/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn Constructions of groups -/ import .basic hit.set_quotient types.sigma types.list types.sum open eq algebra is_trunc set_quotient relation sigma sigma.ops prod prod.ops sum list trunc function equiv set_option class.force_new true namespace group /- Subgroups -/ structure subgroup_rel (G : Group) := (R : G → hprop) (Rone : R one) (Rmul : Π{g h}, R g → R h → R (g * h)) (Rinv : Π{g}, R g → R (g⁻¹)) structure normal_subgroup_rel (G : Group) extends subgroup_rel G := (is_normal : Π{g} h, R g → R (h * g * h⁻¹)) attribute subgroup_rel.R [coercion] abbreviation subgroup_to_rel [unfold 2] := @subgroup_rel.R abbreviation subgroup_has_one [unfold 2] := @subgroup_rel.Rone abbreviation subgroup_respect_mul [unfold 2] := @subgroup_rel.Rmul abbreviation subgroup_respect_inv [unfold 2] := @subgroup_rel.Rinv abbreviation is_normal_subgroup [unfold 2] := @normal_subgroup_rel.is_normal variables {G G' : Group} (H : subgroup_rel G) (N : normal_subgroup_rel G) {g g' h h' k : G} {A : CommGroup} theorem is_normal_subgroup' (h : G) (r : N g) : N (h⁻¹ * g * h) := inv_inv h ▸ is_normal_subgroup N h⁻¹ r theorem is_normal_subgroup_rev (h : G) (r : N (h * g * h⁻¹)) : N g := have H : h⁻¹ * (h * g * h⁻¹) * h = g, from calc h⁻¹ * (h * g * h⁻¹) * h = h⁻¹ * (h * g) * h⁻¹ * h : by rewrite [-mul.assoc h⁻¹] ... = h⁻¹ * (h * g) : by rewrite [inv_mul_cancel_right] ... = g : inv_mul_cancel_left, H ▸ is_normal_subgroup' N h r theorem is_normal_subgroup_rev' (h : G) (r : N (h⁻¹ * g * h)) : N g := is_normal_subgroup_rev N h⁻¹ ((inv_inv h)⁻¹ ▸ r) theorem normal_subgroup_insert (r : N k) (r' : N (g * h)) : N (g * (k * h)) := have H1 : N ((g * h) * (h⁻¹ * k * h)), from subgroup_respect_mul N r' (is_normal_subgroup' N h r), have H2 : (g * h) * (h⁻¹ * k * h) = g * (k * h), from calc (g * h) * (h⁻¹ * k * h) = g * (h * (h⁻¹ * k * h)) : mul.assoc ... = g * (h * (h⁻¹ * (k * h))) : by rewrite [mul.assoc h⁻¹] ... = g * (k * h) : by rewrite [mul_inv_cancel_left], show N (g * (k * h)), from H2 ▸ H1 -- this is just (Σ(g : G), H g), but only defined if (H g) is an hprop definition sg : Type := {g : G | H g} local attribute sg [reducible] variable {H} definition subgroup_one [constructor] : sg H := ⟨one, !subgroup_has_one⟩ definition subgroup_inv [unfold 3] : sg H → sg H := λv, ⟨v.1⁻¹, subgroup_respect_inv H v.2⟩ definition subgroup_mul [unfold 3 4] : sg H → sg H → sg H := λv w, ⟨v.1 * w.1, subgroup_respect_mul H v.2 w.2⟩ section local notation 1 := subgroup_one local postfix ⁻¹ := subgroup_inv local infix * := subgroup_mul theorem subgroup_mul_assoc (g₁ g₂ g₃ : sg H) : g₁ * g₂ * g₃ = g₁ * (g₂ * g₃) := subtype_eq !mul.assoc theorem subgroup_one_mul (g : sg H) : 1 * g = g := subtype_eq !one_mul theorem subgroup_mul_one (g : sg H) : g * 1 = g := subtype_eq !mul_one theorem subgroup_mul_left_inv (g : sg H) : g⁻¹ * g = 1 := subtype_eq !mul.left_inv theorem subgroup_mul_comm {G : CommGroup} {H : subgroup_rel G} (g h : sg H) : g * h = h * g := subtype_eq !mul.comm end variable (H) definition group_sg [constructor] : group (sg H) := group.mk subgroup_mul _ subgroup_mul_assoc subgroup_one subgroup_one_mul subgroup_mul_one subgroup_inv subgroup_mul_left_inv definition subgroup [constructor] : Group := Group.mk _ (group_sg H) definition comm_group_sg [constructor] {G : CommGroup} (H : subgroup_rel G) : comm_group (sg H) := ⦃comm_group, group_sg H, mul_comm := subgroup_mul_comm⦄ definition comm_subgroup [constructor] {G : CommGroup} (H : subgroup_rel G) : CommGroup := CommGroup.mk _ (comm_group_sg H) /- Quotient Group -/ definition quotient_rel (g h : G) : hprop := N (g * h⁻¹) variable {N} theorem quotient_rel_refl (g : G) : quotient_rel N g g := transport (λx, N x) !mul.right_inv⁻¹ (subgroup_has_one N) theorem quotient_rel_symm (r : quotient_rel N g h) : quotient_rel N h g := transport (λx, N x) (!mul_inv ⬝ ap (λx, x * _) !inv_inv) (subgroup_respect_inv N r) theorem quotient_rel_trans (r : quotient_rel N g h) (s : quotient_rel N h k) : quotient_rel N g k := have H1 : N ((g * h⁻¹) * (h * k⁻¹)), from subgroup_respect_mul N r s, have H2 : (g * h⁻¹) * (h * k⁻¹) = g * k⁻¹, from calc (g * h⁻¹) * (h * k⁻¹) = ((g * h⁻¹) * h) * k⁻¹ : by rewrite [mul.assoc (g * h⁻¹)] ... = g * k⁻¹ : by rewrite inv_mul_cancel_right, show N (g * k⁻¹), from H2 ▸ H1 theorem quotient_rel_resp_inv (r : quotient_rel N g h) : quotient_rel N g⁻¹ h⁻¹ := have H1 : N (g⁻¹ * (h * g⁻¹) * g), from is_normal_subgroup' N g (quotient_rel_symm r), have H2 : g⁻¹ * (h * g⁻¹) * g = g⁻¹ * h⁻¹⁻¹, from calc g⁻¹ * (h * g⁻¹) * g = g⁻¹ * h * g⁻¹ * g : by rewrite -mul.assoc ... = g⁻¹ * h : inv_mul_cancel_right ... = g⁻¹ * h⁻¹⁻¹ : by rewrite algebra.inv_inv, show N (g⁻¹ * h⁻¹⁻¹), from H2 ▸ H1 theorem quotient_rel_resp_mul (r : quotient_rel N g h) (r' : quotient_rel N g' h') : quotient_rel N (g * g') (h * h') := have H1 : N (g * ((g' * h'⁻¹) * h⁻¹)), from normal_subgroup_insert N r' r, have H2 : g * ((g' * h'⁻¹) * h⁻¹) = (g * g') * (h * h')⁻¹, from calc g * ((g' * h'⁻¹) * h⁻¹) = g * (g' * (h'⁻¹ * h⁻¹)) : by rewrite [mul.assoc] ... = (g * g') * (h'⁻¹ * h⁻¹) : mul.assoc ... = (g * g') * (h * h')⁻¹ : by rewrite [mul_inv], show N ((g * g') * (h * h')⁻¹), from H2 ▸ H1 theorem is_equivalence_quotient_rel : is_equivalence (quotient_rel N) := is_equivalence.mk quotient_rel_refl (λg h, quotient_rel_symm) (λg h k, quotient_rel_trans) local attribute is_equivalence_quotient_rel [instance] variable (N) definition qg : Type := set_quotient (quotient_rel N) variable {N} local attribute qg [reducible] definition quotient_one [constructor] : qg N := class_of one definition quotient_inv [unfold 3] : qg N → qg N := quotient_unary_map has_inv.inv (λg g' r, quotient_rel_resp_inv r) definition quotient_mul [unfold 3 4] : qg N → qg N → qg N := quotient_binary_map has_mul.mul (λg g' r h h' r', quotient_rel_resp_mul r r') section local notation 1 := quotient_one local postfix ⁻¹ := quotient_inv local infix * := quotient_mul theorem quotient_mul_assoc (g₁ g₂ g₃ : qg N) : g₁ * g₂ * g₃ = g₁ * (g₂ * g₃) := begin refine set_quotient.rec_hprop _ g₁, refine set_quotient.rec_hprop _ g₂, refine set_quotient.rec_hprop _ g₃, clear g₁ g₂ g₃, intro g₁ g₂ g₃, exact ap class_of !mul.assoc end theorem quotient_one_mul (g : qg N) : 1 * g = g := begin refine set_quotient.rec_hprop _ g, clear g, intro g, exact ap class_of !one_mul end theorem quotient_mul_one (g : qg N) : g * 1 = g := begin refine set_quotient.rec_hprop _ g, clear g, intro g, exact ap class_of !mul_one end theorem quotient_mul_left_inv (g : qg N) : g⁻¹ * g = 1 := begin refine set_quotient.rec_hprop _ g, clear g, intro g, exact ap class_of !mul.left_inv end theorem quotient_mul_comm {G : CommGroup} {N : normal_subgroup_rel G} (g h : qg N) : g * h = h * g := begin refine set_quotient.rec_hprop _ g, clear g, intro g, refine set_quotient.rec_hprop _ h, clear h, intro h, apply ap class_of, esimp, apply mul.comm end end variable (N) definition group_qg [constructor] : group (qg N) := group.mk quotient_mul _ quotient_mul_assoc quotient_one quotient_one_mul quotient_mul_one quotient_inv quotient_mul_left_inv definition quotient_group [constructor] : Group := Group.mk _ (group_qg N) definition comm_group_qg [constructor] {G : CommGroup} (N : normal_subgroup_rel G) : comm_group (qg N) := ⦃comm_group, group_qg N, mul_comm := quotient_mul_comm⦄ definition quotient_comm_group [constructor] {G : CommGroup} (N : normal_subgroup_rel G) : CommGroup := CommGroup.mk _ (comm_group_qg N) /- Binary products (direct sums) of Groups -/ definition product_one [constructor] : G × G' := (one, one) definition product_inv [unfold 3] : G × G' → G × G' := λv, (v.1⁻¹, v.2⁻¹) definition product_mul [unfold 3 4] : G × G' → G × G' → G × G' := λv w, (v.1 * w.1, v.2 * w.2) section local notation 1 := product_one local postfix ⁻¹ := product_inv local infix * := product_mul theorem product_mul_assoc (g₁ g₂ g₃ : G × G') : g₁ * g₂ * g₃ = g₁ * (g₂ * g₃) := prod_eq !mul.assoc !mul.assoc theorem product_one_mul (g : G × G') : 1 * g = g := prod_eq !one_mul !one_mul theorem product_mul_one (g : G × G') : g * 1 = g := prod_eq !mul_one !mul_one theorem product_mul_left_inv (g : G × G') : g⁻¹ * g = 1 := prod_eq !mul.left_inv !mul.left_inv theorem product_mul_comm {G G' : CommGroup} (g h : G × G') : g * h = h * g := prod_eq !mul.comm !mul.comm end variables (G G') definition group_prod [constructor] : group (G × G') := group.mk product_mul _ product_mul_assoc product_one product_one_mul product_mul_one product_inv product_mul_left_inv definition product [constructor] : Group := Group.mk _ (group_prod G G') definition comm_group_prod [constructor] (G G' : CommGroup) : comm_group (G × G') := ⦃comm_group, group_prod G G', mul_comm := product_mul_comm⦄ definition comm_product [constructor] (G G' : CommGroup) : CommGroup := CommGroup.mk _ (comm_group_prod G G') infix ` ×g `:30 := group.product /- Free Group of a set -/ variables (X : hset) {l l' : list (X ⊎ X)} namespace free_group inductive free_group_rel : list (X ⊎ X) → list (X ⊎ X) → Type := | rrefl : Πl, free_group_rel l l | cancel1 : Πx, free_group_rel [inl x, inr x] [] | cancel2 : Πx, free_group_rel [inr x, inl x] [] | resp_append : Π{l₁ l₂ l₃ l₄}, free_group_rel l₁ l₂ → free_group_rel l₃ l₄ → free_group_rel (l₁ ++ l₃) (l₂ ++ l₄) | rtrans : Π{l₁ l₂ l₃}, free_group_rel l₁ l₂ → free_group_rel l₂ l₃ → free_group_rel l₁ l₃ open free_group_rel local abbreviation R [reducible] := free_group_rel attribute free_group_rel.rrefl [refl] definition free_group_carrier [reducible] : Type := set_quotient (λx y, ∥R X x y∥) local abbreviation FG := free_group_carrier definition is_reflexive_R : is_reflexive (λx y, ∥R X x y∥) := begin constructor, intro s, apply tr, unfold R end local attribute is_reflexive_R [instance] variable {X} theorem rel_respect_flip (r : R X l l') : R X (map sum.flip l) (map sum.flip l') := begin induction r with l x x l₁ l₂ l₃ l₄ r₁ r₂ IH₁ IH₂ l₁ l₂ l₃ r₁ r₂ IH₁ IH₂, { reflexivity}, { repeat esimp [map], exact cancel2 x}, { repeat esimp [map], exact cancel1 x}, { rewrite [+map_append], exact resp_append IH₁ IH₂}, { exact rtrans IH₁ IH₂} end theorem rel_respect_reverse (r : R X l l') : R X (reverse l) (reverse l') := begin induction r with l x x l₁ l₂ l₃ l₄ r₁ r₂ IH₁ IH₂ l₁ l₂ l₃ r₁ r₂ IH₁ IH₂, { reflexivity}, { repeat esimp [map], exact cancel2 x}, { repeat esimp [map], exact cancel1 x}, { rewrite [+reverse_append], exact resp_append IH₂ IH₁}, { exact rtrans IH₁ IH₂} end definition free_group_one [constructor] : FG X := class_of [] definition free_group_inv [unfold 3] : FG X → FG X := quotient_unary_map (reverse ∘ map sum.flip) (λl l', trunc_functor -1 (rel_respect_reverse ∘ rel_respect_flip)) definition free_group_mul [unfold 3 4] : FG X → FG X → FG X := quotient_binary_map append (λl l', trunc.elim (λr m m', trunc.elim (λs, tr (resp_append r s)))) section local notation 1 := free_group_one local postfix ⁻¹ := free_group_inv local infix * := free_group_mul theorem free_group_mul_assoc (g₁ g₂ g₃ : FG X) : g₁ * g₂ * g₃ = g₁ * (g₂ * g₃) := begin refine set_quotient.rec_hprop _ g₁, refine set_quotient.rec_hprop _ g₂, refine set_quotient.rec_hprop _ g₃, clear g₁ g₂ g₃, intro g₁ g₂ g₃, exact ap class_of !append.assoc end theorem free_group_one_mul (g : FG X) : 1 * g = g := begin refine set_quotient.rec_hprop _ g, clear g, intro g, exact ap class_of !append_nil_left end theorem free_group_mul_one (g : FG X) : g * 1 = g := begin refine set_quotient.rec_hprop _ g, clear g, intro g, exact ap class_of !append_nil_right end theorem free_group_mul_left_inv (g : FG X) : g⁻¹ * g = 1 := begin refine set_quotient.rec_hprop _ g, clear g, intro g, apply eq_of_rel, apply tr, induction g with s l IH, { reflexivity}, { rewrite [▸*, map_cons, reverse_cons, concat_append], refine rtrans _ IH, apply resp_append, reflexivity, change R X ([flip s, s] ++ l) ([] ++ l), apply resp_append, induction s, apply cancel2, apply cancel1, reflexivity} end end end free_group open free_group export [reduce_hints] free_group variables (X) definition group_free_group [constructor] : group (free_group_carrier X) := group.mk free_group_mul _ free_group_mul_assoc free_group_one free_group_one_mul free_group_mul_one free_group_inv free_group_mul_left_inv definition free_group [constructor] : Group := Group.mk _ (group_free_group X) /- The universal property of the free group -/ variables {X G} definition free_group_inclusion [constructor] (x : X) : free_group X := class_of [inl x] definition fgh_helper [unfold 5] (f : X → G) (g : G) (x : X + X) : G := g * sum.rec (λx, f x) (λx, (f x)⁻¹) x theorem fgh_helper_respect_rel (f : X → G) (r : free_group_rel X l l') : Π(g : G), foldl (fgh_helper f) g l = foldl (fgh_helper f) g l' := begin induction r with l x x l₁ l₂ l₃ l₄ r₁ r₂ IH₁ IH₂ l₁ l₂ l₃ r₁ r₂ IH₁ IH₂: intro g, { reflexivity}, { unfold [foldl], apply mul_inv_cancel_right}, { unfold [foldl], apply inv_mul_cancel_right}, { rewrite [+foldl_append, IH₁, IH₂]}, { exact !IH₁ ⬝ !IH₂} end theorem fgh_helper_mul (f : X → G) (l) : Π(g : G), foldl (fgh_helper f) g l = g * foldl (fgh_helper f) 1 l := begin induction l with s l IH: intro g, { unfold [foldl], exact !mul_one⁻¹}, { rewrite [+foldl_cons, IH], refine _ ⬝ (ap (λx, g * x) !IH⁻¹), rewrite [-mul.assoc, ↑fgh_helper, one_mul]} end definition free_group_hom [constructor] (f : X → G) : free_group X →g G := begin fapply homomorphism.mk, { intro g, refine set_quotient.elim _ _ g, { intro l, exact foldl (fgh_helper f) 1 l}, { intro l l' r, esimp at *, refine trunc.rec _ r, clear r, intro r, exact fgh_helper_respect_rel f r 1}}, { refine set_quotient.rec_hprop _, intro l, refine set_quotient.rec_hprop _, intro l', esimp, refine !foldl_append ⬝ _, esimp, apply fgh_helper_mul} end definition fn_of_free_group_hom [unfold_full] (φ : free_group X →g G) : X → G := φ ∘ free_group_inclusion variables (X G) definition free_group_hom_equiv_fn : (free_group X →g G) ≃ (X → G) := begin fapply equiv.MK, { exact fn_of_free_group_hom}, { exact free_group_hom}, { intro f, apply eq_of_homotopy, intro x, esimp, unfold [foldl], apply one_mul}, { intro φ, apply homomorphism_eq, refine set_quotient.rec_hprop _, intro l, esimp, induction l with s l IH, { esimp [foldl], exact !respect_one⁻¹}, { rewrite [foldl_cons, fgh_helper_mul], refine _ ⬝ (respect_mul φ (class_of [s]) (class_of l))⁻¹, rewrite [IH], induction s: rewrite [▸*, one_mul], rewrite [-respect_inv]}} end /- Free Commutative Group of a set -/ namespace free_comm_group inductive fcg_rel : list (X ⊎ X) → list (X ⊎ X) → Type := | rrefl : Πl, fcg_rel l l | cancel1 : Πx, fcg_rel [inl x, inr x] [] | cancel2 : Πx, fcg_rel [inr x, inl x] [] | rflip : Πx y, fcg_rel [x, y] [y, x] | resp_append : Π{l₁ l₂ l₃ l₄}, fcg_rel l₁ l₂ → fcg_rel l₃ l₄ → fcg_rel (l₁ ++ l₃) (l₂ ++ l₄) | rtrans : Π{l₁ l₂ l₃}, fcg_rel l₁ l₂ → fcg_rel l₂ l₃ → fcg_rel l₁ l₃ open fcg_rel local abbreviation R [reducible] := fcg_rel attribute fcg_rel.rrefl [refl] attribute fcg_rel.rtrans [trans] definition fcg_carrier [reducible] : Type := set_quotient (λx y, ∥R X x y∥) local abbreviation FG := fcg_carrier definition is_reflexive_R : is_reflexive (λx y, ∥R X x y∥) := begin constructor, intro s, apply tr, unfold R end local attribute is_reflexive_R [instance] variable {X} theorem rel_respect_flip (r : R X l l') : R X (map sum.flip l) (map sum.flip l') := begin induction r with l x x x y l₁ l₂ l₃ l₄ r₁ r₂ IH₁ IH₂ l₁ l₂ l₃ r₁ r₂ IH₁ IH₂, { reflexivity}, { repeat esimp [map], exact cancel2 x}, { repeat esimp [map], exact cancel1 x}, { repeat esimp [map], apply rflip}, { rewrite [+map_append], exact resp_append IH₁ IH₂}, { exact rtrans IH₁ IH₂} end theorem rel_respect_reverse (r : R X l l') : R X (reverse l) (reverse l') := begin induction r with l x x x y l₁ l₂ l₃ l₄ r₁ r₂ IH₁ IH₂ l₁ l₂ l₃ r₁ r₂ IH₁ IH₂, { reflexivity}, { repeat esimp [map], exact cancel2 x}, { repeat esimp [map], exact cancel1 x}, { repeat esimp [map], apply rflip}, { rewrite [+reverse_append], exact resp_append IH₂ IH₁}, { exact rtrans IH₁ IH₂} end theorem rel_cons_concat (l s) : R X (s :: l) (concat s l) := begin induction l with t l IH, { reflexivity}, { rewrite [concat_cons], transitivity (t :: s :: l), { exact resp_append !rflip !rrefl}, { exact resp_append (rrefl [t]) IH}} end definition fcg_one [constructor] : FG X := class_of [] definition fcg_inv [unfold 3] : FG X → FG X := quotient_unary_map (reverse ∘ map sum.flip) (λl l', trunc_functor -1 (rel_respect_reverse ∘ rel_respect_flip)) definition fcg_mul [unfold 3 4] : FG X → FG X → FG X := quotient_binary_map append (λl l', trunc.elim (λr m m', trunc.elim (λs, tr (resp_append r s)))) section local notation 1 := fcg_one local postfix ⁻¹ := fcg_inv local infix * := fcg_mul theorem fcg_mul_assoc (g₁ g₂ g₃ : FG X) : g₁ * g₂ * g₃ = g₁ * (g₂ * g₃) := begin refine set_quotient.rec_hprop _ g₁, refine set_quotient.rec_hprop _ g₂, refine set_quotient.rec_hprop _ g₃, clear g₁ g₂ g₃, intro g₁ g₂ g₃, exact ap class_of !append.assoc end theorem fcg_one_mul (g : FG X) : 1 * g = g := begin refine set_quotient.rec_hprop _ g, clear g, intro g, exact ap class_of !append_nil_left end theorem fcg_mul_one (g : FG X) : g * 1 = g := begin refine set_quotient.rec_hprop _ g, clear g, intro g, exact ap class_of !append_nil_right end theorem fcg_mul_left_inv (g : FG X) : g⁻¹ * g = 1 := begin refine set_quotient.rec_hprop _ g, clear g, intro g, apply eq_of_rel, apply tr, induction g with s l IH, { reflexivity}, { rewrite [▸*, map_cons, reverse_cons, concat_append], refine rtrans _ IH, apply resp_append, reflexivity, change R X ([flip s, s] ++ l) ([] ++ l), apply resp_append, induction s, apply cancel2, apply cancel1, reflexivity} end theorem fcg_mul_comm (g h : FG X) : g * h = h * g := begin refine set_quotient.rec_hprop _ g, clear g, intro g, refine set_quotient.rec_hprop _ h, clear h, intro h, apply eq_of_rel, apply tr, revert h, induction g with s l IH: intro h, { rewrite [append_nil_left, append_nil_right]}, { rewrite [append_cons,-concat_append], transitivity concat s (l ++ h), apply rel_cons_concat, rewrite [-append_concat], apply IH} end end end free_comm_group open free_comm_group variables (X) definition group_free_comm_group [constructor] : comm_group (fcg_carrier X) := comm_group.mk fcg_mul _ fcg_mul_assoc fcg_one fcg_one_mul fcg_mul_one fcg_inv fcg_mul_left_inv fcg_mul_comm definition free_comm_group [constructor] : CommGroup := CommGroup.mk _ (group_free_comm_group X) /- The universal property of the free commutative group -/ variables {X A} definition free_comm_group_inclusion [constructor] (x : X) : free_comm_group X := class_of [inl x] theorem fgh_helper_respect_comm_rel (f : X → A) (r : fcg_rel X l l') : Π(g : A), foldl (fgh_helper f) g l = foldl (fgh_helper f) g l' := begin induction r with l x x x y l₁ l₂ l₃ l₄ r₁ r₂ IH₁ IH₂ l₁ l₂ l₃ r₁ r₂ IH₁ IH₂: intro g, { reflexivity}, { unfold [foldl], apply mul_inv_cancel_right}, { unfold [foldl], apply inv_mul_cancel_right}, { unfold [foldl, fgh_helper], apply mul.right_comm}, { rewrite [+foldl_append, IH₁, IH₂]}, { exact !IH₁ ⬝ !IH₂} end definition free_comm_group_hom [constructor] (f : X → A) : free_comm_group X →g A := begin fapply homomorphism.mk, { intro g, refine set_quotient.elim _ _ g, { intro l, exact foldl (fgh_helper f) 1 l}, { intro l l' r, esimp at *, refine trunc.rec _ r, clear r, intro r, exact fgh_helper_respect_comm_rel f r 1}}, { refine set_quotient.rec_hprop _, intro l, refine set_quotient.rec_hprop _, intro l', esimp, refine !foldl_append ⬝ _, esimp, apply fgh_helper_mul} end definition fn_of_free_comm_group_hom [unfold_full] (φ : free_comm_group X →g A) : X → A := φ ∘ free_comm_group_inclusion variables (X A) definition free_comm_group_hom_equiv_fn : (free_comm_group X →g A) ≃ (X → A) := begin fapply equiv.MK, { exact fn_of_free_comm_group_hom}, { exact free_comm_group_hom}, { intro f, apply eq_of_homotopy, intro x, esimp, unfold [foldl], apply one_mul}, { intro φ, apply homomorphism_eq, refine set_quotient.rec_hprop _, intro l, esimp, induction l with s l IH, { esimp [foldl], exact !respect_one⁻¹}, { rewrite [foldl_cons, fgh_helper_mul], refine _ ⬝ (respect_mul φ (class_of [s]) (class_of l))⁻¹, rewrite [▸*,IH], induction s: rewrite [▸*, one_mul], apply ap (λx, x * _), exact !respect_inv⁻¹}} end end group