/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn, Egbert Rijke Constructions with groups -/ import algebra.group_theory hit.set_quotient types.list types.sum .free_group open eq algebra is_trunc set_quotient relation sigma sigma.ops prod sum list trunc function equiv namespace group variables {G G' : Group} {g g' h h' k : G} {A B : AbGroup} variables (X : Set) {l l' : list (X ⊎ X)} /- Free Abelian Group of a set -/ namespace free_ab_group inductive fcg_rel : list (X ⊎ X) → list (X ⊎ X) → Type := | rrefl : Πl, fcg_rel l l | cancel1 : Πx, fcg_rel [inl x, inr x] [] | cancel2 : Πx, fcg_rel [inr x, inl x] [] | rflip : Πx y, fcg_rel [x, y] [y, x] | resp_append : Π{l₁ l₂ l₃ l₄}, fcg_rel l₁ l₂ → fcg_rel l₃ l₄ → fcg_rel (l₁ ++ l₃) (l₂ ++ l₄) | rtrans : Π{l₁ l₂ l₃}, fcg_rel l₁ l₂ → fcg_rel l₂ l₃ → fcg_rel l₁ l₃ open fcg_rel local abbreviation R [reducible] := fcg_rel attribute fcg_rel.rrefl [refl] attribute fcg_rel.rtrans [trans] definition fcg_carrier [reducible] : Type := set_quotient (λx y, ∥R X x y∥) local abbreviation FG := fcg_carrier definition is_reflexive_R : is_reflexive (λx y, ∥R X x y∥) := begin constructor, intro s, apply tr, unfold R end local attribute is_reflexive_R [instance] variable {X} theorem rel_respect_flip (r : R X l l') : R X (map sum.flip l) (map sum.flip l') := begin induction r with l x x x y l₁ l₂ l₃ l₄ r₁ r₂ IH₁ IH₂ l₁ l₂ l₃ r₁ r₂ IH₁ IH₂, { reflexivity}, { repeat esimp [map], exact cancel2 x}, { repeat esimp [map], exact cancel1 x}, { repeat esimp [map], apply rflip}, { rewrite [+map_append], exact resp_append IH₁ IH₂}, { exact rtrans IH₁ IH₂} end theorem rel_respect_reverse (r : R X l l') : R X (reverse l) (reverse l') := begin induction r with l x x x y l₁ l₂ l₃ l₄ r₁ r₂ IH₁ IH₂ l₁ l₂ l₃ r₁ r₂ IH₁ IH₂, { reflexivity}, { repeat esimp [map], exact cancel2 x}, { repeat esimp [map], exact cancel1 x}, { repeat esimp [map], apply rflip}, { rewrite [+reverse_append], exact resp_append IH₂ IH₁}, { exact rtrans IH₁ IH₂} end theorem rel_cons_concat (l s) : R X (s :: l) (concat s l) := begin induction l with t l IH, { reflexivity}, { rewrite [concat_cons], transitivity (t :: s :: l), { exact resp_append !rflip !rrefl}, { exact resp_append (rrefl [t]) IH}} end definition fcg_one [constructor] : FG X := class_of [] definition fcg_inv [unfold 3] : FG X → FG X := quotient_unary_map (reverse ∘ map sum.flip) (λl l', trunc_functor -1 (rel_respect_reverse ∘ rel_respect_flip)) definition fcg_mul [unfold 3 4] : FG X → FG X → FG X := quotient_binary_map append (λl l', trunc.elim (λr m m', trunc.elim (λs, tr (resp_append r s)))) section local notation 1 := fcg_one local postfix ⁻¹ := fcg_inv local infix * := fcg_mul theorem fcg_mul_assoc (g₁ g₂ g₃ : FG X) : g₁ * g₂ * g₃ = g₁ * (g₂ * g₃) := begin refine set_quotient.rec_prop _ g₁, refine set_quotient.rec_prop _ g₂, refine set_quotient.rec_prop _ g₃, clear g₁ g₂ g₃, intro g₁ g₂ g₃, exact ap class_of !append.assoc end theorem fcg_one_mul (g : FG X) : 1 * g = g := begin refine set_quotient.rec_prop _ g, clear g, intro g, exact ap class_of !append_nil_left end theorem fcg_mul_one (g : FG X) : g * 1 = g := begin refine set_quotient.rec_prop _ g, clear g, intro g, exact ap class_of !append_nil_right end theorem fcg_mul_left_inv (g : FG X) : g⁻¹ * g = 1 := begin refine set_quotient.rec_prop _ g, clear g, intro g, apply eq_of_rel, apply tr, induction g with s l IH, { reflexivity}, { rewrite [▸*, map_cons, reverse_cons, concat_append], refine rtrans _ IH, apply resp_append, reflexivity, change R X ([flip s, s] ++ l) ([] ++ l), apply resp_append, induction s, apply cancel2, apply cancel1, reflexivity} end theorem fcg_mul_comm (g h : FG X) : g * h = h * g := begin refine set_quotient.rec_prop _ g, clear g, intro g, refine set_quotient.rec_prop _ h, clear h, intro h, apply eq_of_rel, apply tr, revert h, induction g with s l IH: intro h, { rewrite [append_nil_left, append_nil_right]}, { rewrite [append_cons,-concat_append], transitivity concat s (l ++ h), apply rel_cons_concat, rewrite [-append_concat], apply IH} end end end free_ab_group open free_ab_group variables (X) definition group_free_ab_group [constructor] : ab_group (fcg_carrier X) := ab_group.mk _ fcg_mul fcg_mul_assoc fcg_one fcg_one_mul fcg_mul_one fcg_inv fcg_mul_left_inv fcg_mul_comm definition free_ab_group [constructor] : AbGroup := AbGroup.mk _ (group_free_ab_group X) /- The universal property of the free commutative group -/ variables {X A} definition free_ab_group_inclusion [constructor] (x : X) : free_ab_group X := class_of [inl x] theorem fgh_helper_respect_fcg_rel (f : X → A) (r : fcg_rel X l l') : Π(g : A), foldl (fgh_helper f) g l = foldl (fgh_helper f) g l' := begin induction r with l x x x y l₁ l₂ l₃ l₄ r₁ r₂ IH₁ IH₂ l₁ l₂ l₃ r₁ r₂ IH₁ IH₂: intro g, { reflexivity}, { unfold [foldl], apply mul_inv_cancel_right}, { unfold [foldl], apply inv_mul_cancel_right}, { unfold [foldl, fgh_helper], apply mul.right_comm}, { rewrite [+foldl_append, IH₁, IH₂]}, { exact !IH₁ ⬝ !IH₂} end definition free_ab_group_elim [constructor] (f : X → A) : free_ab_group X →g A := begin fapply homomorphism.mk, { intro g, refine set_quotient.elim _ _ g, { intro l, exact foldl (fgh_helper f) 1 l}, { intro l l' r, esimp at *, refine trunc.rec _ r, clear r, intro r, exact fgh_helper_respect_fcg_rel f r 1}}, { refine set_quotient.rec_prop _, intro l, refine set_quotient.rec_prop _, intro l', esimp, refine !foldl_append ⬝ _, esimp, apply fgh_helper_mul} end definition fn_of_free_ab_group_elim [unfold_full] (φ : free_ab_group X →g A) : X → A := φ ∘ free_ab_group_inclusion definition free_ab_group_elim_unique [constructor] (f : X → A) (k : free_ab_group X →g A) (H : k ∘ free_ab_group_inclusion ~ f) : k ~ free_ab_group_elim f := begin refine set_quotient.rec_prop _, intro l, esimp, induction l with s l IH, { esimp [foldl], exact to_respect_one k}, { rewrite [foldl_cons, fgh_helper_mul], refine to_respect_mul k (class_of [s]) (class_of l) ⬝ _, rewrite [IH], apply ap (λx, x * _), induction s: rewrite [▸*, one_mul, -H a], apply to_respect_inv } end variables (X A) definition free_ab_group_elim_equiv_fn [constructor] : (free_ab_group X →g A) ≃ (X → A) := begin fapply equiv.MK, { exact fn_of_free_ab_group_elim}, { exact free_ab_group_elim}, { intro f, apply eq_of_homotopy, intro x, esimp, unfold [foldl], apply one_mul}, { intro k, symmetry, apply homomorphism_eq, apply free_ab_group_elim_unique, reflexivity } end end group