-- definitions, theorems and attributes which should be moved to files in the HoTT library import homotopy.sphere2 open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc_index pi group is_trunc function sphere attribute equiv.symm equiv.trans is_equiv.is_equiv_ap fiber.equiv_postcompose fiber.equiv_precompose pequiv.to_pmap pequiv._trans_of_to_pmap ghomotopy_group_succ_in isomorphism_of_eq pmap_bool_equiv sphere_equiv_bool psphere_pequiv_pbool [constructor] attribute is_equiv.eq_of_fn_eq_fn' [unfold 3] attribute isomorphism._trans_of_to_hom [unfold 3] attribute homomorphism.struct [unfold 3] attribute pequiv.trans pequiv.symm [constructor] namespace sigma definition sigma_equiv_sigma_left' [constructor] {A A' : Type} {B : A' → Type} (Hf : A ≃ A') : (Σa, B (Hf a)) ≃ (Σa', B a') := sigma_equiv_sigma Hf (λa, erfl) end sigma open sigma namespace group open is_trunc theorem inv_eq_one {A : Type} [group A] {a : A} (H : a = 1) : a⁻¹ = 1 := iff.mpr (inv_eq_one_iff_eq_one a) H definition pSet_of_Group (G : Group) : Set* := ptrunctype.mk G _ 1 definition pmap_of_isomorphism [constructor] {G₁ : Group} {G₂ : Group} (φ : G₁ ≃g G₂) : pType_of_Group G₁ →* pType_of_Group G₂ := pequiv_of_isomorphism φ definition pequiv_of_isomorphism_of_eq {G₁ G₂ : Group} (p : G₁ = G₂) : pequiv_of_isomorphism (isomorphism_of_eq p) = pequiv_of_eq (ap pType_of_Group p) := begin induction p, apply pequiv_eq, fapply pmap_eq, { intro g, reflexivity}, { apply is_prop.elim} end definition homomorphism_change_fun [constructor] {G₁ G₂ : Group} (φ : G₁ →g G₂) (f : G₁ → G₂) (p : φ ~ f) : G₁ →g G₂ := homomorphism.mk f (λg h, (p (g * h))⁻¹ ⬝ to_respect_mul φ g h ⬝ ap011 mul (p g) (p h)) definition Group_of_pgroup (G : Type*) [pgroup G] : Group := Group.mk G _ definition pgroup_pType_of_Group [instance] (G : Group) : pgroup (pType_of_Group G) := ⦃ pgroup, Group.struct G, pt_mul := one_mul, mul_pt := mul_one, mul_left_inv_pt := mul.left_inv ⦄ definition comm_group_pType_of_Group [instance] (G : CommGroup) : comm_group (pType_of_Group G) := CommGroup.struct G abbreviation gid [constructor] := @homomorphism_id end group open group namespace pi -- move to types.arrow definition pmap_eq_idp {X Y : Type*} (f : X →* Y) : pmap_eq (λx, idpath (f x)) !idp_con⁻¹ = idpath f := begin cases f with f p, esimp [pmap_eq], refine apd011 (apd011 pmap.mk) !eq_of_homotopy_idp _, exact sorry end definition pfunext [constructor] (X Y : Type*) : ppmap X (Ω Y) ≃* Ω (ppmap X Y) := begin fapply pequiv_of_equiv, { fapply equiv.MK: esimp, { intro f, fapply pmap_eq, { intro x, exact f x }, { exact (respect_pt f)⁻¹ }}, { intro p, fapply pmap.mk, { intro x, exact ap010 pmap.to_fun p x }, { note z := apd respect_pt p, note z2 := square_of_pathover z, refine eq_of_hdeg_square z2 ⬝ !ap_constant }}, { intro p, exact sorry }, { intro p, exact sorry }}, { apply pmap_eq_idp} end end pi open pi namespace eq definition pathover_eq_Fl' {A B : Type} {f : A → B} {a₁ a₂ : A} {b : B} (p : a₁ = a₂) (q : f a₂ = b) : (ap f p) ⬝ q =[p] q := by induction p; induction q; exact idpo -- this should be renamed square_pathover. The one in cubical.cube should be renamed definition square_pathover' {A B : Type} {a a' : A} {b₁ b₂ b₃ b₄ : A → B} {f₁ : b₁ ~ b₂} {f₂ : b₃ ~ b₄} {f₃ : b₁ ~ b₃} {f₄ : b₂ ~ b₄} {p : a = a'} {q : square (f₁ a) (f₂ a) (f₃ a) (f₄ a)} {r : square (f₁ a') (f₂ a') (f₃ a') (f₄ a')} (s : cube (natural_square_tr f₁ p) (natural_square_tr f₂ p) (natural_square_tr f₃ p) (natural_square_tr f₄ p) q r) : q =[p] r := by induction p; apply pathover_idp_of_eq; exact eq_of_deg12_cube s -- define natural_square_tr this way. Also, natural_square_tr and natural_square should swap names definition natural_square_tr_eq {A B : Type} {a a' : A} {f g : A → B} (p : f ~ g) (q : a = a') : natural_square_tr p q = square_of_pathover (apd p q) := by induction q; reflexivity section variables {A : Type} {a₀₀₀ a₂₀₀ a₀₂₀ a₂₂₀ a₀₀₂ a₂₀₂ a₀₂₂ a₂₂₂ : A} {p₁₀₀ : a₀₀₀ = a₂₀₀} {p₀₁₀ : a₀₀₀ = a₀₂₀} {p₀₀₁ : a₀₀₀ = a₀₀₂} {p₁₂₀ : a₀₂₀ = a₂₂₀} {p₂₁₀ : a₂₀₀ = a₂₂₀} {p₂₀₁ : a₂₀₀ = a₂₀₂} {p₁₀₂ : a₀₀₂ = a₂₀₂} {p₀₁₂ : a₀₀₂ = a₀₂₂} {p₀₂₁ : a₀₂₀ = a₀₂₂} {p₁₂₂ : a₀₂₂ = a₂₂₂} {p₂₁₂ : a₂₀₂ = a₂₂₂} {p₂₂₁ : a₂₂₀ = a₂₂₂} {s₁₁₀ : square p₀₁₀ p₂₁₀ p₁₀₀ p₁₂₀} {s₁₁₂ : square p₀₁₂ p₂₁₂ p₁₀₂ p₁₂₂} {s₀₁₁ : square p₀₁₀ p₀₁₂ p₀₀₁ p₀₂₁} {s₂₁₁ : square p₂₁₀ p₂₁₂ p₂₀₁ p₂₂₁} {s₁₀₁ : square p₁₀₀ p₁₀₂ p₀₀₁ p₂₀₁} {s₁₂₁ : square p₁₂₀ p₁₂₂ p₀₂₁ p₂₂₁} -- move to cubical.cube definition eq_concat1 {s₀₁₁' : square p₀₁₀ p₀₁₂ p₀₀₁ p₀₂₁} (r : s₀₁₁' = s₀₁₁) (c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) : cube s₀₁₁' s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂ := by induction r; exact c definition concat1_eq {s₂₁₁' : square p₂₁₀ p₂₁₂ p₂₀₁ p₂₂₁} (c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) (r : s₂₁₁ = s₂₁₁') : cube s₀₁₁ s₂₁₁' s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂ := by induction r; exact c definition eq_concat2 {s₁₀₁' : square p₁₀₀ p₁₀₂ p₀₀₁ p₂₀₁} (r : s₁₀₁' = s₁₀₁) (c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) : cube s₀₁₁ s₂₁₁ s₁₀₁' s₁₂₁ s₁₁₀ s₁₁₂ := by induction r; exact c definition concat2_eq {s₁₂₁' : square p₁₂₀ p₁₂₂ p₀₂₁ p₂₂₁} (c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) (r : s₁₂₁ = s₁₂₁') : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁' s₁₁₀ s₁₁₂ := by induction r; exact c definition eq_concat3 {s₁₁₀' : square p₀₁₀ p₂₁₀ p₁₀₀ p₁₂₀} (r : s₁₁₀' = s₁₁₀) (c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀' s₁₁₂ := by induction r; exact c definition concat3_eq {s₁₁₂' : square p₀₁₂ p₂₁₂ p₁₀₂ p₁₂₂} (c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) (r : s₁₁₂ = s₁₁₂') : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂' := by induction r; exact c end infix ` ⬝1 `:75 := cube_concat1 infix ` ⬝2 `:75 := cube_concat2 infix ` ⬝3 `:75 := cube_concat3 infix ` ⬝p1 `:75 := eq_concat1 infix ` ⬝1p `:75 := concat1_eq infix ` ⬝p2 `:75 := eq_concat3 infix ` ⬝2p `:75 := concat2_eq infix ` ⬝p3 `:75 := eq_concat3 infix ` ⬝3p `:75 := concat3_eq end eq open eq namespace pointed -- in init.pointed `pointed_carrier` should be [unfold 1] instead of [constructor] definition ptransport [constructor] {A : Type} (B : A → Type*) {a a' : A} (p : a = a') : B a →* B a' := pmap.mk (transport B p) (apdt (λa, Point (B a)) p) definition ptransport_change_eq [constructor] {A : Type} (B : A → Type*) {a a' : A} {p q : a = a'} (r : p = q) : ptransport B p ~* ptransport B q := phomotopy.mk (λb, ap (λp, transport B p b) r) begin induction r, exact !idp_con end definition pnatural_square {A B : Type} (X : B → Type*) {f g : A → B} (h : Πa, X (f a) →* X (g a)) {a a' : A} (p : a = a') : h a' ∘* ptransport X (ap f p) ~* ptransport X (ap g p) ∘* h a := by induction p; exact !pcompose_pid ⬝* !pid_pcompose⁻¹* definition pequiv_ap [constructor] {A : Type} (B : A → Type*) {a a' : A} (p : a = a') : B a ≃* B a' := pequiv_of_pmap (ptransport B p) !is_equiv_tr definition pequiv_compose {A B C : Type*} (g : B ≃* C) (f : A ≃* B) : A ≃* C := pequiv_of_pmap (g ∘* f) (is_equiv_compose g f) infixr ` ∘*ᵉ `:60 := pequiv_compose definition pmap.sigma_char [constructor] {A B : Type*} : (A →* B) ≃ Σ(f : A → B), f pt = pt := begin fapply equiv.MK : intros f, { exact ⟨to_fun f , resp_pt f⟩ }, all_goals cases f with f p, { exact pmap.mk f p }, all_goals reflexivity end definition is_trunc_pmap [instance] (n : ℕ₋₂) (A B : Type*) [is_trunc n B] : is_trunc n (A →* B) := is_trunc_equiv_closed_rev _ !pmap.sigma_char definition is_trunc_ppmap [instance] (n : ℕ₋₂) {A B : Type*} [is_trunc n B] : is_trunc n (ppmap A B) := !is_trunc_pmap definition pmap_eq_of_homotopy {A B : Type*} {f g : A →* B} [is_set B] (p : f ~ g) : f = g := pmap_eq p !is_set.elim definition phomotopy.sigma_char [constructor] {A B : Type*} (f g : A →* B) : (f ~* g) ≃ Σ(p : f ~ g), p pt ⬝ resp_pt g = resp_pt f := begin fapply equiv.MK : intros h, { exact ⟨h , to_homotopy_pt h⟩ }, all_goals cases h with h p, { exact phomotopy.mk h p }, all_goals reflexivity end definition pmap_eq_equiv {A B : Type*} (f g : A →* B) : (f = g) ≃ (f ~* g) := calc (f = g) ≃ pmap.sigma_char f = pmap.sigma_char g : eq_equiv_fn_eq pmap.sigma_char f g ... ≃ Σ(p : pmap.to_fun f = pmap.to_fun g), pathover (λh, h pt = pt) (resp_pt f) p (resp_pt g) : sigma_eq_equiv _ _ ... ≃ Σ(p : pmap.to_fun f = pmap.to_fun g), resp_pt f = ap (λh, h pt) p ⬝ resp_pt g : sigma_equiv_sigma_right (λp, pathover_eq_equiv_Fl p (resp_pt f) (resp_pt g)) ... ≃ Σ(p : pmap.to_fun f = pmap.to_fun g), resp_pt f = ap10 p pt ⬝ resp_pt g : sigma_equiv_sigma_right (λp, equiv_eq_closed_right _ (whisker_right (ap_eq_apd10 p _) _)) ... ≃ Σ(p : pmap.to_fun f ~ pmap.to_fun g), resp_pt f = p pt ⬝ resp_pt g : sigma_equiv_sigma_left' eq_equiv_homotopy ... ≃ Σ(p : pmap.to_fun f ~ pmap.to_fun g), p pt ⬝ resp_pt g = resp_pt f : sigma_equiv_sigma_right (λp, eq_equiv_eq_symm _ _) ... ≃ (f ~* g) : phomotopy.sigma_char f g definition loop_pmap_commute (A B : Type*) : Ω(ppmap A B) ≃* (ppmap A (Ω B)) := pequiv_of_equiv (calc Ω(ppmap A B) /- ≃ (pconst A B = pconst A B) : erfl ... -/ ≃ (pconst A B ~* pconst A B) : pmap_eq_equiv _ _ ... ≃ Σ(p : pconst A B ~ pconst A B), p pt ⬝ rfl = rfl : phomotopy.sigma_char ... /- ≃ Σ(f : A → Ω B), f pt = pt : erfl ... -/ ≃ (A →* Ω B) : pmap.sigma_char) (by reflexivity) -- definition ppcompose_left {A B C : Type*} (g : B →* C) : ppmap A B →* ppmap A C := -- pmap.mk (pcompose g) (eq_of_phomotopy (phomotopy.mk (λa, resp_pt g) (idp_con _)⁻¹)) -- definition is_equiv_ppcompose_left [instance] {A B C : Type*} (g : B →* C) [H : is_equiv g] : is_equiv (@ppcompose_left A B C g) := -- begin -- fapply is_equiv.adjointify, -- { exact (ppcompose_left (pequiv_of_pmap g H)⁻¹ᵉ*) }, -- all_goals (intros f; esimp; apply eq_of_phomotopy), -- { exact calc g ∘* ((pequiv_of_pmap g H)⁻¹ᵉ* ∘* f) ~* (g ∘* (pequiv_of_pmap g H)⁻¹ᵉ*) ∘* f : passoc -- ... ~* pid _ ∘* f : pwhisker_right f (pright_inv (pequiv_of_pmap g H)) -- ... ~* f : pid_pcompose f }, -- { exact calc (pequiv_of_pmap g H)⁻¹ᵉ* ∘* (g ∘* f) ~* ((pequiv_of_pmap g H)⁻¹ᵉ* ∘* g) ∘* f : passoc -- ... ~* pid _ ∘* f : pwhisker_right f (pleft_inv (pequiv_of_pmap g H)) -- ... ~* f : pid_pcompose f } -- end -- definition pequiv_ppcompose_left {A B C : Type*} (g : B ≃* C) : ppmap A B ≃* ppmap A C := -- pequiv_of_pmap (ppcompose_left g) _ -- definition pcompose_pconst {A B C : Type*} (f : B →* C) : f ∘* pconst A B ~* pconst A C := -- phomotopy.mk (λa, respect_pt f) (idp_con _)⁻¹ -- definition pconst_pcompose {A B C : Type*} (f : A →* B) : pconst B C ∘* f ~* pconst A C := -- phomotopy.mk (λa, rfl) (ap_constant _ _)⁻¹ definition ap1_pconst (A B : Type*) : Ω→(pconst A B) ~* pconst (Ω A) (Ω B) := phomotopy.mk (λp, idp_con _ ⬝ ap_constant p pt) rfl definition apn_pconst (A B : Type*) (n : ℕ) : apn n (pconst A B) ~* pconst (Ω[n] A) (Ω[n] B) := begin induction n with n IH, { reflexivity }, { exact ap1_phomotopy IH ⬝* !ap1_pconst } end definition loop_ppi_commute {A : Type} (B : A → Type*) : Ω(ppi B) ≃* Π*a, Ω (B a) := pequiv_of_equiv eq_equiv_homotopy rfl definition equiv_ppi_right {A : Type} {P Q : A → Type*} (g : Πa, P a ≃* Q a) : (Π*a, P a) ≃* (Π*a, Q a) := pequiv_of_equiv (pi_equiv_pi_right g) begin esimp, apply eq_of_homotopy, intros a, esimp, exact (respect_pt (g a)) end definition pcast_commute [constructor] {A : Type} {B C : A → Type*} (f : Πa, B a →* C a) {a₁ a₂ : A} (p : a₁ = a₂) : pcast (ap C p) ∘* f a₁ ~* f a₂ ∘* pcast (ap B p) := phomotopy.mk begin induction p, reflexivity end begin induction p, esimp, refine !idp_con ⬝ !idp_con ⬝ !ap_id⁻¹ end definition pequiv_of_eq_commute [constructor] {A : Type} {B C : A → Type*} (f : Πa, B a →* C a) {a₁ a₂ : A} (p : a₁ = a₂) : pequiv_of_eq (ap C p) ∘* f a₁ ~* f a₂ ∘* pequiv_of_eq (ap B p) := pcast_commute f p -- TODO: make the name apn_succ_phomotopy_in consistent with this definition loopn_succ_in_inv_apn {A B : Type*} (n : ℕ) (f : A →* B) : Ω→[n + 1] f ∘* (loopn_succ_in A n)⁻¹ᵉ* ~* (loopn_succ_in B n)⁻¹ᵉ* ∘* Ω→[n] (Ω→ f):= begin apply pinv_right_phomotopy_of_phomotopy, refine _ ⬝* !passoc⁻¹*, apply phomotopy_pinv_left_of_phomotopy, apply apn_succ_phomotopy_in end definition papply [constructor] {A : Type*} (B : Type*) (a : A) : ppmap A B →* B := pmap.mk (λ(f : A →* B), f a) idp definition papply_pcompose [constructor] {A : Type*} (B : Type*) (a : A) : ppmap A B →* B := pmap.mk (λ(f : A →* B), f a) idp open bool --also rename pmap_bool_equiv -> pmap_pbool_equiv definition pbool_pmap [constructor] {A : Type*} (a : A) : pbool →* A := pmap.mk (bool.rec pt a) idp definition pmap_pbool_pequiv [constructor] (B : Type*) : ppmap pbool B ≃* B := begin fapply pequiv.MK, { exact papply B tt }, { exact pbool_pmap }, { intro f, fapply pmap_eq, { intro b, cases b, exact !respect_pt⁻¹, reflexivity }, { exact !con.left_inv⁻¹ }}, { intro b, reflexivity }, end definition papn_pt [constructor] (n : ℕ) (A B : Type*) : ppmap A B →* ppmap (Ω[n] A) (Ω[n] B) := pmap.mk (λf, apn n f) (eq_of_phomotopy !apn_pconst) definition papn_fun [constructor] {n : ℕ} {A : Type*} (B : Type*) (p : Ω[n] A) : ppmap A B →* Ω[n] B := papply _ p ∘* papn_pt n A B definition loopn_succ_in_natural {A B : Type*} {n : ℕ} (f : A →* B) : loopn_succ_in B n ∘* Ω→[n+1] f ~* Ω→[n] (Ω→ f) ∘* loopn_succ_in A n := !apn_succ_phomotopy_in definition loopn_succ_in_inv_natural {A B : Type*} {n : ℕ} (f : A →* B) : (loopn_succ_in B n)⁻¹ᵉ* ∘* Ω→[n] (Ω→ f) ~* Ω→[n+1] f ∘* (loopn_succ_in A n)⁻¹ᵉ* := sorry end pointed open pointed namespace fiber definition pfiber_loop_space {A B : Type*} (f : A →* B) : pfiber (Ω→ f) ≃* Ω (pfiber f) := pequiv_of_equiv (calc pfiber (Ω→ f) ≃ Σ(p : Point A = Point A), ap1 f p = rfl : (fiber.sigma_char (ap1 f) (Point (Ω B))) ... ≃ Σ(p : Point A = Point A), (respect_pt f) = ap f p ⬝ (respect_pt f) : (sigma_equiv_sigma_right (λp, calc (ap1 f p = rfl) ≃ !respect_pt⁻¹ ⬝ (ap f p ⬝ !respect_pt) = rfl : equiv_eq_closed_left _ (con.assoc _ _ _) ... ≃ ap f p ⬝ (respect_pt f) = (respect_pt f) : eq_equiv_inv_con_eq_idp ... ≃ (respect_pt f) = ap f p ⬝ (respect_pt f) : eq_equiv_eq_symm)) ... ≃ fiber.mk (Point A) (respect_pt f) = fiber.mk pt (respect_pt f) : fiber_eq_equiv ... ≃ Ω (pfiber f) : erfl) (begin cases f with f p, cases A with A a, cases B with B b, esimp at p, esimp at f, induction p, reflexivity end) definition pfiber_equiv_of_phomotopy {A B : Type*} {f g : A →* B} (h : f ~* g) : pfiber f ≃* pfiber g := begin fapply pequiv_of_equiv, { refine (fiber.sigma_char f pt ⬝e _ ⬝e (fiber.sigma_char g pt)⁻¹ᵉ), apply sigma_equiv_sigma_right, intros a, apply equiv_eq_closed_left, apply (to_homotopy h) }, { refine (fiber_eq rfl _), change (h pt)⁻¹ ⬝ respect_pt f = idp ⬝ respect_pt g, rewrite idp_con, apply inv_con_eq_of_eq_con, symmetry, exact (to_homotopy_pt h) } end definition transport_fiber_equiv [constructor] {A B : Type} (f : A → B) {b1 b2 : B} (p : b1 = b2) : fiber f b1 ≃ fiber f b2 := calc fiber f b1 ≃ Σa, f a = b1 : fiber.sigma_char ... ≃ Σa, f a = b2 : sigma_equiv_sigma_right (λa, equiv_eq_closed_right (f a) p) ... ≃ fiber f b2 : fiber.sigma_char definition pequiv_postcompose {A B B' : Type*} (f : A →* B) (g : B ≃* B') : pfiber (g ∘* f) ≃* pfiber f := begin fapply pequiv_of_equiv, esimp, refine transport_fiber_equiv (g ∘* f) (respect_pt g)⁻¹ ⬝e fiber.equiv_postcompose f g (Point B), esimp, apply (ap (fiber.mk (Point A))), refine !con.assoc ⬝ _, apply inv_con_eq_of_eq_con, rewrite [con.assoc, con.right_inv, con_idp, -ap_compose'], apply ap_con_eq_con end definition pequiv_precompose {A A' B : Type*} (f : A →* B) (g : A' ≃* A) : pfiber (f ∘* g) ≃* pfiber f := begin fapply pequiv_of_equiv, esimp, refine fiber.equiv_precompose f g (Point B), esimp, apply (eq_of_fn_eq_fn (fiber.sigma_char _ _)), fapply sigma_eq: esimp, { apply respect_pt g }, { apply pathover_eq_Fl' } end definition pfiber_equiv_of_square {A B C D : Type*} {f : A →* B} {g : C →* D} {h : A ≃* C} {k : B ≃* D} (s : k ∘* f ~* g ∘* h) : pfiber f ≃* pfiber g := calc pfiber f ≃* pfiber (k ∘* f) : pequiv_postcompose ... ≃* pfiber (g ∘* h) : pfiber_equiv_of_phomotopy s ... ≃* pfiber g : pequiv_precompose end fiber namespace eq --algebra.homotopy_group definition phomotopy_group_functor_pid (n : ℕ) (A : Type*) : π→[n] (pid A) ~* pid (π[n] A) := ptrunc_functor_phomotopy 0 !apn_pid ⬝* !ptrunc_functor_pid end eq namespace susp definition iterate_psusp_functor (n : ℕ) {A B : Type*} (f : A →* B) : iterate_psusp n A →* iterate_psusp n B := begin induction n with n g, { exact f }, { exact psusp_functor g } end end susp namespace is_conn -- homotopy.connectedness structure conntype (n : ℕ₋₂) : Type := (carrier : Type) (struct : is_conn n carrier) notation `Type[`:95 n:0 `]`:0 := conntype n attribute conntype.carrier [coercion] attribute conntype.struct [instance] [priority 1300] section universe variable u structure pconntype (n : ℕ₋₂) extends conntype.{u} n, pType.{u} notation `Type*[`:95 n:0 `]`:0 := pconntype n /- There are multiple coercions from pconntype to Type. Type class inference doesn't recognize that all of them are definitionally equal (for performance reasons). One instance is automatically generated, and we manually add the missing instances. -/ definition is_conn_pconntype [instance] {n : ℕ₋₂} (X : Type*[n]) : is_conn n X := conntype.struct X /- Now all the instances work -/ example {n : ℕ₋₂} (X : Type*[n]) : is_conn n X := _ example {n : ℕ₋₂} (X : Type*[n]) : is_conn n (pconntype.to_pType X) := _ example {n : ℕ₋₂} (X : Type*[n]) : is_conn n (pconntype.to_conntype X) := _ example {n : ℕ₋₂} (X : Type*[n]) : is_conn n (pconntype._trans_of_to_pType X) := _ example {n : ℕ₋₂} (X : Type*[n]) : is_conn n (pconntype._trans_of_to_conntype X) := _ structure truncconntype (n k : ℕ₋₂) extends trunctype.{u} n, conntype.{u} k renaming struct→conn_struct notation n `-Type[`:95 k:0 `]`:0 := truncconntype n k definition is_conn_truncconntype [instance] {n k : ℕ₋₂} (X : n-Type[k]) : is_conn k (truncconntype._trans_of_to_trunctype X) := conntype.struct X definition is_trunc_truncconntype [instance] {n k : ℕ₋₂} (X : n-Type[k]) : is_trunc n X := trunctype.struct X structure ptruncconntype (n k : ℕ₋₂) extends ptrunctype.{u} n, pconntype.{u} k renaming struct→conn_struct notation n `-Type*[`:95 k:0 `]`:0 := ptruncconntype n k attribute ptruncconntype._trans_of_to_pconntype ptruncconntype._trans_of_to_ptrunctype ptruncconntype._trans_of_to_pconntype_1 ptruncconntype._trans_of_to_ptrunctype_1 ptruncconntype._trans_of_to_pconntype_2 ptruncconntype._trans_of_to_ptrunctype_2 ptruncconntype.to_pconntype ptruncconntype.to_ptrunctype truncconntype._trans_of_to_conntype truncconntype._trans_of_to_trunctype truncconntype.to_conntype truncconntype.to_trunctype [unfold 3] attribute pconntype._trans_of_to_conntype pconntype._trans_of_to_pType pconntype.to_pType pconntype.to_conntype [unfold 2] definition is_conn_ptruncconntype [instance] {n k : ℕ₋₂} (X : n-Type*[k]) : is_conn k (ptruncconntype._trans_of_to_ptrunctype X) := conntype.struct X definition is_trunc_ptruncconntype [instance] {n k : ℕ₋₂} (X : n-Type*[k]) : is_trunc n (ptruncconntype._trans_of_to_pconntype X) := trunctype.struct X definition ptruncconntype_eq {n k : ℕ₋₂} {X Y : n-Type*[k]} (p : X ≃* Y) : X = Y := begin induction X with X Xt Xp Xc, induction Y with Y Yt Yp Yc, note q := pType_eq_elim (eq_of_pequiv p), cases q with r s, esimp at *, induction r, exact ap0111 (ptruncconntype.mk X) !is_prop.elim (eq_of_pathover_idp s) !is_prop.elim end end end is_conn namespace succ_str variables {N : succ_str} protected definition add [reducible] (n : N) (k : ℕ) : N := iterate S k n infix ` +' `:65 := succ_str.add definition add_succ (n : N) (k : ℕ) : n +' (k + 1) = (S n) +' k := by induction k with k p; reflexivity; exact ap S p end succ_str namespace join definition pjoin [constructor] (A B : Type*) : Type* := pointed.MK (join A B) (inl pt) end join namespace circle /- Suppose for `f, g : A -> B` I prove a homotopy `H : f ~ g` by induction on the element in `A`. And suppose `p : a = a'` is a path constructor in `A`. Then `natural_square_tr H p` has type `square (H a) (H a') (ap f p) (ap g p)` and is equal to the square which defined H on the path constructor -/ definition natural_square_tr_elim_loop {A : Type} {f g : S¹ → A} (p : f base = g base) (q : square p p (ap f loop) (ap g loop)) : natural_square_tr (circle.rec p (eq_pathover q)) loop = q := begin refine !natural_square_tr_eq ⬝ _, refine ap square_of_pathover !rec_loop ⬝ _, exact to_right_inv !eq_pathover_equiv_square q end end circle -- this should replace various definitions in homotopy.susp, lines 241 - 338 namespace new_susp variables {X Y Z : Type*} definition loop_psusp_unit [constructor] (X : Type*) : X →* Ω(psusp X) := begin fconstructor, { intro x, exact merid x ⬝ (merid pt)⁻¹ }, { apply con.right_inv }, end definition loop_psusp_unit_natural (f : X →* Y) : loop_psusp_unit Y ∘* f ~* ap1 (psusp_functor f) ∘* loop_psusp_unit X := begin induction X with X x, induction Y with Y y, induction f with f pf, esimp at *, induction pf, fconstructor, { intro x', esimp [psusp_functor], symmetry, exact !idp_con ⬝ (!ap_con ⬝ whisker_left _ !ap_inv) ⬝ (!elim_merid ◾ (inverse2 !elim_merid)) }, { rewrite [▸*,idp_con (con.right_inv _)], apply inv_con_eq_of_eq_con, refine _ ⬝ !con.assoc', rewrite inverse2_right_inv, refine _ ⬝ !con.assoc', rewrite [ap_con_right_inv], xrewrite [idp_con_idp, -ap_compose (concat idp)] }, end definition loop_psusp_counit [constructor] (X : Type*) : psusp (Ω X) →* X := begin fconstructor, { intro x, induction x, exact pt, exact pt, exact a }, { reflexivity }, end definition loop_psusp_counit_natural (f : X →* Y) : f ∘* loop_psusp_counit X ~* loop_psusp_counit Y ∘* (psusp_functor (ap1 f)) := begin induction X with X x, induction Y with Y y, induction f with f pf, esimp at *, induction pf, fconstructor, { intro x', induction x' with p, { reflexivity }, { reflexivity }, { esimp, apply eq_pathover, apply hdeg_square, xrewrite [ap_compose' f, ap_compose' (susp.elim (f x) (f x) (λ (a : f x = f x), a)),▸*], xrewrite [+elim_merid,▸*,idp_con] }}, { reflexivity } end definition loop_psusp_counit_unit (X : Type*) : ap1 (loop_psusp_counit X) ∘* loop_psusp_unit (Ω X) ~* pid (Ω X) := begin induction X with X x, fconstructor, { intro p, esimp, refine !idp_con ⬝ (!ap_con ⬝ whisker_left _ !ap_inv) ⬝ (!elim_merid ◾ inverse2 !elim_merid) }, { rewrite [▸*,inverse2_right_inv (elim_merid id idp)], refine !con.assoc ⬝ _, xrewrite [ap_con_right_inv (susp.elim x x (λa, a)) (merid idp),idp_con_idp,-ap_compose] } end definition loop_psusp_unit_counit (X : Type*) : loop_psusp_counit (psusp X) ∘* psusp_functor (loop_psusp_unit X) ~* pid (psusp X) := begin induction X with X x, fconstructor, { intro x', induction x', { reflexivity }, { exact merid pt }, { apply eq_pathover, xrewrite [▸*, ap_id, ap_compose' (susp.elim north north (λa, a)), +elim_merid,▸*], apply square_of_eq, exact !idp_con ⬝ !inv_con_cancel_right⁻¹ }}, { reflexivity } end -- TODO: rename to psusp_adjoint_loop (also in above lemmas) definition psusp_adjoint_loop_unpointed [constructor] (X Y : Type*) : psusp X →* Y ≃ X →* Ω Y := begin fapply equiv.MK, { intro f, exact ap1 f ∘* loop_psusp_unit X }, { intro g, exact loop_psusp_counit Y ∘* psusp_functor g }, { intro g, apply eq_of_phomotopy, esimp, refine !pwhisker_right !ap1_pcompose ⬝* _, refine !passoc ⬝* _, refine !pwhisker_left !loop_psusp_unit_natural⁻¹* ⬝* _, refine !passoc⁻¹* ⬝* _, refine !pwhisker_right !loop_psusp_counit_unit ⬝* _, apply pid_pcompose }, { intro f, apply eq_of_phomotopy, esimp, refine !pwhisker_left !psusp_functor_compose ⬝* _, refine !passoc⁻¹* ⬝* _, refine !pwhisker_right !loop_psusp_counit_natural⁻¹* ⬝* _, refine !passoc ⬝* _, refine !pwhisker_left !loop_psusp_unit_counit ⬝* _, apply pcompose_pid }, end definition psusp_adjoint_loop_pconst (X Y : Type*) : psusp_adjoint_loop_unpointed X Y (pconst (psusp X) Y) ~* pconst X (Ω Y) := begin refine pwhisker_right _ !ap1_pconst ⬝* _, apply pconst_pcompose end definition psusp_adjoint_loop [constructor] (X Y : Type*) : ppmap (psusp X) Y ≃* ppmap X (Ω Y) := begin apply pequiv_of_equiv (psusp_adjoint_loop_unpointed X Y), apply eq_of_phomotopy, apply psusp_adjoint_loop_pconst end end new_susp open new_susp -- this should replace corresponding definitions in homotopy.sphere namespace new_sphere open sphere sphere.ops -- the definition was wrong for n = 0 definition new.surf {n : ℕ} : Ω[n] (S* n) := begin induction n with n s, { exact south }, { exact (loopn_succ_in (S* (succ n)) n)⁻¹ᵉ* (apn n (equator n) s), } end definition psphere_pmap_pequiv' (A : Type*) (n : ℕ) : ppmap (S* n) A ≃* Ω[n] A := begin revert A, induction n with n IH: intro A, { refine _ ⬝e* !pmap_pbool_pequiv, exact pequiv_ppcompose_right psphere_pequiv_pbool⁻¹ᵉ* }, { refine psusp_adjoint_loop (S* n) A ⬝e* IH (Ω A) ⬝e* !loopn_succ_in⁻¹ᵉ* } end definition psphere_pmap_pequiv (A : Type*) (n : ℕ) : ppmap (S* n) A ≃* Ω[n] A := begin fapply pequiv_change_fun, { exact psphere_pmap_pequiv' A n }, { exact papn_fun A new.surf }, { revert A, induction n with n IH: intro A, { reflexivity }, { intro f, refine ap !loopn_succ_in⁻¹ᵉ* (IH (Ω A) _ ⬝ !apn_pcompose _) ⬝ _, exact !loopn_succ_in_inv_natural _ }} end end new_sphere namespace sphere open sphere.ops new_sphere -- definition constant_sphere_map_sphere {n m : ℕ} (H : n < m) (f : S* n →* S* m) : -- f ~* pconst (S* n) (S* m) := -- begin -- assert H : is_contr (Ω[n] (S* m)), -- { apply homotopy_group_sphere_le, }, -- apply phomotopy_of_eq, -- apply eq_of_fn_eq_fn !psphere_pmap_pequiv, -- apply @is_prop.elim -- end end sphere