import homotopy.susp types.pointed2 ..move_to_lib open susp eq pointed function is_equiv lift equiv is_trunc nat namespace susp variables {X X' Y Y' Z : Type*} definition iterate_susp_iterate_susp_rev (n m : ℕ) (A : Type*) : iterate_susp n (iterate_susp m A) ≃* iterate_susp (m + n) A := begin induction n with n e, { reflexivity }, { exact susp_pequiv e } end definition iterate_susp_pequiv [constructor] (n : ℕ) {X Y : Type*} (f : X ≃* Y) : iterate_susp n X ≃* iterate_susp n Y := begin induction n with n e, { exact f }, { exact susp_pequiv e } end open algebra nat definition iterate_susp_iterate_susp (n m : ℕ) (A : Type*) : iterate_susp n (iterate_susp m A) ≃* iterate_susp (n + m) A := iterate_susp_iterate_susp_rev n m A ⬝e* pequiv_of_eq (ap (λk, iterate_susp k A) (add.comm m n)) definition plift_susp.{u v} : Π(A : Type*), plift.{u v} (susp A) ≃* susp (plift.{u v} A) := begin intro A, calc plift.{u v} (susp A) ≃* susp A : by exact (pequiv_plift (susp A))⁻¹ᵉ* ... ≃* susp (plift.{u v} A) : by exact susp_pequiv (pequiv_plift.{u v} A) end definition is_contr_susp [instance] (A : Type) [H : is_contr A] : is_contr (susp A) := begin apply is_contr.mk north, intro x, induction x, reflexivity, exact merid !center, apply eq_pathover_constant_left_id_right, apply square_of_eq, exact whisker_left idp (ap merid !eq_of_is_contr) end definition loop_susp_pintro_phomotopy {X Y : Type*} {f g : ⅀ X →* Y} (p : f ~* g) : loop_susp_pintro X Y f ~* loop_susp_pintro X Y g := pwhisker_right (loop_susp_unit X) (Ω⇒ p) variables {A₀₀ A₂₀ A₀₂ A₂₂ : Type*} {f₁₀ : A₀₀ →* A₂₀} {f₁₂ : A₀₂ →* A₂₂} {f₀₁ : A₀₀ →* A₀₂} {f₂₁ : A₂₀ →* A₂₂} -- rename: susp_functor_psquare definition suspend_psquare (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : psquare (⅀→ f₁₀) (⅀→ f₁₂) (⅀→ f₀₁) (⅀→ f₂₁) := sorry definition susp_to_loop_psquare (f₁₀ : A₀₀ →* A₂₀) (f₁₂ : A₀₂ →* A₂₂) (f₀₁ : susp A₀₀ →* A₀₂) (f₂₁ : susp A₂₀ →* A₂₂) : (psquare (⅀→ f₁₀) f₁₂ f₀₁ f₂₁) → (psquare f₁₀ (Ω→ f₁₂) ((loop_susp_pintro A₀₀ A₀₂) f₀₁) ((loop_susp_pintro A₂₀ A₂₂) f₂₁)) := begin intro p, refine pvconcat _ (ap1_psquare p), exact loop_susp_unit_natural f₁₀ end definition loop_to_susp_square (f₁₀ : A₀₀ →* A₂₀) (f₁₂ : A₀₂ →* A₂₂) (f₀₁ : A₀₀ →* Ω A₀₂) (f₂₁ : A₂₀ →* Ω A₂₂) : (psquare f₁₀ (Ω→ f₁₂) f₀₁ f₂₁) → (psquare (⅀→ f₁₀) f₁₂ ((susp_pelim A₀₀ A₀₂) f₀₁) ((susp_pelim A₂₀ A₂₂) f₂₁)) := begin intro p, refine pvconcat (suspend_psquare p) _, exact psquare_transpose (loop_susp_counit_natural f₁₂) end end susp