-- Authors: Floris van Doorn import homotopy.wedge homotopy.cofiber ..move_to_lib .pushout open wedge pushout eq prod sum pointed equiv is_equiv unit lift bool option namespace wedge variable (A : Type*) variables {A} definition add_point_of_wedge_pbool [unfold 2] (x : A ∨ pbool) : A₊ := begin induction x with a b, { exact some a }, { induction b, exact some pt, exact none }, { reflexivity } end definition wedge_pbool_of_add_point [unfold 2] (x : A₊) : A ∨ pbool := begin induction x with a, { exact inr tt }, { exact inl a } end variables (A) definition wedge_pbool_equiv_add_point [constructor] : A ∨ pbool ≃ A₊ := equiv.MK add_point_of_wedge_pbool wedge_pbool_of_add_point abstract begin intro x, induction x, { reflexivity }, { reflexivity } end end abstract begin intro x, induction x with a b, { reflexivity }, { induction b, exact wedge.glue, reflexivity }, { apply eq_pathover_id_right, refine ap_compose wedge_pbool_of_add_point _ _ ⬝ ap02 _ !elim_glue ⬝ph _, exact square_of_eq idp } end end definition wedge_flip' [unfold 3] {A B : Type*} (x : A ∨ B) : B ∨ A := begin induction x, { exact inr a }, { exact inl a }, { exact (glue ⋆)⁻¹ } end definition wedge_flip [constructor] (A B : Type*) : A ∨ B →* B ∨ A := pmap.mk wedge_flip' (glue ⋆)⁻¹ definition wedge_flip'_wedge_flip' [unfold 3] {A B : Type*} (x : A ∨ B) : wedge_flip' (wedge_flip' x) = x := begin induction x, { reflexivity }, { reflexivity }, { apply eq_pathover_id_right, apply hdeg_square, exact ap_compose wedge_flip' _ _ ⬝ ap02 _ !elim_glue ⬝ !ap_inv ⬝ !elim_glue⁻² ⬝ !inv_inv } end definition wedge_flip_wedge_flip (A B : Type*) : wedge_flip B A ∘* wedge_flip A B ~* pid (A ∨ B) := phomotopy.mk wedge_flip'_wedge_flip' proof (whisker_right _ (!ap_inv ⬝ !wedge.elim_glue⁻²) ⬝ !con.left_inv)⁻¹ qed definition wedge_comm [constructor] (A B : Type*) : A ∨ B ≃* B ∨ A := begin fapply pequiv.MK, { exact wedge_flip A B }, { exact wedge_flip B A }, { exact wedge_flip_wedge_flip A B }, { exact wedge_flip_wedge_flip B A } end -- TODO: wedge is associative definition wedge_shift [unfold 3] {A B C : Type*} (x : (A ∨ B) ∨ C) : (A ∨ (B ∨ C)) := begin induction x with l, induction l with a, exact inl a, exact inr (inl a), exact (glue ⋆), exact inr (inr a), -- exact elim_glue _ _ _, exact sorry end definition wedge_pequiv [constructor] {A A' B B' : Type*} (a : A ≃* A') (b : B ≃* B') : A ∨ B ≃* A' ∨ B' := begin fapply pequiv_of_equiv, exact pushout.equiv !pconst !pconst !pconst !pconst !pequiv.refl a b (λdummy, respect_pt a) (λdummy, respect_pt b), exact ap pushout.inl (respect_pt a) end definition plift_wedge.{u v} (A B : Type*) : plift.{u v} (A ∨ B) ≃* plift.{u v} A ∨ plift.{u v} B := calc plift.{u v} (A ∨ B) ≃* A ∨ B : by exact !pequiv_plift⁻¹ᵉ* ... ≃* plift.{u v} A ∨ plift.{u v} B : by exact wedge_pequiv !pequiv_plift !pequiv_plift protected definition pelim [constructor] {X Y Z : Type*} (f : X →* Z) (g : Y →* Z) : X ∨ Y →* Z := pmap.mk (wedge.elim f g (respect_pt f ⬝ (respect_pt g)⁻¹)) (respect_pt f) definition wedge_pr1 [constructor] (X Y : Type*) : X ∨ Y →* X := wedge.pelim (pid X) (pconst Y X) definition wedge_pr2 [constructor] (X Y : Type*) : X ∨ Y →* Y := wedge.pelim (pconst X Y) (pid Y) open fiber prod cofiber pi variables {X Y : Type*} definition pcofiber_pprod_incl1_of_pfiber_wedge_pr2' [unfold 3] (x : pfiber (wedge_pr2 X Y)) : pcofiber (pprod_incl1 (Ω Y) X) := begin induction x with x p, induction x with x y, { exact cod _ (p, x) }, { exact pt }, { apply arrow_pathover_constant_right, intro p, apply cofiber.glue } end --set_option pp.all true /- X : Type* has a nondegenerate basepoint iff it has the homotopy extension property iff Π(f : X → Y) (y : Y) (p : f pt = y), ∃(g : X → Y) (h : f ~ g) (q : y = g pt), h pt = p ⬝ q (or Σ?) -/ definition pfiber_wedge_pr2_of_pcofiber_pprod_incl1' [unfold 3] (x : pcofiber (pprod_incl1 (Ω Y) X)) : pfiber (wedge_pr2 X Y) := begin induction x with v p, { induction v with p x, exact fiber.mk (inl x) p }, { exact fiber.mk (inr pt) idp }, { esimp, apply fiber_eq (wedge.glue ⬝ ap inr p), symmetry, refine !ap_con ⬝ !wedge.elim_glue ◾ (!ap_compose'⁻¹ ⬝ !ap_id) ⬝ !idp_con } end variables (X Y) definition pcofiber_pprod_incl1_of_pfiber_wedge_pr2 [constructor] : pfiber (wedge_pr2 X Y) →* pcofiber (pprod_incl1 (Ω Y) X) := pmap.mk pcofiber_pprod_incl1_of_pfiber_wedge_pr2' (cofiber.glue idp) -- definition pfiber_wedge_pr2_of_pprod [constructor] : -- Ω Y ×* X →* pfiber (wedge_pr2 X Y) := -- begin -- fapply pmap.mk, -- { intro v, induction v with p x, exact fiber.mk (inl x) p }, -- { reflexivity } -- end definition pfiber_wedge_pr2_of_pcofiber_pprod_incl1 [constructor] : pcofiber (pprod_incl1 (Ω Y) X) →* pfiber (wedge_pr2 X Y) := pmap.mk pfiber_wedge_pr2_of_pcofiber_pprod_incl1' begin refine (fiber_eq wedge.glue _)⁻¹, exact !wedge.elim_glue⁻¹ end -- pcofiber.elim (pfiber_wedge_pr2_of_pprod X Y) -- begin -- fapply phomotopy.mk, -- { intro p, apply fiber_eq (wedge.glue ⬝ ap inr p ⬝ wedge.glue⁻¹), symmetry, -- refine !ap_con ⬝ (!ap_con ⬝ !wedge.elim_glue ◾ (!ap_compose'⁻¹ ⬝ !ap_id)) ◾ -- (!ap_inv ⬝ !wedge.elim_glue⁻²) ⬝ _, exact idp_con p }, -- { esimp, refine fiber_eq2 (con.right_inv wedge.glue) _ ⬝ !fiber_eq_eta⁻¹, -- rewrite [idp_con, ↑fiber_eq_pr2, con2_idp, whisker_right_idp, whisker_right_idp], -- -- refine _ ⬝ (eq_bot_of_square (transpose (ap_con_right_inv_sq -- -- (wedge.elim (λx : X, Point Y) (@id Y) idp) wedge.glue)))⁻¹, -- -- refine whisker_right _ !con_inv ⬝ _, -- exact sorry -- } -- end --set_option pp.notation false set_option pp.binder_types true open sigma.ops definition pfiber_wedge_pr2_pequiv_pcofiber_pprod_incl1 [constructor] : pfiber (wedge_pr2 X Y) ≃* pcofiber (pprod_incl1 (Ω Y) X) := pequiv.MK (pcofiber_pprod_incl1_of_pfiber_wedge_pr2 _ _) (pfiber_wedge_pr2_of_pcofiber_pprod_incl1 _ _) abstract begin fapply phomotopy.mk, { intro x, esimp, induction x with x p, induction x with x y, { reflexivity }, { refine (fiber_eq (ap inr p) _)⁻¹, refine !ap_id⁻¹ ⬝ !ap_compose' }, { apply @pi_pathover_right' _ _ _ _ (λ(xp : Σ(x : X ∨ Y), pppi.to_fun (wedge_pr2 X Y) x = pt), pfiber_wedge_pr2_of_pcofiber_pprod_incl1' (pcofiber_pprod_incl1_of_pfiber_wedge_pr2' (mk xp.1 xp.2)) = mk xp.1 xp.2), intro p, apply eq_pathover, exact sorry }}, { symmetry, refine !cofiber.elim_glue ◾ idp ⬝ _, apply con_inv_eq_idp, apply ap (fiber_eq wedge.glue), esimp, rewrite [idp_con], refine !whisker_right_idp⁻² } end end abstract begin exact sorry end end -- apply eq_pathover_id_right, refine ap_compose pcofiber_pprod_incl1_of_pfiber_wedge_pr2 _ _ ⬝ ap02 _ !elim_glue ⬝ph _ -- apply eq_pathover_id_right, refine ap_compose pfiber_wedge_pr2_of_pcofiber_pprod_incl1 _ _ ⬝ ap02 _ !elim_glue ⬝ph _ /- move -/ definition ap1_idp {A B : Type*} (f : A →* B) : Ω→ f idp = idp := respect_pt (Ω→ f) definition ap1_phomotopy_idp {A B : Type*} {f g : A →* B} (h : f ~* g) : Ω⇒ h idp = !respect_pt ⬝ !respect_pt⁻¹ := sorry variables {A} {B : Type*} {f : A →* B} {g : B →* A} (h : f ∘* g ~* pid B) include h definition nar_of_noo' (p : Ω A) : Ω (pfiber f) ×* Ω B := begin refine (_, Ω→ f p), have z : Ω A →* Ω A, from pmap.mk (λp, Ω→ (g ∘* f) p ⬝ p⁻¹) proof (respect_pt (Ω→ (g ∘* f))) qed, refine fiber_eq ((Ω→ g ∘* Ω→ f) p ⬝ p⁻¹) (!idp_con⁻¹ ⬝ whisker_right (respect_pt f) _⁻¹), induction B with B b₀, induction f with f f₀, esimp at * ⊢, induction f₀, refine !idp_con⁻¹ ⬝ ap1_con (pmap_of_map f pt) _ _ ⬝ ((ap1_pcompose (pmap_of_map f pt) g _)⁻¹ ⬝ Ω⇒ h _ ⬝ ap1_pid _) ◾ ap1_inv _ _ ⬝ !con.right_inv end definition noo_of_nar' (x : Ω (pfiber f) ×* Ω B) : Ω A := begin induction x with p q, exact Ω→ (ppoint f) p ⬝ Ω→ g q end variables (f g) definition nar_of_noo [constructor] : Ω A →* Ω (pfiber f) ×* Ω B := begin refine pmap.mk (nar_of_noo' h) (prod_eq _ (ap1_gen_idp f (respect_pt f))), esimp [nar_of_noo'], refine fiber_eq2 (ap (ap1_gen _ _ _) (ap1_gen_idp f _) ⬝ !ap1_gen_idp) _ ⬝ !fiber_eq_eta⁻¹, induction B with B b₀, induction f with f f₀, esimp at * ⊢, induction f₀, esimp, refine (!idp_con ⬝ !whisker_right_idp) ◾ !whisker_right_idp ⬝ _, esimp [fiber_eq_pr2], apply inv_con_eq_idp, refine ap (ap02 f) !idp_con ⬝ _, esimp [ap1_con, ap1_gen_con, ap1_inv, ap1_gen_inv], refine _ ⬝ whisker_left _ (!con2_idp ⬝ !whisker_right_idp ⬝ idp ◾ ap1_phomotopy_idp h)⁻¹ᵖ, esimp, exact sorry end definition noo_of_nar [constructor] : Ω (pfiber f) ×* Ω B →* Ω A := pmap.mk (noo_of_nar' h) (respect_pt (Ω→ (ppoint f)) ◾ respect_pt (Ω→ g)) definition noo_pequiv_nar [constructor] : Ω A ≃* Ω (pfiber f) ×* Ω B := pequiv.MK (nar_of_noo f g h) (noo_of_nar f g h) abstract begin exact sorry end end abstract begin exact sorry end end -- apply eq_pathover_id_right, refine ap_compose nar_of_noo _ _ ⬝ ap02 _ !elim_glue ⬝ph _ -- apply eq_pathover_id_right, refine ap_compose noo_of_nar _ _ ⬝ ap02 _ !elim_glue ⬝ph _ definition loop_pequiv_of_cross_section {A B : Type*} (f : A →* B) (g : B →* A) (h : f ∘* g ~* pid B) : Ω A ≃* Ω (pfiber f) ×* Ω B := end wedge