import .direct_sum .quotient_group ..move_to_lib open eq algebra is_trunc set_quotient relation sigma prod sum list trunc function equiv sigma.ops nat namespace group section parameters (A : ℕ → AbGroup) (f : Πi , A i →g A (i + 1)) variables {A' : AbGroup} definition seq_colim_carrier : AbGroup := dirsum A inductive seq_colim_rel : seq_colim_carrier → Type := | rmk : Πi a, seq_colim_rel ((dirsum_incl A i a) * (dirsum_incl A (i + 1) (f i a))⁻¹) definition seq_colim : AbGroup := quotient_ab_group_gen seq_colim_carrier (λa, ∥seq_colim_rel a∥) parameters {A f} definition seq_colim_incl [constructor] (i : ℕ) : A i →g seq_colim := gqg_map _ _ ∘g dirsum_incl A i definition seq_colim_quotient (h : Πi, A i →g A') (k : Πi a, h i a = h (succ i) (f i a)) (v : seq_colim_carrier) (r : ∥seq_colim_rel v∥) : dirsum_elim h v = 1 := begin induction r with r, induction r, refine !to_respect_mul ⬝ _, refine ap (λγ, group_fun (dirsum_elim h) (group_fun (dirsum_incl A i) a) * group_fun (dirsum_elim h) γ) (!to_respect_inv)⁻¹ ⬝ _, refine ap (λγ, γ * group_fun (dirsum_elim h) (group_fun (dirsum_incl A (succ i)) (f i a)⁻¹)) !dirsum_elim_compute ⬝ _, refine ap (λγ, (h i a) * γ) !dirsum_elim_compute ⬝ _, refine ap (λγ, γ * group_fun (h (succ i)) (f i a)⁻¹) !k ⬝ _, refine ap (λγ, group_fun (h (succ i)) (f i a) * γ) (!to_respect_inv) ⬝ _, exact !mul.right_inv end definition seq_colim_elim [constructor] (h : Πi, A i →g A') (k : Πi a, h i a = h (succ i) (f i a)) : seq_colim →g A' := gqg_elim _ (dirsum_elim h) (seq_colim_quotient h k) definition seq_colim_compute (h : Πi, A i →g A') (k : Πi a, h i a = h (succ i) (f i a)) (i : ℕ) (a : A i) : (seq_colim_elim h k) (seq_colim_incl i a) = h i a := begin refine gqg_elim_compute (λa, ∥seq_colim_rel a∥) (dirsum_elim h) (seq_colim_quotient h k) (dirsum_incl A i a) ⬝ _, exact !dirsum_elim_compute end definition seq_colim_glue {i : @trunctype.mk 0 ℕ _} {a : A i} : seq_colim_incl i a = seq_colim_incl (succ i) (f i a) := begin refine gqg_eq_of_rel _ _, exact tr (seq_colim_rel.rmk _ _) end section local abbreviation h (m : seq_colim →g A') : Πi, A i →g A' := λi, m ∘g (seq_colim_incl i) local abbreviation k (m : seq_colim →g A') : Πi a, h m i a = h m (succ i) (f i a) := λ i a, ap m (@seq_colim_glue i a) definition seq_colim_unique (m : seq_colim →g A') : Πv, seq_colim_elim (h m) (k m) v = m v := begin intro v, refine (gqg_elim_unique _ (dirsum_elim (h m)) _ m _ _)⁻¹ ⬝ _, apply dirsum_elim_unique, rotate 1, reflexivity, intro i a, reflexivity end end end definition seq_colim_functor [constructor] {A A' : ℕ → AbGroup} {f : Πi , A i →g A (i + 1)} {f' : Πi , A' i →g A' (i + 1)} (h : Πi, A i →g A' i) (p : Πi, hsquare (f i) (f' i) (h i) (h (i+1))) : seq_colim A f →g seq_colim A' f' := seq_colim_elim (λi, seq_colim_incl i ∘g h i) begin intro i a, refine _ ⬝ ap (seq_colim_incl (succ i)) (p i a)⁻¹, apply seq_colim_glue end -- definition seq_colim_functor_compose [constructor] {A A' A'' : ℕ → AbGroup} -- {f : Πi , A i →g A (i + 1)} {f' : Πi , A' i →g A' (i + 1)} {f'' : Πi , A'' i →g A'' (i + 1)} -- (h : Πi, A i →g A' i) (p : Πi (a : A i), h (i+1) (f i a) = f' i (h i a)) -- (h : Πi, A i →g A' i) (p : Πi (a : A i), h (i+1) (f i a) = f' i (h i a)) : -- seq_colim A f →g seq_colim A' f' := -- sorry end group