import .spectrum .EM -- TODO move this open trunc_index nat namespace int /- The function from integers to truncation indices which sends positive numbers to themselves, and negative numbers to negative 2. In particular -1 is sent to -2, but since we only work with pointed types, that doesn't matter for us -/ definition maxm2 [unfold 1] : ℤ → ℕ₋₂ := λ n, int.cases_on n trunc_index.of_nat (λk, -2) definition maxm2_le_maxm0 (n : ℤ) : maxm2 n ≤ max0 n := begin induction n with n n, { exact le.tr_refl n }, { exact minus_two_le 0 } end definition max0_le_of_le {n : ℤ} {m : ℕ} (H : n ≤ of_nat m) : nat.le (max0 n) m := begin induction n with n n, { exact le_of_of_nat_le_of_nat H }, { exact nat.zero_le m } end end int open int trunc eq is_trunc lift unit pointed equiv is_equiv algebra EM namespace spectrum definition ptrunc_maxm2_change_int {k l : ℤ} (X : Type*) (p : k = l) : ptrunc (maxm2 k) X ≃* ptrunc (maxm2 l) X := pequiv_ap (λ n, ptrunc (maxm2 n) X) p definition loop_ptrunc_maxm2_pequiv (k : ℤ) (X : Type*) : Ω (ptrunc (maxm2 (k+1)) X) ≃* ptrunc (maxm2 k) (Ω X) := begin induction k with k k, { exact loop_ptrunc_pequiv k X }, { refine _ ⬝e* (pequiv_punit_of_is_contr _ !is_trunc_trunc)⁻¹ᵉ*, apply @loop_pequiv_punit_of_is_set, cases k with k, { change is_set (trunc 0 X), apply _ }, { change is_set (trunc -2 X), apply _ }} end definition is_trunc_of_is_trunc_maxm2 (k : ℤ) (X : Type) : is_trunc (maxm2 k) X → is_trunc (max0 k) X := λ H, @is_trunc_of_le X _ _ (maxm2_le_maxm0 k) H definition strunc [constructor] (k : ℤ) (E : spectrum) : spectrum := spectrum.MK (λ(n : ℤ), ptrunc (maxm2 (k + n)) (E n)) (λ(n : ℤ), ptrunc_pequiv_ptrunc (maxm2 (k + n)) (equiv_glue E n) ⬝e* (loop_ptrunc_maxm2_pequiv (k + n) (E (n+1)))⁻¹ᵉ* ⬝e* (loop_pequiv_loop (ptrunc_maxm2_change_int _ (add.assoc k n 1)))) definition strunc_change_int [constructor] {k l : ℤ} (E : spectrum) (p : k = l) : strunc k E →ₛ strunc l E := begin induction p, reflexivity end definition is_trunc_maxm2_loop (A : pType) (k : ℤ) : is_trunc (maxm2 (k + 1)) A → is_trunc (maxm2 k) (Ω A) := begin intro H, induction k with k k, { apply is_trunc_loop, exact H }, { apply is_contr_loop, cases k with k, { exact H }, { have H2 : is_contr A, from H, apply _ } } end definition is_strunc [reducible] (k : ℤ) (E : spectrum) : Type := Π (n : ℤ), is_trunc (maxm2 (k + n)) (E n) definition is_strunc_change_int {k l : ℤ} (E : spectrum) (p : k = l) : is_strunc k E → is_strunc l E := begin induction p, exact id end definition is_strunc_strunc (k : ℤ) (E : spectrum) : is_strunc k (strunc k E) := λ n, is_trunc_trunc (maxm2 (k + n)) (E n) definition is_trunc_maxm2_change_int {k l : ℤ} (X : pType) (p : k = l) : is_trunc (maxm2 k) X → is_trunc (maxm2 l) X := by induction p; exact id definition strunc_functor [constructor] (k : ℤ) {E F : spectrum} (f : E →ₛ F) : strunc k E →ₛ strunc k F := smap.mk (λn, ptrunc_functor (maxm2 (k + n)) (f n)) sorry definition is_strunc_EM_spectrum (G : AbGroup) : is_strunc 0 (EM_spectrum G) := begin intro n, induction n with n n, { -- case ≥ 0 apply is_trunc_maxm2_change_int (EM G n) (zero_add n)⁻¹, apply is_trunc_EM }, { change is_contr (EM_spectrum G (-[1+n])), induction n with n IH, { -- case = -1 apply is_contr_loop, exact is_trunc_EM G 0 }, { -- case < -1 apply is_trunc_loop, apply is_trunc_succ, exact IH }} end definition strunc_elim [constructor] {k : ℤ} {E F : spectrum} (f : E →ₛ F) (H : is_strunc k F) : strunc k E →ₛ F := smap.mk (λn, ptrunc.elim (maxm2 (k + n)) (f n)) (λn, sorry) definition trivial_shomotopy_group_of_is_strunc (E : spectrum) {n k : ℤ} (K : is_strunc n E) (H : n < k) : is_contr (πₛ[k] E) := let m := n + (2 - k) in have I : m < 2, from calc m = (2 - k) + n : int.add_comm n (2 - k) ... < (2 - k) + k : add_lt_add_left H (2 - k) ... = 2 : sub_add_cancel 2 k, @trivial_homotopy_group_of_is_trunc (E (2 - k)) (max0 m) 2 (is_trunc_of_is_trunc_maxm2 m (E (2 - k)) (K (2 - k))) (nat.succ_le_succ (max0_le_of_le (le_sub_one_of_lt I))) definition str [constructor] (k : ℤ) (E : spectrum) : E →ₛ strunc k E := smap.mk (λ n, ptr (maxm2 (k + n)) (E n)) (λ n, sorry) end spectrum