstract begin refine !ptrunc_elim_pcompose⁻¹* ⬝* _, exact ptrunc_elim_phomotopy _ !ptrunc_elim_ptr ⬝* !ptrunc_elim_ptr_phomotopy_pid, end end abstract begin refine !ptrunc_elim_pcompose⁻¹* ⬝* _, exact ptrunc_elim_phomotopy _ !ptrunc_elim_ptr ⬝* !ptrunc_elim_ptr_phomotopy_pid, end end definition ptrunc_change_index {k l : ℕ₋₂} (p : k = l) (X : Type*) : ptrunc k X ≃* ptrunc l X := pequiv_ap (λ n, ptrunc n X) p definition ptrunc_functor_le {k l : ℕ₋₂} (p : l ≤ k) (X : Type*) : ptrunc k X →* ptrunc l X := have is_trunc k (ptrunc l X), from is_trunc_of_le _ p, ptrunc.elim _ (ptr l X) definition trunc_index.pred [unfold 1] (n : ℕ₋₂) : ℕ₋₂ := begin cases n with n, exact -2, exact n end /- A more general version of ptrunc_elim_phomotopy, where the proofs of truncatedness might be different -/ definition ptrunc_elim_phomotopy2 [constructor] (k : ℕ₋₂) {A B : Type*} {f g : A →* B} (H₁ : is_trunc k B) (H₂ : is_trunc k B) (p : f ~* g) : @ptrunc.elim k A B H₁ f ~* @ptrunc.elim k A B H₂ g := begin fapply phomotopy.mk, { intro x, induction x with a, exact p a }, { exact to_homotopy_pt p } end definition pmap_ptrunc_equiv [constructor] (n : ℕ₋₂) (A B : Type*) [H : is_trunc n B] : (ptrunc n A →* B) ≃ (A →* B) := begin fapply equiv.MK, { intro g, exact g ∘* ptr n A }, { exact ptrunc.elim n }, { intro f, apply eq_of_phomotopy, apply ptrunc_elim_ptr }, { intro g, apply eq_of_phomotopy, exact ptrunc_elim_pcompose n g (ptr n A) ⬝* pwhisker_left g (ptrunc_elim_ptr_phomotopy_pid n A) ⬝* pcompose_pid g } end definition pmap_ptrunc_pequiv [constructor] (n : ℕ₋₂) (A B : Type*) [H : is_trunc n B] : ppmap (ptrunc n A) B ≃* ppmap A B := pequiv_of_equiv (pmap_ptrunc_equiv n A B) (eq_of_phomotopy (pconst_pcompose (ptr n A))) definition loopn_ptrunc_pequiv_nat (n : ℕ) (k : ℕ) (A : Type*) : Ω[k] (ptrunc (n+k) A) ≃* ptrunc n (Ω[k] A) := loopn_pequiv_loopn k (ptrunc_change_index (of_nat_add_of_nat n k)⁻¹ A) ⬝e* loopn_ptrunc_pequiv n k A end trunc open trunc namespace is_trunc open trunc_index is_conn lemma is_trunc_loopn_nat (m n : ℕ) (A : Type*) [H : is_trunc (n + m) A] : is_trunc n (Ω[m] A) := @is_trunc_loopn n m A (transport (λk, is_trunc k _) (of_nat_add_of_nat n m)⁻¹ H) lemma is_trunc_loop_nat (n : ℕ) (A : Type*) [H : is_trunc (n + 1) A] : is_trunc n (Ω A) := is_trunc_loop A n definition is_trunc_of_eq {n m : ℕ₋₂} (p : n = m) {A : Type} (H : is_trunc n A) : is_trunc m A := transport (λk, is_trunc k A) p H definition is_trunc_succ_succ_of_is_trunc_loop (n : ℕ₋₂) (A : Type*) (H : is_trunc (n.+1) (Ω A)) (H2 : is_conn 0 A) : is_trunc (n.+2) A := begin apply is_trunc_succ_of_is_trunc_loop, apply minus_one_le_succ, refine is_conn.elim -1 _ _, exact H end lemma is_trunc_of_is_trunc_loopn (m n : ℕ) (A : Type*) (H : is_trunc n (Ω[m] A)) (H2 : is_conn (m.-1) A) : is_trunc (m + n) A := begin revert A H H2; induction m with m IH: intro A H H2, { rewrite [nat.zero_add], exact H }, rewrite [succ_add], apply is_trunc_succ_succ_of_is_trunc_loop, { apply IH, { apply is_trunc_equiv_closed _ !loopn_succ_in }, apply is_conn_loop }, exact is_conn_of_le _ (zero_le_of_nat m) end lemma is_trunc_of_is_set_loopn (m : ℕ) (A : Type*) (H : is_set (Ω[m] A)) (H2 : is_conn (m.-1) A) : is_trunc m A := is_trunc_of_is_trunc_loopn m 0 A H H2 end is_trunc namespace sigma open sigma.ops definition eq.rec_sigma {A : Type} {B : A → Type} {a : A} {b : B a} (P : Π⦃a'⦄ {b' : B a'}, ⟨a, b⟩ = ⟨a', b'⟩ → Type) (IH : P idp) ⦃a' : A⦄ {b' : B a'} (p : ⟨a, b⟩ = ⟨a', b'⟩) : P p := begin apply transport (λp, P p) (to_left_inv !sigma_eq_equiv p), generalize !sigma_eq_equiv p, esimp, intro q, induction q with q₁ q₂, induction q₂, exact IH end definition ap_dpair_eq_dpair_pr {A A' : Type} {B : A → Type} {a a' : A} {b : B a} {b' : B a'} (f : Πa, B a → A') (p : a = a') (q : b =[p] b') : ap (λx, f x.1 x.2) (dpair_eq_dpair p q) = apd011 f p q := by induction q; reflexivity definition sigma_eq_equiv_of_is_prop_right [constructor] {A : Type} {B : A → Type} (u v : Σa, B a) [H : Π a, is_prop (B a)] : u = v ≃ u.1 = v.1 := !sigma_eq_equiv ⬝e !sigma_equiv_of_is_contr_right definition ap_sigma_pr1 {A B : Type} {C : B → Type} {a₁ a₂ : A} (f : A → B) (g : Πa, C (f a)) (p : a₁ = a₂) : (ap (λa, ⟨f a, g a⟩) p)..1 = ap f p := by induction p; reflexivity definition ap_sigma_pr2 {A B : Type} {C : B → Type} {a₁ a₂ : A} (f : A → B) (g : Πa, C (f a)) (p : a₁ = a₂) : (ap (λa, ⟨f a, g a⟩) p)..2 = change_path (ap_sigma_pr1 f g p)⁻¹ (pathover_ap C f (apd g p)) := by induction p; reflexivity definition ap_sigma_functor_sigma_eq {A A' : Type} {B : A → Type} {B' : A' → Type} {a a' : A} {b : B a} {b' : B a'} (f : A → A') (g : Πa, B a → B' (f a)) (p : a = a') (q : b =[p] b') : ap (sigma_functor f g) (sigma_eq p q) = sigma_eq (ap f p) (pathover_ap B' f (apo g q)) := by induction q; reflexivity definition ap_sigma_functor_id_sigma_eq {A : Type} {B B' : A → Type} {a a' : A} {b : B a} {b' : B a'} (g : Πa, B a → B' a) (p : a = a') (q : b =[p] b') : ap (sigma_functor id g) (sigma_eq p q) = sigma_eq p (apo g q) := by induction q; reflexivity definition sigma_eq_pr2_constant {A B : Type} {a a' : A} {b b' : B} (p : a = a') (q : b =[p] b') : ap pr2 (sigma_eq p q) = (eq_of_pathover q) := by induction q; reflexivity definition sigma_eq_pr2_constant2 {A B : Type} {a a' : A} {b b' : B} (p : a = a') (q : b = b') : ap pr2 (sigma_eq p (pathover_of_eq p q)) = q := by induction p; induction q; reflexivity definition sigma_eq_concato_eq {A : Type} {B : A → Type} {a a' : A} {b : B a} {b₁ b₂ : B a'} (p : a = a') (q : b =[p] b₁) (q' : b₁ = b₂) : sigma_eq p (q ⬝op q') = sigma_eq p q ⬝ ap (dpair a') q' := by induction q'; reflexivity -- open sigma.ops -- definition eq.rec_sigma {A : Type} {B : A → Type} {a₀ : A} {b₀ : B a₀} -- {P : Π(a : A) (b : B a), ⟨a₀, b₀⟩ = ⟨a, b⟩ → Type} (H : P a₀ b₀ idp) {a : A} {b : B a} -- (p : ⟨a₀, b₀⟩ = ⟨a, b⟩) : P a b p := -- sorry -- definition sigma_pathover_equiv_of_is_prop {A : Type} {B : A → Type} {C : Πa, B a → Type} -- {a a' : A} {p : a = a'} {b : B a} {b' : B a'} {c : C a b} {c' : C a' b'} -- [Πa b, is_prop (C a b)] : ⟨b, c⟩ =[p] ⟨b', c'⟩ ≃ b =[p] b' := -- begin -- fapply equiv.MK, -- { exact pathover_pr1 }, -- { intro q, induction q, apply pathover_idp_of_eq, exact sigma_eq idp !is_prop.elimo }, -- { intro q, induction q, -- have c = c', from !is_prop.elim, induction this, -- rewrite [▸*, is_prop_elimo_self (C a) c] }, -- { esimp, generalize ⟨b, c⟩, intro x q, } -- end --rexact @(ap pathover_pr1) _ idpo _, definition sigma_functor_compose {A A' A'' : Type} {B : A → Type} {B' : A' → Type} {B'' : A'' → Type} {f' : A' → A''} {f : A → A'} (g' : Πa, B' a → B'' (f' a)) (g : Πa, B a → B' (f a)) (x : Σa, B a) : sigma_functor f' g' (sigma_functor f g x) = sigma_functor (f' ∘ f) (λa, g' (f a) ∘ g a) x := begin reflexivity end definition sigma_functor_homotopy {A A' : Type} {B : A → Type} {B' : A' → Type} {f f' : A → A'} {g : Πa, B a → B' (f a)} {g' : Πa, B a → B' (f' a)} (h : f ~ f') (k : Πa b, g a b =[h a] g' a b) (x : Σa, B a) : sigma_functor f g x = sigma_functor f' g' x := sigma_eq (h x.1) (k x.1 x.2) variables {A₀₀ A₂₀ A₀₂ A₂₂ : Type} {B₀₀ : A₀₀ → Type} {B₂₀ : A₂₀ → Type} {B₀₂ : A₀₂ → Type} {B₂₂ : A₂₂ → Type} {f₁₀ : A₀₀ → A₂₀} {f₁₂ : A₀₂ → A₂₂} {f₀₁ : A₀₀ → A₀₂} {f₂₁ : A₂₀ → A₂₂} {g₁₀ : Πa, B₀₀ a → B₂₀ (f₁₀ a)} {g₁₂ : Πa, B₀₂ a → B₂₂ (f₁₂ a)} {g₀₁ : Πa, B₀₀ a → B₀₂ (f₀₁ a)} {g₂₁ : Πa, B₂₀ a → B₂₂ (f₂₁ a)} definition sigma_functor_hsquare (h : hsquare f₁₀ f₁₂ f₀₁ f₂₁) (k : Πa (b : B₀₀ a), g₂₁ _ (g₁₀ _ b) =[h a] g₁₂ _ (g₀₁ _ b)) : hsquare (sigma_functor f₁₀ g₁₀) (sigma_functor f₁₂ g₁₂) (sigma_functor f₀₁ g₀₁) (sigma_functor f₂₁ g₂₁) := λx, sigma_functor_compose g₂₁ g₁₀ x ⬝ sigma_functor_homotopy h k x ⬝ (sigma_functor_compose g₁₂ g₀₁ x)⁻¹ definition sigma_equiv_of_is_embedding_left_fun [constructor] {X Y : Type} {P : Y → Type} {f : X → Y} (H : Πy, P y → fiber f y) (v : Σy, P y) : Σx, P (f x) := ⟨fiber.point (H v.1 v.2), transport P (point_eq (H v.1 v.2))⁻¹ v.2⟩ definition sigma_equiv_of_is_embedding_left_prop [constructor] {X Y : Type} {P : Y → Type} (f : X → Y) (Hf : is_embedding f) (HP : Πx, is_prop (P (f x))) (H : Πy, P y → fiber f y) : (Σy, P y) ≃ Σx, P (f x) := begin apply equiv.MK (sigma_equiv_of_is_embedding_left_fun H) (sigma_functor f (λa, id)), { intro v, induction v with x p, esimp [sigma_equiv_of_is_embedding_left_fun], fapply sigma_eq, apply @is_injective_of_is_embedding _ _ f, exact point_eq (H (f x) p), apply is_prop.elimo }, { intro v, induction v with y p, esimp, fapply sigma_eq, exact point_eq (H y p), apply tr_pathover } end definition sigma_equiv_of_is_embedding_left_contr [constructor] {X Y : Type} {P : Y → Type} (f : X → Y) (Hf : is_embedding f) (HP : Πx, is_contr (P (f x))) (H : Πy, P y → fiber f y) : (Σy, P y) ≃ X := sigma_equiv_of_is_embedding_left_prop f Hf _ H ⬝e !sigma_equiv_of_is_contr_right end sigma open sigma namespace group definition isomorphism.MK [constructor] {G H : Group} (φ : G →g H) (ψ : H →g G) (p : φ ∘g ψ ~ gid H) (q : ψ ∘g φ ~ gid G) : G ≃g H := isomorphism.mk φ (adjointify φ ψ p q) protected definition homomorphism.sigma_char [constructor] (A B : Group) : (A →g B) ≃ Σ(f : A → B), is_mul_hom f := begin fapply equiv.MK, {intro F, exact ⟨F, _⟩ }, {intro p, cases p with f H, exact (homomorphism.mk f H) }, {intro p, cases p, reflexivity }, {intro F, cases F, reflexivity }, end definition homomorphism_pathover {A : Type} {a a' : A} (p : a = a') {B : A → Group} {C : A → Group} (f : B a →g C a) (g : B a' →g C a') (r : homomorphism.φ f =[p] homomorphism.φ g) : f =[p] g := begin fapply pathover_of_fn_pathover_fn, { intro a, apply homomorphism.sigma_char }, { fapply sigma_pathover, exact r, apply is_prop.elimo } end protected definition isomorphism.sigma_char [constructor] (A B : Group) : (A ≃g B) ≃ Σ(f : A →g B), is_equiv f := begin fapply equiv.MK, {intro F, exact ⟨F, _⟩ }, {intro p, cases p with f H, exact (isomorphism.mk f H) }, {intro p, cases p, reflexivity }, {intro F, cases F, reflexivity }, end definition isomorphism_pathover {A : Type} {a a' : A} (p : a = a') {B : A → Group} {C : A → Group} (f : B a ≃g C a) (g : B a' ≃g C a') (r : pathover (λa, B a → C a) f p g) : f =[p] g := begin fapply pathover_of_fn_pathover_fn, { intro a, apply isomorphism.sigma_char }, { fapply sigma_pathover, apply homomorphism_pathover, exact r, apply is_prop.elimo } end -- definition is_equiv_isomorphism -- some extra instances for type class inference -- definition is_mul_hom_comm_homomorphism [instance] {G G' : AbGroup} (φ : G →g G') -- : @is_mul_hom G G' (@ab_group.to_group _ (AbGroup.struct G)) -- (@ab_group.to_group _ (AbGroup.struct G')) φ := -- homomorphism.struct φ -- definition is_mul_hom_comm_homomorphism1 [instance] {G G' : AbGroup} (φ : G →g G') -- : @is_mul_hom G G' _ -- (@ab_group.to_group _ (AbGroup.struct G')) φ := -- homomorphism.struct φ -- definition is_mul_hom_comm_homomorphism2 [instance] {G G' : AbGroup} (φ : G →g G') -- : @is_mul_hom G G' (@ab_group.to_group _ (AbGroup.struct G)) _ φ := -- homomorphism.struct φ definition pgroup_of_Group (X : Group) : pgroup X := pgroup_of_group _ idp definition isomorphism_ap {A : Type} (F : A → Group) {a b : A} (p : a = b) : F a ≃g F b := isomorphism_of_eq (ap F p) definition interchange (G : AbGroup) (a b c d : G) : (a * b) * (c * d) = (a * c) * (b * d) := calc (a * b) * (c * d) = a * (b * (c * d)) : by exact mul.assoc a b (c * d) ... = a * ((b * c) * d) : by exact ap (λ bcd, a * bcd) (mul.assoc b c d)⁻¹ ... = a * ((c * b) * d) : by exact ap (λ bc, a * (bc * d)) (mul.comm b c) ... = a * (c * (b * d)) : by exact ap (λ bcd, a * bcd) (mul.assoc c b d) ... = (a * c) * (b * d) : by exact (mul.assoc a c (b * d))⁻¹ definition homomorphism_comp_compute {G H K : Group} (g : H →g K) (f : G →g H) (x : G) : (g ∘g f) x = g (f x) := begin reflexivity end open option definition add_point_AbGroup [unfold 3] {X : Type} (G : X → AbGroup) : X₊ → AbGroup | (some x) := G x | none := trivial_ab_group_lift definition isomorphism_of_is_contr {G H : Group} (hG : is_contr G) (hH : is_contr H) : G ≃g H := trivial_group_of_is_contr G ⬝g (trivial_group_of_is_contr H)⁻¹ᵍ definition trunc_isomorphism_of_equiv {A B : Type} [inf_group A] [inf_group B] (f : A ≃ B) (h : is_mul_hom f) : Group.mk (trunc 0 A) (trunc_group A) ≃g Group.mk (trunc 0 B) (trunc_group B) := begin apply isomorphism_of_equiv (equiv.mk (trunc_functor 0 f) (is_equiv_trunc_functor 0 f)), intros x x', induction x with a, induction x' with a', apply ap tr, exact h a a' end end group open group namespace fiber open pointed sigma sigma.ops definition loopn_pfiber [constructor] {A B : Type*} (n : ℕ) (f : A →* B) : Ω[n] (pfiber f) ≃* pfiber (Ω→[n] f) := begin induction n with n IH, reflexivity, exact loop_pequiv_loop IH ⬝e* loop_pfiber (Ω→[n] f), end definition fiber_eq_pr2 {A B : Type} {f : A → B} {b : B} {x y : fiber f b} (p : x = y) : point_eq x = ap f (ap point p) ⬝ point_eq y := begin induction p, exact !idp_con⁻¹ end definition fiber_eq_eta {A B : Type} {f : A → B} {b : B} {x y : fiber f b} (p : x = y) : p = fiber_eq (ap point p) (fiber_eq_pr2 p) := begin induction p, induction x with a q, induction q, reflexivity end definition fiber_eq_con {A B : Type} {f : A → B} {b : B} {x y z : fiber f b} (p1 : point x = point y) (p2 : point y = point z) (q1 : point_eq x = ap f p1 ⬝ point_eq y) (q2 : point_eq y = ap f p2 ⬝ point_eq z) : fiber_eq p1 q1 ⬝ fiber_eq p2 q2 = fiber_eq (p1 ⬝ p2) (q1 ⬝ whisker_left (ap f p1) q2 ⬝ !con.assoc⁻¹ ⬝ whisker_right (point_eq z) (ap_con f p1 p2)⁻¹) := begin induction x with a₁ r₁, induction y with a₂ r₂, induction z with a₃ r₃, esimp at *, induction q2 using eq.rec_symm, induction q1 using eq.rec_symm, induction p2, induction p1, induction r₃, reflexivity end definition fiber_eq_equiv' [constructor] {A B : Type} {f : A → B} {b : B} (x y : fiber f b) : (x = y) ≃ (Σ(p : point x = point y), point_eq x = ap f p ⬝ point_eq y) := @equiv_change_inv _ _ (fiber_eq_equiv x y) (λpq, fiber_eq pq.1 pq.2) begin intro pq, cases pq, reflexivity end definition is_contr_pfiber_pid (A : Type*) : is_contr (pfiber (pid A)) := is_contr.mk pt begin intro x, induction x with a p, esimp at p, cases p, reflexivity end definition fiber_functor [constructor] {A A' B B' : Type} {f : A → B} {f' : A' → B'} {b : B} {b' : B'} (g : A → A') (h : B → B') (H : hsquare g h f f') (p : h b = b') (x : fiber f b) : fiber f' b' := fiber.mk (g (point x)) (H (point x) ⬝ ap h (point_eq x) ⬝ p) definition pfiber_functor [constructor] {A A' B B' : Type*} {f : A →* B} {f' : A' →* B'} (g : A →* A') (h : B →* B') (H : psquare g h f f') : pfiber f →* pfiber f' := pmap.mk (fiber_functor g h H (respect_pt h)) begin fapply fiber_eq, exact respect_pt g, exact !con.assoc ⬝ to_homotopy_pt H end -- TODO: use this in pfiber_pequiv_of_phomotopy definition fiber_equiv_of_homotopy {A B : Type} {f g : A → B} (h : f ~ g) (b : B) : fiber f b ≃ fiber g b := begin refine (fiber.sigma_char f b ⬝e _ ⬝e (fiber.sigma_char g b)⁻¹ᵉ), apply sigma_equiv_sigma_right, intros a, apply equiv_eq_closed_left, apply h end definition fiber_equiv_of_square {A B C D : Type} {b : B} {d : D} {f : A → B} {g : C → D} (h : A ≃ C) (k : B ≃ D) (s : k ∘ f ~ g ∘ h) (p : k b = d) : fiber f b ≃ fiber g d := calc fiber f b ≃ fiber (k ∘ f) (k b) : fiber.equiv_postcompose ... ≃ fiber (k ∘ f) d : transport_fiber_equiv (k ∘ f) p ... ≃ fiber (g ∘ h) d : fiber_equiv_of_homotopy s d ... ≃ fiber g d : fiber.equiv_precompose definition fiber_equiv_of_triangle {A B C : Type} {b : B} {f : A → B} {g : C → B} (h : A ≃ C) (s : f ~ g ∘ h) : fiber f b ≃ fiber g b := fiber_equiv_of_square h erfl s idp definition is_trunc_fun_id (k : ℕ₋₂) (A : Type) : is_trunc_fun k (@id A) := λa, is_trunc_of_is_contr _ _ definition is_conn_fun_id (k : ℕ₋₂) (A : Type) : is_conn_fun k (@id A) := λa, _ open sigma.ops is_conn definition fiber_compose {A B C : Type} (g : B → C) (f : A → B) (c : C) : fiber (g ∘ f) c ≃ Σ(x : fiber g c), fiber f (point x) := begin fapply equiv.MK, { intro x, exact ⟨fiber.mk (f (point x)) (point_eq x), fiber.mk (point x) idp⟩ }, { intro x, exact fiber.mk (point x.2) (ap g (point_eq x.2) ⬝ point_eq x.1) }, { intro x, induction x with x₁ x₂, induction x₁ with b p, induction x₂ with a q, induction p, esimp at q, induction q, reflexivity }, { intro x, induction x with a p, induction p, reflexivity } end definition is_trunc_fun_compose (k : ℕ₋₂) {A B C : Type} {g : B → C} {f : A → B} (Hg : is_trunc_fun k g) (Hf : is_trunc_fun k f) : is_trunc_fun k (g ∘ f) := λc, is_trunc_equiv_closed_rev k (fiber_compose g f c) definition is_conn_fun_compose (k : ℕ₋₂) {A B C : Type} {g : B → C} {f : A → B} (Hg : is_conn_fun k g) (Hf : is_conn_fun k f) : is_conn_fun k (g ∘ f) := λc, is_conn_equiv_closed_rev k (fiber_compose g f c) _ end fiber open fiber namespace fin definition lift_succ2 [constructor] ⦃n : ℕ⦄ (x : fin n) : fin (nat.succ n) := fin.mk x (le.step (is_lt x)) end fin namespace function variables {A B : Type} {f f' : A → B} open is_conn sigma.ops definition is_contr_of_is_surjective (f : A → B) (H : is_surjective f) (HA : is_contr A) (HB : is_set B) : is_contr B := is_contr.mk (f !center) begin intro b, induction H b, exact ap f !is_prop.elim ⬝ p end definition is_surjective_of_is_contr [constructor] (f : A → B) (a : A) (H : is_contr B) : is_surjective f := λb, image.mk a !eq_of_is_contr definition is_contr_of_is_embedding (f : A → B) (H : is_embedding f) (HB : is_prop B) (a₀ : A) : is_contr A := is_contr.mk a₀ (λa, is_injective_of_is_embedding (is_prop.elim (f a₀) (f a))) definition merely_constant {A B : Type} (f : A → B) : Type := Σb, Πa, merely (f a = b) definition merely_constant_pmap {A B : Type*} {f : A →* B} (H : merely_constant f) (a : A) : merely (f a = pt) := tconcat (tconcat (H.2 a) (tinverse (H.2 pt))) (tr (respect_pt f)) definition merely_constant_of_is_conn {A B : Type*} (f : A →* B) [is_conn 0 A] : merely_constant f := ⟨pt, is_conn.elim -1 _ (tr (respect_pt f))⟩ definition homotopy_group_isomorphism_of_is_embedding (n : ℕ) [H : is_succ n] {A B : Type*} (f : A →* B) [H2 : is_embedding f] : πg[n] A ≃g πg[n] B := begin apply isomorphism.mk (homotopy_group_homomorphism n f), induction H with n, apply is_equiv_of_equiv_of_homotopy (ptrunc_pequiv_ptrunc 0 (loopn_pequiv_loopn_of_is_embedding (n+1) f)), exact sorry end end function open function namespace is_conn open unit trunc_index nat is_trunc pointed.ops sigma.ops prod.ops definition is_conn_zero {A : Type} (a₀ : trunc 0 A) (p : Πa a' : A, ∥ a = a' ∥) : is_conn 0 A := is_conn_succ_intro a₀ (λa a', is_conn_minus_one _ (p a a')) definition is_conn_zero_pointed {A : Type*} (p : Πa a' : A, ∥ a = a' ∥) : is_conn 0 A := is_conn_zero (tr pt) p definition is_conn_zero_pointed' {A : Type*} (p : Πa : A, ∥ a = pt ∥) : is_conn 0 A := is_conn_zero_pointed (λa a', tconcat (p a) (tinverse (p a'))) definition is_conn_fiber (n : ℕ₋₂) {A B : Type} (f : A → B) (b : B) [is_conn n A] [is_conn (n.+1) B] : is_conn n (fiber f b) := is_conn_equiv_closed_rev _ !fiber.sigma_char _ definition is_conn_fun_compose {n : ℕ₋₂} {A B C : Type} (g : B → C) (f : A → B) (H : is_conn_fun n g) (K : is_conn_fun n f) : is_conn_fun n (g ∘ f) := sorry definition pconntype.sigma_char [constructor] (k : ℕ₋₂) : Type*[k] ≃ Σ(X : Type*), is_conn k X := equiv.MK (λX, ⟨pconntype.to_pType X, _⟩) (λX, pconntype.mk (carrier X.1) X.2 pt) begin intro X, induction X with X HX, induction X, reflexivity end begin intro X, induction X, reflexivity end definition is_embedding_pconntype_to_pType (k : ℕ₋₂) : is_embedding (@pconntype.to_pType k) := begin intro X Y, fapply is_equiv_of_equiv_of_homotopy, { exact eq_equiv_fn_eq (pconntype.sigma_char k) _ _ ⬝e subtype_eq_equiv _ _ }, intro p, induction p, reflexivity end definition pconntype_eq_equiv {k : ℕ₋₂} (X Y : Type*[k]) : (X = Y) ≃ (X ≃* Y) := equiv.mk _ (is_embedding_pconntype_to_pType k X Y) ⬝e pType_eq_equiv X Y definition pconntype_eq {k : ℕ₋₂} {X Y : Type*[k]} (e : X ≃* Y) : X = Y := (pconntype_eq_equiv X Y)⁻¹ᵉ e definition ptruncconntype.sigma_char [constructor] (n k : ℕ₋₂) : n-Type*[k] ≃ Σ(X : Type*), is_trunc n X × is_conn k X := equiv.MK (λX, ⟨ptruncconntype._trans_of_to_pconntype_1 X, (_, _)⟩) (λX, ptruncconntype.mk (carrier X.1) X.2.1 pt X.2.2) begin intro X, induction X with X HX, induction HX, induction X, reflexivity end begin intro X, induction X, reflexivity end definition ptruncconntype.sigma_char_pconntype [constructor] (n k : ℕ₋₂) : n-Type*[k] ≃ Σ(X : Type*[k]), is_trunc n X := equiv.MK (λX, ⟨ptruncconntype.to_pconntype X, _⟩) (λX, ptruncconntype.mk (pconntype._trans_of_to_pType X.1) X.2 pt _) begin intro X, induction X with X HX, induction HX, induction X, reflexivity end begin intro X, induction X, reflexivity end definition is_embedding_ptruncconntype_to_pconntype (n k : ℕ₋₂) : is_embedding (@ptruncconntype.to_pconntype n k) := begin intro X Y, fapply is_equiv_of_equiv_of_homotopy, { exact eq_equiv_fn_eq (ptruncconntype.sigma_char_pconntype n k) _ _ ⬝e subtype_eq_equiv _ _ }, intro p, induction p, reflexivity end definition ptruncconntype_eq_equiv {n k : ℕ₋₂} (X Y : n-Type*[k]) : (X = Y) ≃ (X ≃* Y) := equiv.mk _ (is_embedding_ptruncconntype_to_pconntype n k X Y) ⬝e pconntype_eq_equiv X Y /- duplicate -/ definition ptruncconntype_eq {n k : ℕ₋₂} {X Y : n-Type*[k]} (e : X ≃* Y) : X = Y := (ptruncconntype_eq_equiv X Y)⁻¹ᵉ e -- definition is_conn_pfiber_of_equiv_on_homotopy_groups (n : ℕ) {A B : pType.{u}} (f : A →* B) -- [H : is_conn 0 A] -- (H1 : Πk, k ≤ n → is_equiv (π→[k] f)) -- (H2 : is_surjective (π→[succ n] f)) : -- is_conn n (pfiber f) := -- _ -- definition is_conn_pelim [constructor] {k : ℕ} {X : Type*} (Y : Type*) (H : is_conn k X) : -- (X →* connect k Y) ≃ (X →* Y) := /- the k-connected cover of X, the fiber of the map X → ∥X∥ₖ. -/ definition connect (k : ℕ) (X : Type*) : Type* := pfiber (ptr k X) definition is_conn_connect (k : ℕ) (X : Type*) : is_conn k (connect k X) := is_conn_fun_tr k X (tr pt) definition connconnect [constructor] (k : ℕ) (X : Type*) : Type*[k] := pconntype.mk (connect k X) (is_conn_connect k X) pt definition connect_intro [constructor] {k : ℕ} {X : Type*} {Y : Type*} (H : is_conn k X) (f : X →* Y) : X →* connect k Y := pmap.mk (λx, fiber.mk (f x) (is_conn.elim (k.-1) _ (ap tr (respect_pt f)) x)) begin fapply fiber_eq, exact respect_pt f, apply is_conn.elim_β end definition ppoint_connect_intro [constructor] {k : ℕ} {X : Type*} {Y : Type*} (H : is_conn k X) (f : X →* Y) : ppoint (ptr k Y) ∘* connect_intro H f ~* f := begin induction f with f f₀, induction Y with Y y₀, esimp at (f,f₀), induction f₀, fapply phomotopy.mk, { intro x, reflexivity }, { symmetry, esimp, apply point_fiber_eq } end definition connect_intro_ppoint [constructor] {k : ℕ} {X : Type*} {Y : Type*} (H : is_conn k X) (f : X →* connect k Y) : connect_intro H (ppoint (ptr k Y) ∘* f) ~* f := begin cases f with f f₀, -- revert f₀, refine equiv_rect (fiber_eq_equiv' _ _)⁻¹ᵉ _ _, -- revert f, -- refine equiv_rect (!sigma_pi_equiv_pi_sigma ⬝e arrow_equiv_arrow_right _ !fiber.sigma_char⁻¹ᵉ) _ _, -- intro fg pq, induction pq with p q, induction fg with f g, -- induction Y with Y y₀, esimp at *, esimp [connect] at (f, p, q), induction p, fapply phomotopy.mk, { intro x, fapply fiber_eq, reflexivity, refine @is_conn.elim (k.-1) _ _ _ (λx', !is_trunc_eq) _ x, refine !is_conn.elim_β ⬝ _, refine _ ⬝ !idp_con⁻¹, refine !ap_compose⁻¹ ⬝ _, exact ap_is_constant point_eq f₀ }, { esimp, refine whisker_left _ !fiber_eq_eta ⬝ !fiber_eq_con ⬝ apd011 fiber_eq !idp_con _, esimp, apply eq_pathover_constant_left, refine whisker_right _ (whisker_right _ (whisker_right _ !is_conn.elim_β)) ⬝pv _, exact sorry --apply move_bot_of_left, -- refine whisker_right _ _ ⬝ _, -- refine !is_conn.elim_β ⬝ _, } end definition connect_intro_equiv [constructor] {k : ℕ} {X : Type*} (Y : Type*) (H : is_conn k X) : (X →* connect k Y) ≃ (X →* Y) := begin fapply equiv.MK, { intro f, exact ppoint (ptr k Y) ∘* f }, { intro g, exact connect_intro H g }, { intro g, apply eq_of_phomotopy, exact ppoint_connect_intro H g }, { intro f, apply eq_of_phomotopy, exact connect_intro_ppoint H f } end definition connect_intro_pequiv [constructor] {k : ℕ} {X : Type*} (Y : Type*) (H : is_conn k X) : ppmap X (connect k Y) ≃* ppmap X Y := pequiv_of_equiv (connect_intro_equiv Y H) (eq_of_phomotopy !pcompose_pconst) definition connect_pequiv {k : ℕ} {X : Type*} (H : is_conn k X) : connect k X ≃* X := @pfiber_pequiv_of_is_contr _ _ (ptr k X) H definition loop_connect (k : ℕ) (X : Type*) : Ω (connect (k+1) X) ≃* connect k (Ω X) := loop_pfiber (ptr (k+1) X) ⬝e* pfiber_pequiv_of_square pequiv.rfl (loop_ptrunc_pequiv k X) (phomotopy_of_phomotopy_pinv_left (ap1_ptr k X)) definition loopn_connect (k : ℕ) (X : Type*) : Ω[k+1] (connect k X) ≃* Ω[k+1] X := loopn_pfiber (k+1) (ptr k X) ⬝e* @pfiber_pequiv_of_is_contr _ _ _ (@is_contr_loop_of_is_trunc (k+1) _ !is_trunc_trunc) definition is_conn_of_is_conn_succ_nat (n : ℕ) (A : Type) [is_conn (n+1) A] : is_conn n A := is_conn_of_is_conn_succ n A end is_conn namespace misc open is_conn open sigma.ops pointed trunc_index /- this is equivalent to pfiber (A → ∥A∥₀) ≡ connect 0 A -/ definition component [constructor] (A : Type*) : Type* := pType.mk (Σ(a : A), merely (pt = a)) ⟨pt, tr idp⟩ lemma is_conn_component [instance] (A : Type*) : is_conn 0 (component A) := is_conn_zero_pointed' begin intro x, induction x with a p, induction p with p, induction p, exact tidp end definition component_incl [constructor] (A : Type*) : component A →* A := pmap.mk pr1 idp definition is_embedding_component_incl [instance] (A : Type*) : is_embedding (component_incl A) := is_embedding_pr1 _ definition component_intro [constructor] {A B : Type*} (f : A →* B) (H : merely_constant f) : A →* component B := begin fapply pmap.mk, { intro a, refine ⟨f a, _⟩, exact tinverse (merely_constant_pmap H a) }, exact subtype_eq !respect_pt end definition component_functor [constructor] {A B : Type*} (f : A →* B) : component A →* component B := component_intro (f ∘* component_incl A) !merely_constant_of_is_conn -- definition component_elim [constructor] {A B : Type*} (f : A →* B) (H : merely_constant f) : -- A →* component B := -- begin -- fapply pmap.mk, -- { intro a, refine ⟨f a, _⟩, exact tinverse (merely_constant_pmap H a) }, -- exact subtype_eq !respect_pt -- end definition loop_component (A : Type*) : Ω (component A) ≃* Ω A := loop_pequiv_loop_of_is_embedding (component_incl A) lemma loopn_component (n : ℕ) (A : Type*) : Ω[n+1] (component A) ≃* Ω[n+1] A := !loopn_succ_in ⬝e* loopn_pequiv_loopn n (loop_component A) ⬝e* !loopn_succ_in⁻¹ᵉ* -- lemma fundamental_group_component (A : Type*) : π₁ (component A) ≃g π₁ A := -- isomorphism_of_equiv (trunc_equiv_trunc 0 (loop_component A)) _ lemma homotopy_group_component (n : ℕ) (A : Type*) : πg[n+1] (component A) ≃g πg[n+1] A := homotopy_group_isomorphism_of_is_embedding (n+1) (component_incl A) definition is_trunc_component [instance] (n : ℕ₋₂) (A : Type*) [is_trunc n A] : is_trunc n (component A) := begin apply @is_trunc_sigma, intro a, cases n with n, { apply is_contr_of_inhabited_prop, exact tr !is_prop.elim }, { apply is_trunc_succ_of_is_prop }, end definition ptrunc_component' (n : ℕ₋₂) (A : Type*) : ptrunc (n.+2) (component A) ≃* component (ptrunc (n.+2) A) := begin fapply pequiv.MK', { exact ptrunc.elim (n.+2) (component_functor !ptr) }, { intro x, cases x with x p, induction x with a, refine tr ⟨a, _⟩, note q := trunc_functor -1 !tr_eq_tr_equiv p, exact trunc_trunc_equiv_left _ !minus_one_le_succ q }, { exact sorry }, { exact sorry } end definition ptrunc_component (n : ℕ₋₂) (A : Type*) : ptrunc n (component A) ≃* component (ptrunc n A) := begin cases n with n, exact sorry, cases n with n, exact sorry, exact ptrunc_component' n A end definition break_into_components (A : Type) : A ≃ Σ(x : trunc 0 A), Σ(a : A), ∥ tr a = x ∥ := calc A ≃ Σ(a : A) (x : trunc 0 A), tr a = x : by exact (@sigma_equiv_of_is_contr_right _ _ (λa, !is_contr_sigma_eq))⁻¹ᵉ ... ≃ Σ(x : trunc 0 A) (a : A), tr a = x : by apply sigma_comm_equiv ... ≃ Σ(x : trunc 0 A), Σ(a : A), ∥ tr a = x ∥ : by exact sigma_equiv_sigma_right (λx, sigma_equiv_sigma_right (λa, !trunc_equiv⁻¹ᵉ)) definition pfiber_pequiv_component_of_is_contr [constructor] {A B : Type*} (f : A →* B) [is_contr B] /- extra condition, something like trunc_functor 0 f is an embedding -/ : pfiber f ≃* component A := sorry end misc namespace sphere -- definition constant_sphere_map_sphere {n m : ℕ} (H : n < m) (f : S n →* S m) : -- f ~* pconst (S n) (S m) := -- begin -- assert H : is_contr (Ω[n] (S m)), -- { apply homotopy_group_sphere_le, }, -- apply phomotopy_of_eq, -- apply eq_of_fn_eq_fn !sphere_pmap_pequiv, -- apply @is_prop.elim -- end end sphere section injective_surjective open trunc fiber image /- do we want to prove this without funext before we move it? -/ variables {A B C : Type} (f : A → B) definition is_embedding_factor [is_set A] [is_set B] (g : B → C) (h : A → C) (H : g ∘ f ~ h) : is_embedding h → is_embedding f := begin induction H using homotopy.rec_on_idp, intro E, fapply is_embedding_of_is_injective, intro x y p, fapply @is_injective_of_is_embedding _ _ _ E _ _ (ap g p) end definition is_surjective_factor (g : B → C) (h : A → C) (H : g ∘ f ~ h) : is_surjective h → is_surjective g := begin induction H using homotopy.rec_on_idp, intro S, intro c, note p := S c, induction p, apply tr, fapply fiber.mk, exact f a, exact p end end injective_surjective -- Yuri Sulyma's code from HoTT MRC notation `⅀→`:(max+5) := susp_functor notation `⅀⇒`:(max+5) := susp_functor_phomotopy notation `Ω⇒`:(max+5) := ap1_phomotopy definition ap1_phomotopy_symm {A B : Type*} {f g : A →* B} (p : f ~* g) : (Ω⇒ p)⁻¹* = Ω⇒ (p⁻¹*) := begin induction p using phomotopy_rec_idp, rewrite ap1_phomotopy_refl, xrewrite [+refl_symm], rewrite ap1_phomotopy_refl end definition ap1_phomotopy_trans {A B : Type*} {f g h : A →* B} (q : g ~* h) (p : f ~* g) : Ω⇒ (p ⬝* q) = Ω⇒ p ⬝* Ω⇒ q := begin induction p using phomotopy_rec_idp, induction q using phomotopy_rec_idp, rewrite trans_refl, rewrite [+ap1_phomotopy_refl], rewrite trans_refl end namespace pointed definition pbool_pequiv_add_point_unit [constructor] : pbool ≃* unit₊ := pequiv_of_equiv (bool_equiv_option_unit) idp definition to_homotopy_pt_mk {A B : Type*} {f g : A →* B} (h : f ~ g) (p : h pt ⬝ respect_pt g = respect_pt f) : to_homotopy_pt (phomotopy.mk h p) = p := to_right_inv !eq_con_inv_equiv_con_eq p variables {A₀₀ A₂₀ A₀₂ A₂₂ : Type*} {f₁₀ : A₀₀ →* A₂₀} {f₁₂ : A₀₂ →* A₂₂} {f₀₁ : A₀₀ →* A₀₂} {f₂₁ : A₂₀ →* A₂₂} definition psquare_transpose (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : psquare f₀₁ f₂₁ f₁₀ f₁₂ := p⁻¹* end pointed namespace pi definition pi_bool_left_nat {A B : bool → Type} (g : Πx, A x -> B x) : hsquare (pi_bool_left A) (pi_bool_left B) (pi_functor_right g) (prod_functor (g ff) (g tt)) := begin intro h, esimp end definition pi_bool_left_inv_nat {A B : bool → Type} (g : Πx, A x -> B x) : hsquare (pi_bool_left A)⁻¹ᵉ (pi_bool_left B)⁻¹ᵉ (prod_functor (g ff) (g tt)) (pi_functor_right g) := hhinverse (pi_bool_left_nat g) end pi namespace sum infix ` +→ `:62 := sum_functor variables {A₀₀ A₂₀ A₀₂ A₂₂ B₀₀ B₂₀ B₀₂ B₂₂ A A' B B' C C' : Type} {f₁₀ : A₀₀ → A₂₀} {f₁₂ : A₀₂ → A₂₂} {f₀₁ : A₀₀ → A₀₂} {f₂₁ : A₂₀ → A₂₂} {g₁₀ : B₀₀ → B₂₀} {g₁₂ : B₀₂ → B₂₂} {g₀₁ : B₀₀ → B₀₂} {g₂₁ : B₂₀ → B₂₂} {h₀₁ : B₀₀ → A₀₂} {h₂₁ : B₂₀ → A₂₂} definition flip_flip (x : A ⊎ B) : flip (flip x) = x := begin induction x: reflexivity end definition sum_rec_hsquare [unfold 16] (h : hsquare f₁₀ f₁₂ f₀₁ f₂₁) (k : hsquare g₁₀ f₁₂ h₀₁ h₂₁) : hsquare (f₁₀ +→ g₁₀) f₁₂ (sum.rec f₀₁ h₀₁) (sum.rec f₂₁ h₂₁) := begin intro x, induction x with a b, exact h a, exact k b end definition sum_functor_hsquare [unfold 19] (h : hsquare f₁₀ f₁₂ f₀₁ f₂₁) (k : hsquare g₁₀ g₁₂ g₀₁ g₂₁) : hsquare (f₁₀ +→ g₁₀) (f₁₂ +→ g₁₂) (f₀₁ +→ g₀₁) (f₂₁ +→ g₂₁) := sum_rec_hsquare (λa, ap inl (h a)) (λb, ap inr (k b)) definition sum_functor_compose (g : B → C) (f : A → B) (g' : B' → C') (f' : A' → B') : (g ∘ f) +→ (g' ∘ f') ~ g +→ g' ∘ f +→ f' := begin intro x, induction x with a a': reflexivity end definition sum_rec_sum_functor (g : B → C) (g' : B' → C) (f : A → B) (f' : A' → B') : sum.rec g g' ∘ sum_functor f f' ~ sum.rec (g ∘ f) (g' ∘ f') := begin intro x, induction x with a a': reflexivity end definition sum_rec_same_compose (g : B → C) (f : A → B) : sum.rec (g ∘ f) (g ∘ f) ~ g ∘ sum.rec f f := begin intro x, induction x with a a': reflexivity end definition sum_rec_same (f : A → B) : sum.rec f f ~ f ∘ sum.rec id id := sum_rec_same_compose f id end sum namespace prod infix ` ×→ `:63 := prod_functor infix ` ×≃ `:63 := prod_equiv_prod end prod namespace equiv definition rec_eq_of_equiv {A : Type} {P : A → A → Type} (e : Πa a', a = a' ≃ P a a') {a a' : A} (Q : P a a' → Type) (H : Π(q : a = a'), Q (e a a' q)) : Π(p : P a a'), Q p := equiv_rect (e a a') Q H definition rec_idp_of_equiv {A : Type} {P : A → A → Type} (e : Πa a', a = a' ≃ P a a') {a : A} (r : P a a) (s : e a a idp = r) (Q : Πa', P a a' → Type) (H : Q a r) ⦃a' : A⦄ (p : P a a') : Q a' p := rec_eq_of_equiv e _ begin intro q, induction q, induction s, exact H end p definition rec_idp_of_equiv_idp {A : Type} {P : A → A → Type} (e : Πa a', a = a' ≃ P a a') {a : A} (r : P a a) (s : e a a idp = r) (Q : Πa', P a a' → Type) (H : Q a r) : rec_idp_of_equiv e r s Q H r = H := begin induction s, refine !is_equiv_rect_comp ⬝ _, reflexivity end end equiv namespace paths variables {A : Type} {R : A → A → Type} {a₁ a₂ a₃ a₄ : A} inductive all (T : Π⦃a₁ a₂ : A⦄, R a₁ a₂ → Type) : Π⦃a₁ a₂ : A⦄, paths R a₁ a₂ → Type := | nil {} : Π{a : A}, all T (@nil A R a) | cons : Π{a₁ a₂ a₃ : A} {r : R a₂ a₃} {p : paths R a₁ a₂}, T r → all T p → all T (cons r p) inductive Exists (T : Π⦃a₁ a₂ : A⦄, R a₁ a₂ → Type) : Π⦃a₁ a₂ : A⦄, paths R a₁ a₂ → Type := | base : Π{a₁ a₂ a₃ : A} {r : R a₂ a₃} (p : paths R a₁ a₂), T r → Exists T (cons r p) | cons : Π{a₁ a₂ a₃ : A} (r : R a₂ a₃) {p : paths R a₁ a₂}, Exists T p → Exists T (cons r p) inductive mem (l : R a₃ a₄) : Π⦃a₁ a₂ : A⦄, paths R a₁ a₂ → Type := | base : Π{a₂ : A} (p : paths R a₂ a₃), mem l (cons l p) | cons : Π{a₁ a₂ a₃ : A} (r : R a₂ a₃) {p : paths R a₁ a₂}, mem l p → mem l (cons r p) definition len (p : paths R a₁ a₂) : ℕ := begin induction p with a a₁ a₂ a₃ r p IH, { exact 0 }, { exact nat.succ IH } end definition mem_equiv_Exists (l : R a₁ a₂) (p : paths R a₃ a₄) : mem l p ≃ Exists (λa a' r, ⟨a₁, a₂, l⟩ = ⟨a, a', r⟩) p := sorry end paths namespace list open is_trunc trunc sigma.ops prod.ops lift variables {A B X : Type} definition foldl_homotopy {f g : A → B → A} (h : f ~2 g) (a : A) : foldl f a ~ foldl g a := begin intro bs, revert a, induction bs with b bs p: intro a, reflexivity, esimp [foldl], exact p (f a b) ⬝ ap010 (foldl g) (h a b) bs end definition cons_eq_cons {x x' : X} {l l' : list X} (p : x::l = x'::l') : x = x' × l = l' := begin refine lift.down (list.no_confusion p _), intro q r, split, exact q, exact r end definition concat_neq_nil (x : X) (l : list X) : concat x l ≠ nil := begin intro p, cases l: cases p, end definition concat_eq_singleton {x x' : X} {l : list X} (p : concat x l = [x']) : x = x' × l = [] := begin cases l with x₂ l, { cases cons_eq_cons p with q r, subst q, split: reflexivity }, { exfalso, esimp [concat] at p, apply concat_neq_nil x l, revert p, generalize (concat x l), intro l' p, cases cons_eq_cons p with q r, exact r } end definition foldr_concat (f : A → B → B) (b : B) (a : A) (l : list A) : foldr f b (concat a l) = foldr f (f a b) l := begin induction l with a' l p, reflexivity, rewrite [concat_cons, foldr_cons, p] end definition iterated_prod (X : Type.{u}) (n : ℕ) : Type.{u} := iterate (prod X) n (lift unit) definition is_trunc_iterated_prod {k : ℕ₋₂} {X : Type} {n : ℕ} (H : is_trunc k X) : is_trunc k (iterated_prod X n) := begin induction n with n IH, { apply is_trunc_of_is_contr, apply is_trunc_lift }, { exact @is_trunc_prod _ _ _ H IH } end definition list_of_iterated_prod {n : ℕ} (x : iterated_prod X n) : list X := begin induction n with n IH, { exact [] }, { exact x.1::IH x.2 } end definition list_of_iterated_prod_succ {n : ℕ} (x : X) (xs : iterated_prod X n) : @list_of_iterated_prod X (succ n) (x, xs) = x::list_of_iterated_prod xs := by reflexivity definition iterated_prod_of_list (l : list X) : Σn, iterated_prod X n := begin induction l with x l IH, { exact ⟨0, up ⋆⟩ }, { exact ⟨succ IH.1, (x, IH.2)⟩ } end definition iterated_prod_of_list_cons (x : X) (l : list X) : iterated_prod_of_list (x::l) = ⟨succ (iterated_prod_of_list l).1, (x, (iterated_prod_of_list l).2)⟩ := by reflexivity protected definition sigma_char [constructor] (X : Type) : list X ≃ Σ(n : ℕ), iterated_prod X n := begin apply equiv.MK iterated_prod_of_list (λv, list_of_iterated_prod v.2), { intro x, induction x with n x, esimp, induction n with n IH, { induction x with x, induction x, reflexivity }, { revert x, change Π(x : X × iterated_prod X n), _, intro xs, cases xs with x xs, rewrite [list_of_iterated_prod_succ, iterated_prod_of_list_cons], apply sigma_eq (ap succ (IH xs)..1), apply pathover_ap, refine prod_pathover _ _ _ _ (IH xs)..2, apply pathover_of_eq, reflexivity }}, { intro l, induction l with x l IH, { reflexivity }, { exact ap011 cons idp IH }} end local attribute [instance] is_trunc_iterated_prod definition is_trunc_list [instance] {n : ℕ₋₂} {X : Type} (H : is_trunc (n.+2) X) : is_trunc (n.+2) (list X) := begin assert H : is_trunc (n.+2) (Σ(k : ℕ), iterated_prod X k), { apply is_trunc_sigma, apply is_trunc_succ_succ_of_is_set, intro, exact is_trunc_iterated_prod H }, apply is_trunc_equiv_closed_rev _ (list.sigma_char X), end end list /- namespace logic? -/ namespace decidable definition double_neg_elim {A : Type} (H : decidable A) (p : ¬ ¬ A) : A := begin induction H, assumption, contradiction end definition dite_true {C : Type} [H : decidable C] {A : Type} {t : C → A} {e : ¬ C → A} (c : C) (H' : is_prop C) : dite C t e = t c := begin induction H with H H, exact ap t !is_prop.elim, contradiction end definition dite_false {C : Type} [H : decidable C] {A : Type} {t : C → A} {e : ¬ C → A} (c : ¬ C) : dite C t e = e c := begin induction H with H H, contradiction, exact ap e !is_prop.elim, end definition decidable_eq_of_is_prop (A : Type) [is_prop A] : decidable_eq A := λa a', decidable.inl !is_prop.elim definition decidable_eq_sigma [instance] {A : Type} (B : A → Type) [HA : decidable_eq A] [HB : Πa, decidable_eq (B a)] : decidable_eq (Σa, B a) := begin intro v v', induction v with a b, induction v' with a' b', cases HA a a' with p np, { induction p, cases HB a b b' with q nq, induction q, exact decidable.inl idp, apply decidable.inr, intro p, apply nq, apply @eq_of_pathover_idp A B, exact change_path !is_prop.elim p..2 }, { apply decidable.inr, intro p, apply np, exact p..1 } end open sum definition decidable_eq_sum [instance] (A B : Type) [HA : decidable_eq A] [HB : decidable_eq B] : decidable_eq (A ⊎ B) := begin intro v v', induction v with a b: induction v' with a' b', { cases HA a a' with p np, { exact decidable.inl (ap sum.inl p) }, { apply decidable.inr, intro p, cases p, apply np, reflexivity }}, { apply decidable.inr, intro p, cases p }, { apply decidable.inr, intro p, cases p }, { cases HB b b' with p np, { exact decidable.inl (ap sum.inr p) }, { apply decidable.inr, intro p, cases p, apply np, reflexivity }}, end end decidable