/- Copyright (c) 2016 Egbert Rijke. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Egbert Rijke Exact couple, derived couples, and so on -/ import algebra.group_theory hit.set_quotient types.sigma types.list types.sum .quotient_group .subgroup open eq algebra is_trunc set_quotient relation sigma sigma.ops prod prod.ops sum list trunc function group trunc equiv structure is_exact {A B C : AbGroup} (f : A →g B) (g : B →g C) := ( im_in_ker : Π(a:A), g (f a) = 1) ( ker_in_im : Π(b:B), (g b = 1) → image_subgroup f b) structure SES (A B C : AbGroup) := ( f : A →g B) ( g : B →g C) ( Hf : is_embedding f) ( Hg : is_surjective g) ( ex : is_exact f g) structure hom_SES {A B C A' B' C' : AbGroup} (ses : SES A B C) (ses' : SES A' B' C') := ( hA : A →g A') ( hB : B →g B') ( hC : C →g C') ( htpy1 : hB ∘g (SES.f ses) ~ (SES.f ses') ∘g hA) ( htpy2 : hC ∘g (SES.g ses) ~ (SES.g ses') ∘g hB) --definition quotient_SES {A B C : AbGroup} (ses : SES A B C) : -- quotient_ab_group (image_subgroup (SES.f ses)) ≃g C := -- begin -- fapply ab_group_first_iso_thm B C (SES.g ses), -- end -- definition pre_right_extend_SES (to separate the following definition and replace C with B/A) definition right_extend_SES {A B C A' B' C' : AbGroup} (ses : SES A B C) (ses' : SES A' B' C') (hA : A →g A') (hB : B →g B') (htpy1 : hB ∘g (SES.f ses) ~ (SES.f ses') ∘g hA) : C →g C' := begin refine _ ∘g (codomain_surjection_is_quotient (SES.g ses) (SES.Hg ses))⁻¹ᵍ, refine (codomain_surjection_is_quotient (SES.g ses') (SES.Hg ses')) ∘g _, fapply ab_group_quotient_homomorphism B B' (kernel_subgroup (SES.g ses)) (kernel_subgroup (SES.g ses')) hB, intro b, intro K, have k : trunctype.carrier (image_subgroup (SES.f ses) b), from is_exact.ker_in_im (SES.ex ses) b K, induction k, induction a with a p, rewrite [p⁻¹], rewrite [htpy1 a], fapply is_exact.im_in_ker (SES.ex ses') (hA a), end definition right_extend_hom_SES {A B C A' B' C' : AbGroup} (ses : SES A B C) (ses' : SES A' B' C') (hA : A →g A') (hB : B →g B') (htpy1 : hB ∘g (SES.f ses) ~ (SES.f ses') ∘g hA) : hom_SES ses ses' := begin fapply hom_SES.mk, exact hA, exact hB, exact right_extend_SES ses ses' hA hB htpy1, exact htpy1, exact sorry -- fapply quotient_group_compute, end definition is_differential {B : AbGroup} (d : B →g B) := Π(b:B), d (d b) = 1 definition image_subgroup_of_diff {B : AbGroup} (d : B →g B) (H : is_differential d) : subgroup_rel (ab_kernel d) := subgroup_rel_of_subgroup (image_subgroup d) (kernel_subgroup d) begin intro g p, induction p with f, induction f with h p, rewrite [p⁻¹], esimp, exact H h end definition homology {B : AbGroup} (d : B →g B) (H : is_differential d) : AbGroup := @quotient_ab_group (ab_kernel d) (image_subgroup_of_diff d H) structure exact_couple (A B : AbGroup) : Type := ( i : A →g A) (j : A →g B) (k : B →g A) ( exact_ij : is_exact i j) ( exact_jk : is_exact j k) ( exact_ki : is_exact k i) definition differential {A B : AbGroup} (EC : exact_couple A B) : B →g B := (exact_couple.j EC) ∘g (exact_couple.k EC) definition differential_is_differential {A B : AbGroup} (EC : exact_couple A B) : is_differential (differential EC) := begin induction EC, induction exact_jk, intro b, exact (ap (group_fun j) (im_in_ker (group_fun k b))) ⬝ (respect_one j) end section derived_couple variables {A B : AbGroup} (EC : exact_couple A B) definition derived_couple_A : AbGroup := ab_subgroup (image_subgroup (exact_couple.i EC)) definition derived_couple_B : AbGroup := homology (differential EC) (differential_is_differential EC) definition derived_couple_i : derived_couple_A EC →g derived_couple_A EC := (image_lift (exact_couple.i EC)) ∘g (image_incl (exact_couple.i EC)) definition derived_couple_j : derived_couple_A EC →g derived_couple_B EC := begin exact sorry, -- refine (comm_gq_map (comm_kernel (boundary CC)) (image_subgroup_of_bd (boundary CC) (boundary_is_boundary CC))) ∘g _, end end derived_couple