/- Copyright (c) 2016 Egbert Rijke. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Egbert Rijke, Steve Awodey Exact couple, derived couples, and so on -/ import algebra.group_theory hit.set_quotient types.sigma types.list types.sum .quotient_group .subgroup .ses open eq algebra is_trunc set_quotient relation sigma sigma.ops prod prod.ops sum list trunc function group trunc equiv is_equiv -- This definition needs to be moved to exactness.hlean. However we had trouble doing so. Please help. definition iso_ker_im_of_exact {A B C : AbGroup} (f : A →g B) (g : B →g C) (E : is_exact f g) : ab_kernel g ≃g ab_image f := begin fapply ab_subgroup_iso, intro a, induction E, exact ker_in_im a, intro a b, induction b with q, induction q with b p, induction p, induction E, exact im_in_ker b, end definition is_differential {B : AbGroup} (d : B →g B) := Π(b:B), d (d b) = 1 definition image_subgroup_of_diff {B : AbGroup} (d : B →g B) (H : is_differential d) : subgroup_rel (ab_kernel d) := subgroup_rel_of_subgroup (image_subgroup d) (kernel_subgroup d) begin intro g p, induction p with f, induction f with h p, rewrite [p⁻¹], esimp, exact H h end definition diff_im_in_ker {B : AbGroup} (d : B →g B) (H : is_differential d) : Π(b : B), image_subgroup d b → kernel_subgroup d b := begin intro b p, induction p with q, induction q with b' p, induction p, exact H b' end definition homology {B : AbGroup} (d : B →g B) (H : is_differential d) : AbGroup := @quotient_ab_group (ab_kernel d) (image_subgroup_of_diff d H) definition homology_ugly {B : AbGroup} (d : B →g B) (H : is_differential d) : AbGroup := @quotient_ab_group (ab_kernel d) (image_subgroup (ab_subgroup_of_subgroup_incl (diff_im_in_ker d H))) definition homology_iso_ugly {B : AbGroup} (d : B →g B) (H : is_differential d) : (homology d H) ≃g (homology_ugly d H) := begin fapply @iso_of_ab_qg_group (ab_kernel d), intro a, intro p, induction p with f, induction f with b p, fapply tr, fapply fiber.mk, fapply sigma.mk, exact d b, fapply tr, fapply fiber.mk, exact b, reflexivity, induction a with c q, fapply subtype_eq, refine p ⬝ _, reflexivity, intro b p, induction p with f, induction f with c p, induction p, induction c with a q, induction q with f, induction f with a' p, induction p, fapply tr, fapply fiber.mk, exact a', reflexivity end definition SES_iso_C {A B C C' : AbGroup} (ses : SES A B C) (k : C ≃g C') : SES A B C' := begin fapply SES.mk, exact SES.f ses, exact k ∘g SES.g ses, exact SES.Hf ses, fapply @is_surjective_compose _ _ _ k (SES.g ses), exact is_surjective_of_is_equiv k, exact SES.Hg ses, fapply is_exact.mk, intro a, esimp, note h := SES.ex ses, note h2 := is_exact.im_in_ker h a, refine ap k h2 ⬝ _ , exact to_respect_one k, intro b, intro k3, note h := SES.ex ses, note h3 := is_exact.ker_in_im h b, fapply is_exact.ker_in_im h, refine _ ⬝ ap k⁻¹ᵍ k3 ⬝ _ , esimp, exact (to_left_inv (equiv_of_isomorphism k) ((SES.g ses) b))⁻¹, exact to_respect_one k⁻¹ᵍ end definition SES_of_differential_ugly {B : AbGroup} (d : B →g B) (H : is_differential d) : SES (ab_image d) (ab_kernel d) (homology_ugly d H) := begin exact SES_of_inclusion (ab_subgroup_of_subgroup_incl (diff_im_in_ker d H)) (is_embedding_ab_subgroup_of_subgroup_incl (diff_im_in_ker d H)), end definition SES_of_differential {B : AbGroup} (d : B →g B) (H : is_differential d) : SES (ab_image d) (ab_kernel d) (homology d H) := begin fapply SES_iso_C, fapply SES_of_inclusion (ab_subgroup_of_subgroup_incl (diff_im_in_ker d H)) (is_embedding_ab_subgroup_of_subgroup_incl (diff_im_in_ker d H)), exact (homology_iso_ugly d H)⁻¹ᵍ end structure exact_couple (A B : AbGroup) : Type := ( i : A →g A) (j : A →g B) (k : B →g A) ( exact_ij : is_exact i j) ( exact_jk : is_exact j k) ( exact_ki : is_exact k i) definition differential {A B : AbGroup} (EC : exact_couple A B) : B →g B := (exact_couple.j EC) ∘g (exact_couple.k EC) definition differential_is_differential {A B : AbGroup} (EC : exact_couple A B) : is_differential (differential EC) := begin induction EC, induction exact_jk, intro b, exact (ap (group_fun j) (im_in_ker (group_fun k b))) ⬝ (respect_one j) end section derived_couple /- A - i -> A k ^ | | v j B ====== B -/ parameters {A B : AbGroup} (EC : exact_couple A B) local abbreviation i := exact_couple.i EC local abbreviation j := exact_couple.j EC local abbreviation k := exact_couple.k EC local abbreviation d := differential EC local abbreviation H := differential_is_differential EC -- local abbreviation u := exact_couple.i (SES_of_differential d H) definition derived_couple_A : AbGroup := ab_subgroup (image_subgroup i) definition derived_couple_B : AbGroup := homology (differential EC) (differential_is_differential EC) print homology definition derived_couple_i : derived_couple_A →g derived_couple_A := (image_lift (exact_couple.i EC)) ∘g (image_incl (exact_couple.i EC)) definition SES_of_exact_couple_at_i : SES (ab_kernel i) A (ab_image i) := begin fapply SES_iso_C, fapply SES_of_subgroup (kernel_subgroup i), fapply ab_group_first_iso_thm i, end definition kj_zero (a : A) : k (j a) = 1 := is_exact.im_in_ker (exact_couple.exact_jk EC) a definition j_factor : A →g (ab_kernel d) := begin fapply ab_hom_lift j, intro a, unfold kernel_subgroup, exact calc d (j a) = j (k (j a)) : rfl ... = j 1 : by exact ap j (kj_zero a) ... = 1 : to_respect_one, end definition subgroup_iso_exact_at_A : ab_kernel i ≃g ab_image k := begin fapply ab_subgroup_iso, intro a, induction EC, induction exact_ki, exact ker_in_im a, intro a b, induction b with f, induction f with b p, induction p, induction EC, induction exact_ki, exact im_in_ker b, end definition subgroup_iso_exact_at_A_triangle : ab_kernel_incl i ~ ab_image_incl k ∘g subgroup_iso_exact_at_A := begin fapply ab_subgroup_iso_triangle, intro a b, induction b with f, induction f with b p, induction p, induction EC, induction exact_ki, exact im_in_ker b, end definition subgroup_homom_ker_to_im : ab_kernel i →g ab_image d := (image_homomorphism k j) ∘g subgroup_iso_exact_at_A open eq definition left_square_derived_ses_aux : j_factor ∘g ab_image_incl k ~ (SES.f (SES_of_differential d H)) ∘g (image_homomorphism k j) := begin intro x, induction x with a p, induction p with f, induction f with b p, induction p, fapply subtype_eq, reflexivity, end definition left_square_derived_ses : j_factor ∘g (ab_kernel_incl i) ~ (SES.f (SES_of_differential d H)) ∘g subgroup_homom_ker_to_im := begin intro x, exact (ap j_factor (subgroup_iso_exact_at_A_triangle x)) ⬝ (left_square_derived_ses_aux (subgroup_iso_exact_at_A x)), end print quotient_extend_unique_SES check quotient_extend_unique_SES (SES_of_exact_couple_at_i) (SES_of_differential d H) (subgroup_homom_ker_to_im) (j_factor) (left_square_derived_ses) definition derived_couple_j_unique : is_contr (Σ hC, group_fun (hC ∘g SES.g SES_of_exact_couple_at_i) ~ group_fun (SES.g (SES_of_differential d H) ∘g j_factor)) := quotient_extend_unique_SES (SES_of_exact_couple_at_i) (SES_of_differential d H) (subgroup_homom_ker_to_im) (j_factor) (left_square_derived_ses) definition derived_couple_j : derived_couple_A →g derived_couple_B := begin exact pr1 (center' (derived_couple_j_unique)), end definition derived_couple_j_htpy : group_fun (derived_couple_j ∘g SES.g SES_of_exact_couple_at_i) ~ group_fun (SES.g (SES_of_differential d H) ∘g j_factor) := begin exact pr2 (center' (derived_couple_j_unique)), end definition SES_im_i_trivial : SES trivial_ab_group derived_couple_A derived_couple_A := begin fapply SES_of_isomorphism_right, fapply isomorphism.refl, end definition subgroup_iso_exact_kerj_imi : ab_kernel j ≃g ab_image i := begin fapply iso_ker_im_of_exact, induction EC, exact exact_ij, end definition k_restrict_aux : ab_kernel d →g ab_kernel j := begin fapply ab_hom_lift_kernel, exact k ∘g ab_kernel_incl d, intro p, induction p with b p, exact p, end definition k_restrict : ab_kernel d →g derived_couple_A := subgroup_iso_exact_kerj_imi ∘g k_restrict_aux definition k_restrict_square_left : k_restrict ∘g (SES.f (SES_of_differential d H)) ~ λ x, 1 := begin intro x, induction x with b' p, induction p with q, induction q with b p, induction p, fapply subtype_eq, induction EC, induction exact_jk, fapply im_in_ker, end definition derived_couple_k_unique : is_contr (Σ hC, group_fun (hC ∘g SES.g (SES_of_differential d H)) ~ group_fun (SES.g SES_im_i_trivial ∘g k_restrict)) := quotient_extend_unique_SES (SES_of_differential d H) (SES_im_i_trivial) (trivial_homomorphism (ab_image d) trivial_ab_group) (k_restrict) (k_restrict_square_left) definition derived_couple_k : derived_couple_B →g derived_couple_A := begin exact pr1 (center' (derived_couple_k_unique)), end definition derived_couple_k_htpy : group_fun (derived_couple_k ∘g SES.g (SES_of_differential d H)) ~ group_fun (SES.g (SES_im_i_trivial) ∘g k_restrict) := begin exact pr2 (center' (derived_couple_k_unique)), end end derived_couple