\documentclass{article} \usepackage[utf8x]{inputenc} \usepackage[english]{babel} \usepackage{hyperref} \usepackage{amsmath,amsfonts,amsthm,amssymb,enumerate,fullpage,tikz} \setlength{\parindent}{0pt} \usepackage{listings} \usepackage{color} \newcommand{\mb}[1]{\mathbb{#1}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\Z}{\mb{Z}} \newcommand{\N}{\mb{N}} \newcommand{\R}{\mb{R}} \newcommand{\C}{\mb{C}} \newcommand{\cproj}{\C\textup{P}^\infty} \DeclareMathOperator{\myker}{ker} \DeclareMathOperator{\im}{im} \DeclareMathOperator{\Tor}{Tor} \usetikzlibrary{arrows} %% Theorem environment declarations (using amsthm): \newtheorem{theorem}{Theorem}[section] \newtheorem{axiom}[theorem]{Axiom} \newtheorem{fact}[theorem]{Fact} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{convention}[theorem]{Convention} \newtheorem{examplex}[theorem]{Example} \newenvironment{example} {\pushQED{\qed}\renewcommand{\qedsymbol}{$\triangle$}\examplex} {\popQED\endexamplex} \newtheorem{examples}[theorem]{Examples} \newtheorem{notation}[theorem]{Notation} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \newtheorem{idea}[theorem]{Idea} \begin{document} \title{Applications of the Serre Spectral Sequence} \author{Floris van Doorn} \date{November 10, 2015} \maketitle \section{Serre Spectral Sequence} \begin{definition} A \emph{Spectral Sequence} is a sequence $(E_{p,q}^r,d_r)$ consisting of \begin{itemize} \item An $R$-module $E^r_{p,q}$ for $p,q\in \Z$ and $r\geq 0$. \item Differentials $d_{p,q}^r : E_{p,q}^r\to E_{p-r,q+r-1}^r$ such that $d_r^2=0$ \end{itemize} where $E^{r+1}$ is defined to be the homology of $(E^r,d^r)$. That is, $E_{p,q}^{r+1}=\myker(d_{p,q}^r)/\im(d_{p+r,q-r+1}^r)$. The variable $r$ is called the \emph{page}, $p$ the \emph{filtration degree}, $q$ the \emph{complementary degree} and $p+q$ the \emph{total degree}. \end{definition} \begin{theorem}[Serre Spectral Sequence] Let $F \to X \twoheadrightarrow B$ be a fibration such that $B$ is path-connected and $\pi_1(B)$ acts trivially on $H_*(F;G)$. Then $$H_p(B;H_q(F;G))\ \Longrightarrow\ H_{p+q}(X;G).$$ This means that there is a spectral sequence $(E_{p,q}^r,d_r)$ where $E_{p,q}^2\simeq H_p(B;H_q(F;G))$ and there is a filtration $0 \subseteq F_{p+q}^0 \subseteq \cdots \subseteq F_{p+q}^{p+q}=H_{p+q}(X;G)$ such that $E_{p,q}^\infty\simeq F_{p+q}^p/F_{p+q}^{p-1}$. \end{theorem} Note that if $B$ is simply connected, then conditions of the theorem are satisfied. \subsection{Examples} \begin{example} Suppose $X=B\times F$, where $B$ is path-connected, and suppose that $G$ is a field. Then $\pi_1(B)$ acts trivially on $H_*(F;G)$ and we have \begin{align*} H_n(X;G) &= \bigoplus_{p+q=n}H_p(B;G)\otimes H_q(F;G)&&\text{(K\"unneth formula)}\\ &=\bigoplus_{p+q=n}H_p(B;H_q(F;G))&&\text{(Univ. Coeff. Th. for homology)}\\ \end{align*} This means that all entries in the second page survive until page infinity. The other extreme is if $X$ is contractible, where almost nothing will survive, as we will see in the next examples. \end{example} In the next example, we will use that $S^1=K(\Z,1)$ and $\cproj=K(\Z,2)$. \begin{example} Consider the path space fibration of $B=\cproj$, that is $\Omega B\to PB \twoheadrightarrow B$ and note that $S^1=\Omega B$. Since $B$ is simply connected, we can apply the Serre Spectral Sequence with coefficients in $\Z$. We know that $E_{p,q}^2\simeq H_p(B;H_q(S^1))$ and $H_q(S^1)=0$ for $q>1$ and $\Z$ for $q=0,1$. This means that the page $E^2$ looks like this. \begin{center} \begin{tikzpicture}[>=stealth',auto,node distance=1.5cm, main node/.style={font=\sffamily\bfseries},text height=1.5ex] \node[main node] (-11)at (-1.2,0.8) {\mbox{}}; \node[main node] (00) at (0,0) {$\Z$}; \node[main node] (01) at (0,1) {$\Z$}; \node[main node] (10) at (1.5,0) {$H_1(B)$}; \node[main node] (11) at (1.5,1) {$H_1(B)$}; \node[main node] (20) at (3,0) {$H_2(B)$}; \node[main node] (21) at (3,1) {$H_2(B)$}; \node[main node] (30) at (4.5,0) {$H_3(B)$}; \node[main node] (31) at (4.5,1) {$H_3(B)$}; \node[main node] (40) at (6,0) {$H_4(B)$}; \node[main node] (41) at (6,1) {$H_4(B)$}; \node[main node] (50) at (7.5,0) {$\cdots$}; \node[main node] (51) at (7.5,1) {$\cdots$}; \node at (-1.2,1) {1}; \node at (-1.2,0) {0}; \node at (0,-1) {0}; \node at (1.5,-1) {1}; \node at (3,-1) {2}; \node at (4.5,-1) {3}; \node at (6,-1) {4}; \node at (7.3,-0.7) {$p$}; \node at (-0.8,1.5) {$q$}; \draw (-0.5,-0.5) -- (8,-0.5); \draw (-0.5,-0.5) -- (-0.5,1.5); \path[every node/.style={font=\sffamily\small}] % (10) edge [->] (-11) (20) edge [->] (01) (30) edge [->] (11) (40) edge [->] (21) (50) edge [->] (31); \end{tikzpicture} \end{center} Moreover, we have $E_{p,q}^\infty=\Z$ for $p=q=0$ and $0$ otherwise. From this we can conclude that $$H_i(\cproj,\Z)=\begin{cases} \Z & \text{if $i$ even} \\ 0 & \text{if $i$ odd.}\end{cases}$$ \end{example} \begin{example} In this example we will compute the homology groups of the loop space of the sphere, $\Omega S^n$ for $n\geq 2$. We use the fibration $\Omega S^n \to PS^n \twoheadrightarrow S^n$ and we can apply the Serre Spectral Sequence, since $S^n$ is simply connected. Now $H_p(S^n;G)=G$ for $p=0,n$ and $0$ otherwise. This means that only the $0$ and the $n$ column can be nonzero. \begin{center} \begin{tikzpicture}[>=stealth',auto,node distance=1.5cm, main node/.style={font=\sffamily\bfseries},text height=1.5ex] \node[main node] (00) at (0,0) {$\Z$}; \node[main node] (10) at (2.5,0) {$\Z$}; \node[main node] (01) at (0,1) {$H_{n-1}(\Omega S^n)$}; \node[main node] (11) at (2.5,1) {$H_{n-1}(\Omega S^n)$}; \node[main node] (02) at (0,2) {$H_{2n-2}(\Omega S^n)$}; \node[main node] (12) at (2.5,2) {$H_{2n-2}(\Omega S^n)$}; \node[main node] (03) at (0,3) {$H_{3n-3}(\Omega S^n)$}; \node[main node] (13) at (2.5,3) {$H_{3n-3}(\Omega S^n)$}; \node[main node] (04) at (0,4) {$\vdots$}; \node[main node] (14) at (2.5,4) {$\vdots$}; \node at (-1.9,0) {0}; \node at (-1.9,1) {$n-1$}; \node at (-1.9,2) {$2n-2$}; \node at (-1.9,3) {$3n-3$}; \node at (0,-1) {0}; \node at (2.5,-1) {$n$}; \node at (2.8,-0.7) {$p$}; \node at (-1.5,4.5) {$q$}; \draw (-1.2,-0.5) -- (3,-0.5); \draw (-1.2,-0.5) -- (-1.2,5); \path[every node/.style={font=\sffamily\small}] (10) edge [->] (01) (11) edge [->] (02) (12) edge [->] (03) (13) edge [->] (04); \end{tikzpicture} \end{center} After some reasoning, we get that $H_i(\Omega S^n,\Z)=\begin{cases} \Z & \text{for $n-1\mid i$}\\ 0 & \text{otherwise.}\end{cases}$ \end{example} \section{Serre Class Theorem} \begin{definition} We say that a space $X$ is \emph{abelian} if the action of $\pi_1(X)$ on $\pi_n(X)$ is trivial for all $n\geq 1$. \end{definition} Note that every simply connected space is abelian. \begin{definition} A \emph{Serre Class} is a class $\mc C$ of abelian groups containing the trivial group such that for every SES $0\to A\to B\to C\to 0$ we have $B\in\mc C$ iff $A,C\in \mc C$. In this document I call a Serre class \emph{nice} if for every $A,B\in\mc C$ also $A\otimes B$ and $\Tor(A,B)$ are in $\mc C$. (this name is made up by me) \end{definition} \begin{lemma} The following classes are nice Serre classes. \begin{itemize} \item $\mc {FG}$, the class of finitely generated abelian groups \item $\mc{T}_P$ for some set $P$ of primes. This is the class of torsion abelian groups whose elements have orders divisible only by primes in $P$. \item $\mc{F}_P$, the finite groups in $\mc{T}_P$. \end{itemize} \end{lemma} Note that $P$ is the set of all primes $\mc{T}_P$ becomes the class of all torsion abelian groups and $\mc{F}_P$ becomes the class of all finite abelian groups. \begin{theorem} Let $X$ be a path-connected and abelian space, and let $\mc C$ be a nice Serre class. Then $$\forall(n>0)(\pi_n(X)\in\mc{C})\quad \longleftrightarrow\quad \forall(n>0)(H_n(X)\in\mc{C})$$ \end{theorem} \begin{corollary} The homotopy groups of a finite simply connected CW-complex are finitely generated. In particular, the homotopy groups of spheres are finitely generated. \end{corollary} Recall the following definition and theorem. \begin{definition} The \emph{Hurewicz homomorphism} is the homomorphism $h : \pi_n(X) \to H_n(X)$ defined by $h([f])=f_*(\gamma)$, where $\gamma$ is a generator of $H_n(S^n)\simeq\Z$. \end{definition} \begin{theorem}[Hurewicz] Let $n\geq2$ and $X$ a $(n-1)$-connected space. Then $\widetilde H_i(X)=0$ for $i=stealth',auto,node distance=1.5cm, main node/.style={font=\sffamily\bfseries},text height=1.5ex] \node[main node] (-11)at (-1.2,0.8) {\mbox{}}; \node[main node] (00) at (0,0) {$\Z x_0$}; \node[main node] (01) at (0,1) {$\Z a$}; \node[main node] (10) at (1.5,0) {$0$}; \node[main node] (11) at (1.5,1) {$0$}; \node[main node] (20) at (3,0) {$\Z x_2$}; \node[main node] (21) at (3,1) {$\Z ax_2$}; \node[main node] (30) at (4.5,0) {$0$}; \node[main node] (31) at (4.5,1) {$0$}; \node[main node] (40) at (6,0) {$\Z x_4$}; \node[main node] (41) at (6,1) {$\Z ax_4$}; \node[main node] (50) at (7.5,0) {$\cdots$}; \node[main node] (51) at (7.5,1) {$\cdots$}; \node at (-1.2,1) {1}; \node at (-1.2,0) {0}; \node at (0,-1) {0}; \node at (1.5,-1) {1}; \node at (3,-1) {2}; \node at (4.5,-1) {3}; \node at (6,-1) {4}; \node at (7.3,-0.7) {$p$}; \node at (-0.8,1.5) {$q$}; \draw (-0.5,-0.5) -- (8,-0.5); \draw (-0.5,-0.5) -- (-0.5,1.5); \path[every node/.style={font=\sffamily\small}] % (10) edge [->] (-11) (01) edge [->] (20) (21) edge [->] (40); \end{tikzpicture} \end{center} All arrows are isomorphisms. We may assume that $d_2a=x_2$. Then we compute $d_2(ax_{2i})=x_2x_{2i}$ so we may assume that $x_2x_{2i}=x_{2i+2}$. This gives $x_{2i}=x_2^i$. Hence $H^*(\cproj,\Z)\simeq \Z[x_2]$. \end{example} \begin{example} We will compute the cup product structure of $H^*(\Omega S^n;\Z)$ using the path space fibration of $S^n$ for $n\geq2$. The additive structure is the same as for homology, and we can name the generators as in the figure, where $a_0=1$. \begin{center} \begin{tikzpicture}[>=stealth',auto,node distance=1.5cm, main node/.style={font=\sffamily\bfseries},text height=1.5ex] \node[main node] (00) at (0,0) {$\Z a_0$}; \node[main node] (10) at (1.5,0) {$\Z a_0x$}; \node[main node] (01) at (0,1) {$\Z a_1$}; \node[main node] (11) at (1.5,1) {$\Z a_1x$}; \node[main node] (02) at (0,2) {$\Z a_2$}; \node[main node] (12) at (1.5,2) {$\Z a_2x$}; \node[main node] (03) at (0,3) {$\Z a_3$}; \node[main node] (13) at (1.5,3) {$\Z a_3x$}; \node[main node] (04) at (0,4) {$\vdots$}; \node[main node] (14) at (1.5,4) {$\vdots$}; \node at (-1.4,0) {0}; \node at (-1.4,1) {$n-1$}; \node at (-1.4,2) {$2n-2$}; \node at (-1.4,3) {$3n-3$}; \node at (0,-1) {0}; \node at (1.5,-1) {$n$}; \node at (1.8,-0.7) {$p$}; \node at (-1,4.5) {$q$}; \draw (-0.7,-0.5) -- (2,-0.5); \draw (-0.7,-0.5) -- (-0.7,5); \path[every node/.style={font=\sffamily\small}] (01) edge [->] (10) (02) edge [->] (11) (03) edge [->] (12); \end{tikzpicture} \end{center} We may assume that $d(a_{k+1})=a_kx$ and note that $a_kx=xa_k$. We distinguish two cases. \emph{If $n$ is odd} we compute by induction to $i+j$ that $a_ia_j={i+j \choose i}a_{i+j}$. Hence $H^*(\Omega S^n,\Z)\simeq \Gamma_{\Z}[a_1]$, where the \emph{divided polynomial algebra} $\Gamma_R[\alpha]$ is the quotient of the free $R$-algebra $R[\alpha_1,\alpha_2,\ldots]$ by the relations $\alpha_i\alpha_j={i+j \choose i}\alpha_{i+j}$. \emph{If $n$ is even}, then we compute $a_1^2=0$ and by induction on $k$ we compute $a_1a_{2k}=a_{2k+1}$ and $a_1a_{2k+1}=0$ and $a_2^k=k!a_{2k}$. Now $H^*(\Omega S^n,\Z)\simeq \Lambda_\Z[a_1]\otimes \Gamma_\Z[a_2]$ where the \emph{exterior algebra} $\Lambda_R[\alpha_1,\alpha_2,\ldots]$ is the free $R$-module with basis finite products $\alpha_{i_1}\cdots\alpha_{i_k}$ for $i_1<\cdots3$. Now convert the map $F\to S^3$ into a fibration. By the LES we see that the fiber is $K(\Z,2)=\cproj$. \begin{center} \begin{tikzpicture}[auto,node distance=1.5cm, main node/.style={font=\sffamily\bfseries},text height=1.5ex] \node[main node] (S3) at (0,0) {$S^3$}; \node[main node] (Z) [above of=S3] {$Z$}; \node[main node] (K3) [right of=Z] {$K(\Z,3)$}; \node[main node] (F) [left of=Z] {$F$}; \node[main node] (X) [left of=S3] {$X$}; \node (K2) [left of=X] {$\cproj$}; \path[every node/.style={font=\sffamily\small}] (F) edge [->] (Z) (F) edge [->] (S3) (F) edge [->] node [right] {$\wr$} (X) (S3) edge [->] node [right] {$\wr$} (Z) (Z) edge [->>] (K3) (K2) edge [->] (X) (X) edge [->>] (S3) (S3) edge [->] node [below right] {$f$} (K3); \end{tikzpicture} \end{center} We now use the Serre Spectral Sequence of this last fibration. We know the homology groups of $S^3$ and $\cproj$, so we know the second page looks like this. Here the arrows are \emph{not} all isomorphisms. \begin{center} \begin{tikzpicture}[>=stealth',auto,node distance=1.5cm, text height=1.5ex] \node (00) at (0,0) {$\Z 1$}; \node (10) at (1.5,0) {$\Z x$}; \node (01) at (0,1) {$\Z a$}; \node (11) at (1.5,1) {$\Z ax$}; \node (02) at (0,2) {$\Z a^2$}; \node (12) at (1.5,2) {$\Z a^2x$}; \node (03) at (0,3) {$\Z a^3$}; \node (13) at (1.5,3) {$\Z a^3x$}; \node (04) at (0,4) {$\vdots$}; \node (14) at (1.5,4) {$\vdots$}; \node at (-1.4,0) {0}; \node at (-1.4,1) {$2$}; \node at (-1.4,2) {$4$}; \node at (-1.4,3) {$6$}; \node at (0,-1) {0}; \node at (1.5,-1) {$3$}; \node at (1.8,-0.7) {$p$}; \node at (-1,4.5) {$q$}; \draw (-0.7,-0.5) -- (2,-0.5); \draw (-0.7,-0.5) -- (-0.7,5); \path[every node/.style={font=\sffamily\small}] (01) edge [->] (10) (02) edge [->] (11) (03) edge [->] (12); \end{tikzpicture} \end{center} \end{example} Since $X$ is 3-connected, $d:\Z a \to \Z x$ must be an iso, so we may assume $da=x$. Then $d(a^n)=na^{n-1}x$. Now we know what groups survive until $E_\infty$, to compute \begin{align*} H^i(X;\Z)&=\begin{cases} \Z_n & \text{if $i=2n+1$} \\ 0 & \text{if $i=2n$,} \end{cases} && \text{hence}& H_i(X;\Z)&=\begin{cases} \Z_n & \text{if $i=2n>0$} \\ 0 & \text{if $i=2n-1$.} \end{cases} \end{align*} The Hurewicz Theorem modulo $\mc C$ now implies that the first $p$-torsion in $\pi_*(X)$, hence also in $\pi_*(S^3)$ is a $\Z_p$ in $\pi_{2p}$. For $p=2$ we get the stronger result that $\pi_4(S^3)=\Z^2$, hence also $\pi_{n+1}(S^n)=\Z_2$ for $n\geq3$. \end{document}