/- Copyright (c) 2016 Michael Shulman. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Michael Shulman, Floris van Doorn, Egbert Rijke, Stefano Piceghello, Yuri Sulyma -/ import homotopy.LES_of_homotopy_groups ..algebra.splice ..algebra.seq_colim ..homotopy.EM ..homotopy.fwedge ..pointed_cubes open eq nat int susp pointed sigma is_equiv equiv fiber algebra trunc trunc_index pi group succ_str EM EM.ops function unit lift is_trunc sigma.ops /--------------------- Basic definitions ---------------------/ /- The basic definitions of spectra and prespectra make sense for any successor-structure. -/ structure gen_prespectrum (N : succ_str) := (deloop : N → Type*) (glue : Π(n:N), deloop n →* Ω (deloop (S n))) attribute gen_prespectrum.deloop [coercion] structure is_spectrum [class] {N : succ_str} (E : gen_prespectrum N) := (is_equiv_glue : Πn, is_equiv (gen_prespectrum.glue E n)) attribute is_spectrum.is_equiv_glue [instance] structure gen_spectrum (N : succ_str) := (to_prespectrum : gen_prespectrum N) (to_is_spectrum : is_spectrum to_prespectrum) attribute gen_spectrum.to_prespectrum [coercion] attribute gen_spectrum.to_is_spectrum [instance] attribute gen_spectrum._trans_of_to_prespectrum [unfold 2] -- Classically, spectra and prespectra use the successor structure +ℕ. -- But we will use +ℤ instead, to reduce case analysis later on. abbreviation prespectrum := gen_prespectrum +ℤ definition prespectrum.mk (Y : ℤ → Type*) (e : Π(n : ℤ), Y n →* Ω (Y (n+1))) : prespectrum := gen_prespectrum.mk Y e abbreviation spectrum := gen_spectrum +ℤ abbreviation spectrum.mk (Y : prespectrum) (e : is_spectrum Y) : spectrum := gen_spectrum.mk Y e namespace spectrum definition glue [unfold 2] {{N : succ_str}} := @gen_prespectrum.glue N --definition glue := (@gen_prespectrum.glue +ℤ) definition equiv_glue {N : succ_str} (E : gen_prespectrum N) [H : is_spectrum E] (n:N) : (E n) ≃* (Ω (E (S n))) := pequiv_of_pmap (glue E n) (is_spectrum.is_equiv_glue E n) definition equiv_glue2 (Y : spectrum) (n : ℤ) : Ω (Ω (Y (n+2))) ≃* Y n := begin refine (!equiv_glue ⬝e* loop_pequiv_loop (!equiv_glue ⬝e* loop_pequiv_loop _))⁻¹ᵉ*, refine pequiv_of_eq (ap Y _), exact add.assoc n 1 1 end definition gluen {N : succ_str} (X : gen_prespectrum N) (n : N) (k : ℕ) : X n →* Ω[k] (X (n +' k)) := by induction k with k f; reflexivity; exact !loopn_succ_in⁻¹ᵉ* ∘* Ω→[k] (glue X (n +' k)) ∘* f -- note: the forward map is (currently) not definitionally equal to gluen. Is that a problem? definition equiv_gluen {N : succ_str} (X : gen_spectrum N) (n : N) (k : ℕ) : X n ≃* Ω[k] (X (n +' k)) := by induction k with k f; reflexivity; exact f ⬝e* (loopn_pequiv_loopn k (equiv_glue X (n +' k)) ⬝e* !loopn_succ_in⁻¹ᵉ*) definition equiv_gluen_inv_succ {N : succ_str} (X : gen_spectrum N) (n : N) (k : ℕ) : (equiv_gluen X n (k+1))⁻¹ᵉ* ~* (equiv_gluen X n k)⁻¹ᵉ* ∘* Ω→[k] (equiv_glue X (n +' k))⁻¹ᵉ* ∘* !loopn_succ_in := begin refine !trans_pinv ⬝* pwhisker_left _ _, refine !trans_pinv ⬝* _, refine pwhisker_left _ !pinv_pinv end definition succ_str_add_eq_int_add (n : ℤ) (m : ℕ) : @succ_str.add sint n m = n + m := begin induction m with m IH, { symmetry, exact add_zero n }, { exact ap int.succ IH ⬝ add.assoc n m 1 } end -- a square when we compose glue with transporting over a path in N definition glue_ptransport {N : succ_str} (X : gen_prespectrum N) {n n' : N} (p : n = n') : glue X n' ∘* ptransport X p ~* Ω→ (ptransport X (ap S p)) ∘* glue X n := by induction p; exact !pcompose_pid ⬝* !pid_pcompose⁻¹* ⬝* pwhisker_right _ !ap1_pid⁻¹* -- Sometimes an ℕ-indexed version does arise naturally, however, so -- we give a standard way to extend an ℕ-indexed (pre)spectrum to a -- ℤ-indexed one. definition psp_of_nat_indexed [constructor] (E : gen_prespectrum +ℕ) : gen_prespectrum +ℤ := gen_prespectrum.mk (λ(n:ℤ), match n with | of_nat k := E k | neg_succ_of_nat k := Ω[succ k] (E 0) end) begin intros n, cases n with n n: esimp, { exact (gen_prespectrum.glue E n) }, cases n with n, { exact (pid _) }, { exact (pid _) } end definition is_spectrum_of_nat_indexed [instance] (E : gen_prespectrum +ℕ) [H : is_spectrum E] : is_spectrum (psp_of_nat_indexed E) := begin apply is_spectrum.mk, intros n, cases n with n n: esimp, { apply is_spectrum.is_equiv_glue }, cases n with n: apply is_equiv_id end protected definition of_nat_indexed (E : gen_prespectrum +ℕ) [H : is_spectrum E] : spectrum := spectrum.mk (psp_of_nat_indexed E) (is_spectrum_of_nat_indexed E) -- In fact, a (pre)spectrum indexed on any pointed successor structure -- gives rise to one indexed on +ℕ, so in this sense +ℤ is a -- "universal" successor structure for indexing spectra. definition succ_str.of_nat {N : succ_str} (z : N) : ℕ → N | succ_str.of_nat zero := z | succ_str.of_nat (succ k) := S (succ_str.of_nat k) definition psp_of_gen_indexed [constructor] {N : succ_str} (z : N) (E : gen_prespectrum N) : prespectrum := psp_of_nat_indexed (gen_prespectrum.mk (λn, E (succ_str.of_nat z n)) (λn, gen_prespectrum.glue E (succ_str.of_nat z n))) definition is_spectrum_of_gen_indexed [instance] {N : succ_str} (z : N) (E : gen_prespectrum N) [H : is_spectrum E] : is_spectrum (psp_of_gen_indexed z E) := begin apply is_spectrum_of_nat_indexed, apply is_spectrum.mk, intros n, esimp, apply is_spectrum.is_equiv_glue end protected definition of_gen_indexed [constructor] {N : succ_str} (z : N) (E : gen_spectrum N) : spectrum := gen_spectrum.mk (psp_of_gen_indexed z E) (is_spectrum_of_gen_indexed z E) -- Generally it's easiest to define a spectrum by giving 'equiv's -- directly. This works for any indexing succ_str. protected definition MK [constructor] {N : succ_str} (deloop : N → Type*) (glue : Π(n:N), (deloop n) ≃* (Ω (deloop (S n)))) : gen_spectrum N := gen_spectrum.mk (gen_prespectrum.mk deloop (λ(n:N), glue n)) (begin apply is_spectrum.mk, intros n, esimp, apply pequiv.to_is_equiv -- Why doesn't typeclass inference find this? end) -- Finally, we combine them and give a way to produce a (ℤ-)spectrum from a ℕ-indexed family of 'equiv's. protected definition Mk [constructor] (deloop : ℕ → Type*) (glue : Π(n:ℕ), (deloop n) ≃* (Ω (deloop (nat.succ n)))) : spectrum := spectrum.of_nat_indexed (spectrum.MK deloop glue) ------------------------------ -- Maps and homotopies of (pre)spectra ------------------------------ -- These make sense for any succ_str. structure smap {N : succ_str} (E F : gen_prespectrum N) := (to_fun : Π(n:N), E n →* F n) (glue_square : Π(n:N), psquare (to_fun n) (Ω→ (to_fun (S n))) (glue E n) (glue F n) ) definition smap_sigma {N : succ_str} (X Y : gen_prespectrum N) : Type := Σ (to_fun : Π(n:N), X n →* Y n), Π(n:N), psquare (to_fun n) (Ω→ (to_fun (S n))) (glue X n) (glue Y n) open smap infix ` →ₛ `:30 := smap attribute smap.to_fun [coercion] definition smap_to_sigma [unfold 4] {N : succ_str} {X Y : gen_prespectrum N} (f : X →ₛ Y) : smap_sigma X Y := begin exact sigma.mk (smap.to_fun f) (glue_square f), end definition smap_to_struc [unfold 4] {N : succ_str} {X Y : gen_prespectrum N} (f : smap_sigma X Y) : X →ₛ Y := begin exact smap.mk f.1 f.2, end definition smap_to_sigma_isretr {N : succ_str} {X Y : gen_prespectrum N} (f : smap_sigma X Y) : smap_to_sigma (smap_to_struc f) = f := begin induction f, reflexivity end definition smap_to_sigma_issec {N : succ_str} {X Y : gen_prespectrum N} (f : X →ₛ Y) : smap_to_struc (smap_to_sigma f) = f := begin induction f, reflexivity end definition smap_sigma_equiv [constructor] {N : succ_str} (X Y : gen_prespectrum N) : (smap_sigma X Y) ≃ (X →ₛ Y) := begin fapply equiv.mk, exact smap_to_struc, fapply adjointify, exact smap_to_sigma, exact smap_to_sigma_issec, exact smap_to_sigma_isretr end -- A version of 'glue_square' in the spectrum case that uses 'equiv_glue' definition sglue_square {N : succ_str} {E F : gen_spectrum N} (f : E →ₛ F) (n : N) : psquare (f n) (Ω→ (f (S n))) (equiv_glue E n) (equiv_glue F n) := glue_square f n definition sid [constructor] [refl] {N : succ_str} (E : gen_prespectrum N) : E →ₛ E := begin apply smap.mk (λ n, pid (E n)), intro n, exact phrfl ⬝vp* !ap1_pid end definition scompose [trans] {N : succ_str} {X Y Z : gen_prespectrum N} (g : Y →ₛ Z) (f : X →ₛ Y) : X →ₛ Z := begin apply smap.mk (λn, g n ∘* f n), intro n, exact (glue_square f n ⬝h* glue_square g n) ⬝vp* !ap1_pcompose end infixr ` ∘ₛ `:60 := scompose definition szero [constructor] {N : succ_str} (E F : gen_prespectrum N) : E →ₛ F := begin apply smap.mk (λn, pconst (E n) (F n)), intro n, exact !phconst_square ⬝vp* !ap1_pconst end definition stransport [constructor] {N : succ_str} {A : Type} {a a' : A} (p : a = a') (E : A → gen_prespectrum N) : E a →ₛ E a' := smap.mk (λn, ptransport (λa, E a n) p) begin intro n, induction p, exact !pcompose_pid ⬝* !pid_pcompose⁻¹* ⬝* pwhisker_right _ !ap1_pid⁻¹*, end structure shomotopy {N : succ_str} {E F : gen_prespectrum N} (f g : E →ₛ F) := (to_phomotopy : Πn, f n ~* g n) (glue_homotopy : Πn, ptube_v (to_phomotopy n) (Ω⇒ (to_phomotopy (S n))) (glue_square f n) (glue_square g n)) /- (glue_homotopy : Πn, phsquare (pwhisker_left (glue F n) (to_phomotopy n)) (pwhisker_right (glue E n) (ap1_phomotopy (to_phomotopy (S n)))) (glue_square f n) (glue_square g n)) -/ infix ` ~ₛ `:50 := shomotopy attribute [coercion] shomotopy.to_phomotopy definition shomotopy_compose {N : succ_str} {E F : gen_prespectrum N} {f g h : E →ₛ F} (p : g ~ₛ h) (q : f ~ₛ g) : f ~ₛ h := shomotopy.mk (λn, (shomotopy.to_phomotopy q n) ⬝* (shomotopy.to_phomotopy p n)) begin intro n, unfold [ptube_v], rewrite (pwhisker_left_trans _), rewrite ap1_phomotopy_trans, rewrite (pwhisker_right_trans _), exact phhconcat ((shomotopy.glue_homotopy q) n) ((shomotopy.glue_homotopy p) n) end definition shomotopy_inverse {N : succ_str} {E F : gen_prespectrum N} {f g : E →ₛ F} (p : f ~ₛ g) : g ~ₛ f := shomotopy.mk (λn, (shomotopy.to_phomotopy p n)⁻¹*) begin intro n, unfold [ptube_v], rewrite (pwhisker_left_symm _ _), rewrite [-ap1_phomotopy_symm], rewrite (pwhisker_right_symm _ _), exact phhinverse ((shomotopy.glue_homotopy p) n) end /- Comparing the structure of shomotopy with a Σ-type -/ definition shomotopy_sigma {N : succ_str} {X Y : gen_prespectrum N} (f g : X →ₛ Y) : Type := Σ (phtpy : Π (n : N), f n ~* g n), Πn, ptube_v (phtpy n) (ap1_phomotopy (phtpy (S n))) (glue_square f n) (glue_square g n) definition shomotopy_to_sigma [unfold 6] {N : succ_str} {X Y : gen_prespectrum N} {f g : X →ₛ Y} (H : f ~ₛ g) : shomotopy_sigma f g := ⟨H, shomotopy.glue_homotopy H⟩ definition shomotopy_to_struct [unfold 6] {N : succ_str} {X Y : gen_prespectrum N} {f g : X →ₛ Y} (H : shomotopy_sigma f g) : f ~ₛ g := begin induction H with H Hsq, exact shomotopy.mk H Hsq, end definition shomotopy_to_sigma_isretr {N : succ_str} {X Y : gen_prespectrum N} {f g : X →ₛ Y} (H : shomotopy_sigma f g) : shomotopy_to_sigma (shomotopy_to_struct H) = H := begin induction H with H Hsq, reflexivity end definition shomotopy_to_sigma_issec {N : succ_str} {X Y : gen_prespectrum N} {f g : X →ₛ Y} (H : f ~ₛ g) : shomotopy_to_struct (shomotopy_to_sigma H) = H := begin induction H, reflexivity end definition shomotopy_sigma_equiv [constructor] {N : succ_str} {X Y : gen_prespectrum N} (f g : X →ₛ Y) : shomotopy_sigma f g ≃ (f ~ₛ g) := begin fapply equiv.mk, exact shomotopy_to_struct, fapply adjointify, exact shomotopy_to_sigma, exact shomotopy_to_sigma_issec, exact shomotopy_to_sigma_isretr, end /- equivalence of shomotopy and eq -/ /- definition eq_of_shomotopy_pfun {N : succ_str} {X Y : gen_prespectrum N} {f g : X →ₛ Y} (H : f ~ₛ g) (n : N) : f n = g n := begin fapply inj (smap_sigma_equiv X Y), repeat exact sorry end-/ definition fam_phomotopy_of_eq {N : Type} {X Y: N → Type*} (f g : Π n, X n →* Y n) : (f = g) ≃ (Π n, f n ~* g n) := !eq_equiv_homotopy ⬝e pi_equiv_pi_right (λ n, pmap_eq_equiv (f n) (g n)) /- definition phomotopy_rec_on_eq [recursor] {k' : ppi B x₀} {Q : (k ~* k') → Type} (p : k ~* k') (H : Π(q : k = k'), Q (phomotopy_of_eq q)) : Q p := phomotopy_of_eq_of_phomotopy p ▸ H (eq_of_phomotopy p) -/ definition fam_phomotopy_rec_on_eq {N : Type} {X Y : N → Type*} (f g : Π n, X n →* Y n) {Q : (Π n, f n ~* g n) → Type} (p : Π n, f n ~* g n) (H : Π (q : f = g), Q (fam_phomotopy_of_eq f g q)) : Q p := begin refine _ ▸ H ((fam_phomotopy_of_eq f g)⁻¹ᵉ p), have q : to_fun (fam_phomotopy_of_eq f g) (to_fun (fam_phomotopy_of_eq f g)⁻¹ᵉ p) = p, from right_inv (fam_phomotopy_of_eq f g) p, krewrite q end /- definition phomotopy_rec_idp [recursor] {Q : Π {k' : ppi B x₀}, (k ~* k') → Type} (q : Q (phomotopy.refl k)) {k' : ppi B x₀} (H : k ~* k') : Q H := begin induction H using phomotopy_rec_on_eq with t, induction t, exact eq_phomotopy_refl_phomotopy_of_eq_refl k ▸ q, end -/ --set_option pp.coercions true definition fam_phomotopy_rec_idp {N : Type} {X Y : N → Type*} (f : Π n, X n →* Y n) (Q : Π (g : Π n, X n →* Y n) (H : Π n, f n ~* g n), Type) (q : Q f (λ n, phomotopy.rfl)) (g : Π n, X n →* Y n) (H : Π n, f n ~* g n) : Q g H := begin fapply fam_phomotopy_rec_on_eq, refine λ(p : f = g), _, --ugly trick intro p, induction p, exact q, end definition eq_of_shomotopy {N : succ_str} {X Y : gen_prespectrum N} {f g : X →ₛ Y} (H : f ~ₛ g) : f = g := begin fapply inj (smap_sigma_equiv X Y)⁻¹ᵉ, induction f with f fsq, induction g with g gsq, induction H with H Hsq, fapply sigma_eq, fapply eq_of_homotopy, intro n, fapply eq_of_phomotopy, exact H n, fapply pi_pathover_constant, intro n, esimp at *, revert g H gsq Hsq n, refine fam_phomotopy_rec_idp f _ _, intro gsq Hsq n, refine change_path _ _, -- have p : eq_of_homotopy (λ n, eq_of_phomotopy phomotopy.rfl) = refl f, reflexivity, refine (eq_of_homotopy_apd10 rfl)⁻¹ ⬝ _, fapply ap (eq_of_homotopy), fapply eq_of_homotopy, intro n, refine (eq_of_phomotopy_refl _)⁻¹, -- fapply eq_of_phomotopy, fapply pathover_idp_of_eq, note Hsq' := ptube_v_eq_bot phomotopy.rfl (ap1_phomotopy_refl _) (fsq n) (gsq n) (Hsq n), unfold ptube_v at *, unfold phsquare at *, refine _ ⬝ Hsq'⁻¹ ⬝ _, refine (trans_refl (fsq n))⁻¹ ⬝ _, exact idp ◾** (pwhisker_right_refl _ _)⁻¹, refine _ ⬝ (refl_trans (gsq n)), refine _ ◾** idp, exact pwhisker_left_refl _ _, end ------------------------------ -- Equivalences of prespectra ------------------------------ definition spectrum_pequiv_of_pequiv_succ {E F : spectrum} (n : ℤ) (e : E (n + 1) ≃* F (n + 1)) : E n ≃* F n := equiv_glue E n ⬝e* loop_pequiv_loop e ⬝e* (equiv_glue F n)⁻¹ᵉ* definition spectrum_pequiv_of_nat {E F : spectrum} (e : Π(n : ℕ), E n ≃* F n) (n : ℤ) : E n ≃* F n := begin induction n with n n, exact e n, induction n with n IH, { exact spectrum_pequiv_of_pequiv_succ -[1+0] (e 0) }, { exact spectrum_pequiv_of_pequiv_succ -[1+succ n] IH } end definition spectrum_pequiv_of_nat_add {E F : spectrum} (m : ℕ) (e : Π(n : ℕ), E (n + m) ≃* F (n + m)) : Π(n : ℤ), E n ≃* F n := begin apply spectrum_pequiv_of_nat, refine nat.rec_down _ m e _, intro n f k, cases k with k, exact spectrum_pequiv_of_pequiv_succ _ (f 0), exact pequiv_ap E (ap of_nat (succ_add k n)) ⬝e* f k ⬝e* pequiv_ap F (ap of_nat (succ_add k n))⁻¹ end definition is_contr_spectrum_of_nat {E : spectrum} (e : Π(n : ℕ), is_contr (E n)) (n : ℤ) : is_contr (E n) := begin have Πn, is_contr (E (n + 1)) → is_contr (E n), from λn H, @(is_trunc_equiv_closed_rev -2 !equiv_glue) (is_contr_loop_of_is_contr H), induction n with n n, exact e n, induction n with n IH, { exact this -[1+0] (e 0) }, { exact this -[1+succ n] IH } end structure is_sequiv {N : succ_str} {E F : gen_prespectrum N} (f : E →ₛ F) : Type := (to_linv : F →ₛ E) (is_retr : to_linv ∘ₛf ~ₛ sid E) (to_rinv : F →ₛ E) (is_sec : f ∘ₛ to_rinv ~ₛ sid F) structure sequiv {N : succ_str} (E F : gen_prespectrum N) : Type := (to_fun : E →ₛ F) (to_is_sequiv : is_sequiv to_fun) infix ` ≃ₛ ` : 25 := sequiv definition is_sequiv_smap {N : succ_str} {E F : gen_prespectrum N} (f : E →ₛ F) : Type := Π (n: N), is_equiv (f n) definition is_sequiv_of_smap_pequiv {N : succ_str} {E F : gen_prespectrum N} (f : E →ₛ F) (H : is_sequiv_smap f) (n : N) : E n ≃* F n := begin fapply pequiv_of_pmap, exact f n, fapply H, end definition is_sequiv_of_smap_inv {N : succ_str} {E F : gen_prespectrum N} (f : E →ₛ F) (H : is_sequiv_smap f) : F →ₛ E := begin fapply smap.mk, intro n, exact (is_sequiv_of_smap_pequiv f H n)⁻¹ᵉ*, intro n, refine _ ⬝vp* (to_pinv_loopn_pequiv_loopn 1 (is_sequiv_of_smap_pequiv f H (S n)))⁻¹*, fapply phinverse, exact glue_square f n, end local postfix `⁻¹ˢ` : (max + 1) := is_sequiv_of_smap_inv definition is_sequiv_of_smap_isretr {N : succ_str} {E F : gen_prespectrum N} (f : E →ₛ F) (H : is_sequiv_smap f) : is_sequiv_of_smap_inv f H ∘ₛ f ~ₛ sid E := begin fapply shomotopy.mk, intro n, fapply pleft_inv, intro n, refine _ ⬝hp** _, repeat exact sorry, end definition is_sequiv_of_smap_issec {N : succ_str} {E F : gen_prespectrum N} (f : E →ₛ F) (H : is_sequiv_smap f) : f ∘ₛ is_sequiv_of_smap_inv f H ~ₛ sid F := begin repeat exact sorry end definition is_sequiv_of_smap {N : succ_str} {E F : gen_prespectrum N} (f : E →ₛ F) : is_sequiv_smap f → is_sequiv f := begin intro H, fapply is_sequiv.mk, fapply is_sequiv_of_smap_inv f H, fapply is_sequiv_of_smap_isretr f H, fapply is_sequiv_of_smap_inv f H, fapply is_sequiv_of_smap_issec f H, end /--------- Fibers ----------/ definition sfiber [constructor] {N : succ_str} {X Y : gen_spectrum N} (f : X →ₛ Y) : gen_spectrum N := spectrum.MK (λn, pfiber (f n)) (λn, (loop_pfiber (f (S n)))⁻¹ᵉ* ∘*ᵉ pfiber_pequiv_of_square _ _ (sglue_square f n)) /- the map from the fiber to the domain -/ definition spoint {N : succ_str} {X Y : gen_spectrum N} (f : X →ₛ Y) : sfiber f →ₛ X := smap.mk (λn, ppoint (f n)) begin intro n, -- refine _ ⬝vp* !ppoint_loop_pfiber_inv, refine _ ⬝* !passoc, refine _ ⬝* pwhisker_right _ !ppoint_loop_pfiber_inv⁻¹*, rexact (pfiber_pequiv_of_square_ppoint (equiv_glue X n) (equiv_glue Y n) (sglue_square f n))⁻¹* end definition scompose_spoint {N : succ_str} {X Y : gen_spectrum N} (f : X →ₛ Y) : f ∘ₛ spoint f ~ₛ !szero := begin fapply shomotopy.mk, { intro n, exact pcompose_ppoint (f n) }, { intro n, esimp, exact sorry } end /--------------------- Homotopy groups ---------------------/ -- Here we start to reap the rewards of using ℤ-indexing: we can -- read off the homotopy groups without any tedious case-analysis of -- n. We increment by 2 in order to ensure that they are all -- automatically abelian groups. definition shomotopy_group (n : ℤ) (E : spectrum) : AbGroup := πag[2] (E (2 - n)) notation `πₛ[`:95 n:0 `]`:0 := shomotopy_group n definition shomotopy_group_fun (n : ℤ) {E F : spectrum} (f : E →ₛ F) : πₛ[n] E →g πₛ[n] F := proof π→g[2] (f (2 - n)) qed definition shomotopy_group_isomorphism_of_pequiv (n : ℤ) {E F : spectrum} (f : Πn, E n ≃* F n) : πₛ[n] E ≃g πₛ[n] F := proof homotopy_group_isomorphism_of_pequiv 1 (f (2 - n)) qed definition shomotopy_group_isomorphism_of_pequiv_nat (n : ℕ) {E F : spectrum} (f : Πn, E n ≃* F n) : πₛ[n] E ≃g πₛ[n] F := shomotopy_group_isomorphism_of_pequiv n (spectrum_pequiv_of_nat f) notation `πₛ→[`:95 n:0 `]`:0 := shomotopy_group_fun n /- properties about homotopy groups -/ definition equiv_glue_neg (X : spectrum) (n : ℤ) : X (2 - succ n) ≃* Ω (X (2 - n)) := have H : succ (2 - succ n) = 2 - n, from ap succ !sub_sub⁻¹ ⬝ sub_add_cancel (2-n) 1, equiv_glue X (2 - succ n) ⬝e* loop_pequiv_loop (pequiv_of_eq (ap X H)) definition π_glue (X : spectrum) (n : ℤ) : π[2] (X (2 - succ n)) ≃* π[3] (X (2 - n)) := homotopy_group_pequiv 2 (equiv_glue_neg X n) definition πg_glue (X : spectrum) (n : ℤ) : πg[2] (X (2 - succ n)) ≃g πg[3] (X (2 - n)) := begin change πg[2] (X (2 - succ n)) ≃g πg[2] (Ω (X (2 - n))), apply homotopy_group_isomorphism_of_pequiv, exact equiv_glue_neg X n end definition πg_glue_homotopy_π_glue (X : spectrum) (n : ℤ) : πg_glue X n ~ π_glue X n := by reflexivity definition π_glue_natural {X Y : spectrum} (f : X →ₛ Y) (n : ℤ) : π_glue Y n ∘* π→[2] (f (2 - succ n)) ~* π→[3] (f (2 - n)) ∘* π_glue X n := begin change π→[2] (equiv_glue_neg Y n) ∘* π→[2] (f (2 - succ n)) ~* π→[2] (Ω→ (f (2 - n))) ∘* π→[2] (equiv_glue_neg X n), refine homotopy_group_functor_psquare 2 _, refine !sglue_square ⬝v* ap1_psquare !pequiv_of_eq_natural⁻¹* end definition homotopy_group_spectrum_irrel_one {n m : ℤ} {k : ℕ} (E : spectrum) (p : n + 1 = m + k) [Hk : is_succ k] : πg[k] (E n) ≃g π₁ (E m) := begin induction Hk with k, change π₁ (Ω[k] (E n)) ≃g π₁ (E m), apply homotopy_group_isomorphism_of_pequiv 0, symmetry, have m + k = n, from (pred_succ (m + k))⁻¹ ⬝ ap pred (add.assoc m k 1 ⬝ p⁻¹) ⬝ pred_succ n, induction (succ_str_add_eq_int_add m k ⬝ this), exact equiv_gluen E m k end definition homotopy_group_spectrum_irrel {n m : ℤ} {l k : ℕ} (E : spectrum) (p : n + l = m + k) [Hk : is_succ k] [Hl : is_succ l] : πg[k] (E n) ≃g πg[l] (E m) := proof have Πa b c : ℤ, a + (b + c) = c + (b + a), from λa b c, !add.assoc⁻¹ ⬝ add.comm (a + b) c ⬝ ap (λx, c + x) (add.comm a b), have n + 1 = m + 1 - l + k, from ap succ (add_sub_cancel n l)⁻¹ ⬝ !add.assoc ⬝ ap (λx, x + (-l + 1)) p ⬝ !add.assoc ⬝ ap (λx, m + x) (this k (-l) 1) ⬝ !add.assoc⁻¹ ⬝ !add.assoc⁻¹, homotopy_group_spectrum_irrel_one E this ⬝g (homotopy_group_spectrum_irrel_one E (sub_add_cancel (m+1) l)⁻¹)⁻¹ᵍ qed definition shomotopy_group_isomorphism_homotopy_group {n m : ℤ} {l : ℕ} (E : spectrum) (p : n + m = l) [H : is_succ l] : πₛ[n] E ≃g πg[l] (E m) := have 2 - n + l = m + 2, from ap (λx, 2 - n + x) p⁻¹ ⬝ !add.assoc⁻¹ ⬝ ap (λx, x + m) (sub_add_cancel 2 n) ⬝ add.comm 2 m, homotopy_group_spectrum_irrel E this definition shomotopy_group_pequiv_homotopy_group_ab {n m : ℤ} {l : ℕ} (E : spectrum) (p : n + m = l) [H : is_at_least_two l] : πₛ[n] E ≃g πag[l] (E m) := begin induction H with l, exact shomotopy_group_isomorphism_homotopy_group E p end definition shomotopy_group_pequiv_homotopy_group {n m : ℤ} {l : ℕ} (E : spectrum) (p : n + m = l) : πₛ[n] E ≃* π[l] (E m) := begin cases l with l, { apply ptrunc_pequiv_ptrunc, symmetry, change E m ≃* Ω (Ω (E (2 - n))), refine !equiv_glue ⬝e* loop_pequiv_loop _, refine !equiv_glue ⬝e* loop_pequiv_loop _, apply pequiv_ap E, have -n = m, from neg_eq_of_add_eq_zero p, induction this, rexact add.assoc (-n) 1 1 ⬝ add.comm (-n) 2 }, { exact pequiv_of_isomorphism (shomotopy_group_isomorphism_homotopy_group E p) } end /- the long exact sequence of homotopy groups for spectra -/ section LES open chain_complex prod fin group universe variable u parameters {X Y : spectrum.{u}} (f : X →ₛ Y) definition LES_of_shomotopy_groups : chain_complex +3ℤ := splice (λ(n : ℤ), LES_of_homotopy_groups (f (2 - n))) (2, 0) (π_glue Y) (π_glue X) (π_glue_natural f) -- This LES is definitionally what we want: example (n : ℤ) : LES_of_shomotopy_groups (n, 0) = πₛ[n] Y := idp example (n : ℤ) : LES_of_shomotopy_groups (n, 1) = πₛ[n] X := idp example (n : ℤ) : LES_of_shomotopy_groups (n, 2) = πₛ[n] (sfiber f) := idp example (n : ℤ) : cc_to_fn LES_of_shomotopy_groups (n, 0) = πₛ→[n] f := idp example (n : ℤ) : cc_to_fn LES_of_shomotopy_groups (n, 1) = πₛ→[n] (spoint f) := idp -- the maps are ugly for (n, 2) definition ab_group_LES_of_shomotopy_groups : Π(v : +3ℤ), ab_group (LES_of_shomotopy_groups v) | (n, fin.mk 0 H) := proof AbGroup.struct (πₛ[n] Y) qed | (n, fin.mk 1 H) := proof AbGroup.struct (πₛ[n] X) qed | (n, fin.mk 2 H) := proof AbGroup.struct (πₛ[n] (sfiber f)) qed | (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end local attribute ab_group_LES_of_shomotopy_groups [instance] definition is_mul_hom_LES_of_shomotopy_groups : Π(v : +3ℤ), is_mul_hom (cc_to_fn LES_of_shomotopy_groups v) | (n, fin.mk 0 H) := proof homomorphism.struct (πₛ→[n] f) qed | (n, fin.mk 1 H) := proof homomorphism.struct (πₛ→[n] (spoint f)) qed | (n, fin.mk 2 H) := proof homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun (f (2 - n)) (1, 2) ∘g πg_glue Y n) qed | (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end definition is_exact_LES_of_shomotopy_groups : is_exact LES_of_shomotopy_groups := begin apply is_exact_splice, intro n, apply is_exact_LES_of_homotopy_groups, end -- In the comments below is a start on an explicit description of the LES for spectra -- Maybe it's slightly nicer to work with than the above version definition shomotopy_groups [reducible] : +3ℤ → AbGroup | (n, fin.mk 0 H) := πₛ[n] Y | (n, fin.mk 1 H) := πₛ[n] X | (n, fin.mk k H) := πₛ[n] (sfiber f) definition shomotopy_groups_fun : Π(v : +3ℤ), shomotopy_groups (S v) →g shomotopy_groups v | (n, fin.mk 0 H) := proof πₛ→[n] f qed | (n, fin.mk 1 H) := proof πₛ→[n] (spoint f) qed | (n, fin.mk 2 H) := proof homomorphism_LES_of_homotopy_groups_fun (f (2 - n)) (nat.succ nat.zero, 2) ∘g πg_glue Y n ∘g (by reflexivity) qed | (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end --(homomorphism_LES_of_homotopy_groups_fun (f (2 - n)) (1, 2) ∘g πg_glue Y n) definition is_contr_shomotopy_group_sfiber {n : ℤ} (H1 : is_embedding (πₛ→[n] f)) (H2 : is_surjective (πₛ→[n+1] f)) : is_contr (πₛ[n] (sfiber f)) := begin apply @is_contr_of_is_embedding_of_is_surjective +3ℤ LES_of_shomotopy_groups (n, 0), exact is_exact_LES_of_shomotopy_groups (n, 1), exact H1, exact H2 end definition is_contr_shomotopy_group_sfiber_of_is_equiv {n : ℤ} (H1 : is_equiv (πₛ→[n] f)) (H2 : is_equiv (πₛ→[n+1] f)) : is_contr (πₛ[n] (sfiber f)) := proof is_contr_shomotopy_group_sfiber (is_embedding_of_is_equiv _) (is_surjective_of_is_equiv _) qed end LES /- homotopy group of a prespectrum -/ definition pshomotopy_group_hom (n : ℤ) (E : prespectrum) (k : ℕ) : πag[k + 2] (E (-n + 2 + k)) →g πag[k + 3] (E (-n + 2 + (k + 1))) := begin refine _ ∘g π→g[k+2] (glue E _), refine (ghomotopy_group_succ_in (k+1) _)⁻¹ᵍ ∘g _, refine homotopy_group_isomorphism_of_pequiv (k+1) (loop_pequiv_loop (pequiv_of_eq (ap E (add.assoc (-n + 2) k 1)))) end definition pshomotopy_group (n : ℤ) (E : prespectrum) : AbGroup := group.seq_colim (λ(k : ℕ), πag[k+2] (E (-n + 2 + k))) (pshomotopy_group_hom n E) notation `πₚₛ[`:95 n:0 `]`:0 := pshomotopy_group n definition pshomotopy_group_fun (n : ℤ) {E F : prespectrum} (f : E →ₛ F) : πₚₛ[n] E →g πₚₛ[n] F := proof group.seq_colim_functor (λk, π→g[k+2] (f (-n + 2 +[ℤ] k))) begin intro k, note sq1 := homotopy_group_homomorphism_psquare (k+2) (ptranspose (smap.glue_square f (-n + 2 +[ℤ] k))), note sq2 := homotopy_group_functor_psquare (k+2) (ap1_psquare (ptransport_natural E F f (add.assoc (-n + 2) k 1))), -- note sq3 := (homotopy_group_succ_in_natural (k+2) (f (-n + 2 +[ℤ] (k +[ℕ] 1))))⁻¹ʰᵗʸʰ, -- note sq4 := hsquare_of_psquare sq2, -- note rect := sq1 ⬝htyh sq4 ⬝htyh sq3, exact sorry --sq1 ⬝htyh sq4 ⬝htyh sq3, end qed notation `πₚₛ→[`:95 n:0 `]`:0 := pshomotopy_group_fun n /- a chain complex of spectra (not yet used anywhere) -/ structure sp_chain_complex (N : succ_str) : Type := (car : N → spectrum) (fn : Π(n : N), car (S n) →ₛ car n) (is_chain_complex : Πn, fn n ∘ₛ fn (S n) ~ₛ szero _ _) section variables {N : succ_str} (X : sp_chain_complex N) (n : N) definition scc_to_car [unfold 2] [coercion] := @sp_chain_complex.car definition scc_to_fn [unfold 2] : X (S n) →ₛ X n := sp_chain_complex.fn X n definition scc_is_chain_complex [unfold 2] : scc_to_fn X n ∘ₛ scc_to_fn X (S n) ~ₛ szero _ _ := sp_chain_complex.is_chain_complex X n end ------------------------------ -- Suspension prespectra ------------------------------ -- Suspension prespectra are one that's naturally indexed on the natural numbers definition psp_susp (X : Type*) : gen_prespectrum +ℕ := gen_prespectrum.mk (λn, iterate_susp n X) (λn, loop_susp_unit (iterate_susp n X)) -- The sphere prespectrum definition psp_sphere : gen_prespectrum +ℕ := psp_susp bool.pbool /------------------------------- Cotensor of spectra by types -------------------------------/ -- Makes sense for any indexing succ_str. Could be done for -- prespectra too, but as with truncation, why bother? definition sp_cotensor [constructor] {N : succ_str} (A : Type*) (B : gen_spectrum N) : gen_spectrum N := spectrum.MK (λn, ppmap A (B n)) (λn, (loop_ppmap_commute A (B (S n)))⁻¹ᵉ* ∘*ᵉ ppmap_pequiv_ppmap_right (equiv_glue B n)) /- unpointed cotensor -/ definition sp_ucotensor [constructor] {N : succ_str} (A : Type) (B : gen_spectrum N) : gen_spectrum N := spectrum.MK (λn, A →ᵘ* B n) (λn, pumap_pequiv_right A (equiv_glue B n) ⬝e* (loop_pumap A (B (S n)))⁻¹ᵉ*) ---------------------------------------- -- Sections of parametrized spectra ---------------------------------------- definition spi [constructor] {N : succ_str} (A : Type*) (E : A → gen_spectrum N) : gen_spectrum N := spectrum.MK (λn, Π*a, E a n) (λn, !loop_pppi_pequiv⁻¹ᵉ* ∘*ᵉ ppi_pequiv_right (λa, equiv_glue (E a) n)) definition spi_compose_left [constructor] {N : succ_str} {A : Type*} {E F : A -> gen_spectrum N} (f : Πa, E a →ₛ F a) : spi A E →ₛ spi A F := smap.mk (λn, pppi_compose_left (λa, f a n)) begin intro n, exact psquare_pppi_compose_left (λa, (glue_square (f a) n)) ⬝v* (ptranspose !loop_pppi_pequiv_natural_right)⁻¹ᵛ* end -- unpointed spi definition supi [constructor] {N : succ_str} (A : Type) (E : A → gen_spectrum N) : gen_spectrum N := spectrum.MK (λn, Πᵘ*a, E a n) (λn, pupi_pequiv_right (λa, equiv_glue (E a) n) ⬝e* (loop_pupi (λa, E a (S n)))⁻¹ᵉ*) /- Mapping spectra -/ -- note: see also cotensor above /- suspension of a spectrum this is just a shift. We could call a shift in the other direction loopn, though it might be more convenient to just take a negative suspension -/ definition ssusp [constructor] {N : succ_str} (X : gen_spectrum N) : gen_spectrum N := spectrum.MK (λn, X (S n)) (λn, equiv_glue X (S n)) definition ssuspn [constructor] (k : ℤ) (X : spectrum) : spectrum := spectrum.MK (λn, X (n + k)) (λn, equiv_glue X (n + k) ⬝e* loop_pequiv_loop (pequiv_ap X !add.right_comm)) definition shomotopy_group_ssuspn (k : ℤ) (X : spectrum) (n : ℤ) : πₛ[k] (ssuspn n X) ≃g πₛ[k - n] X := have k - n + (2 - k + n) = 2, from !add.comm ⬝ ap (λx, x + (k - n)) (!add.assoc ⬝ ap (λx, 2 + x) (ap (λx, -k + x) !neg_neg⁻¹ ⬝ !neg_add⁻¹)) ⬝ sub_add_cancel 2 (k - n), (shomotopy_group_isomorphism_homotopy_group X this)⁻¹ᵍ /- Tensor by spaces -/ /- Cofibers and stability -/ ------------------------------ -- Contractible spectrum ------------------------------ definition sunit.{u} [constructor] : spectrum.{u} := spectrum.MK (λn, plift punit) (λn, pequiv_of_is_contr _ _ _ _) definition shomotopy_group_sunit.{u} (n : ℤ) : πₛ[n] sunit.{u} ≃g trivial_ab_group_lift.{u} := phomotopy_group_plift_punit 2 definition add_point_spectrum [constructor] {X : Type} (Y : X → spectrum) (x : X₊) : spectrum := spectrum.MK (λn, add_point_over (λx, Y x n) x) begin intro n, induction x with x, apply pequiv_of_is_contr, apply is_trunc_lift, apply is_contr_loop_of_is_contr, apply is_trunc_lift, exact equiv_glue (Y x) n end open option definition shomotopy_group_add_point_spectrum {X : Type} (Y : X → spectrum) (n : ℤ) : Π(x : X₊), πₛ[n] (add_point_spectrum Y x) ≃g add_point_AbGroup (λ (x : X), πₛ[n] (Y x)) x | (some x) := by reflexivity | none := proof phomotopy_group_plift_punit 2 qed /- The Eilenberg-MacLane spectrum -/ definition EM_spectrum /-[constructor]-/ (G : AbGroup) : spectrum := spectrum.Mk (K G) (λn, (loop_EM G n)⁻¹ᵉ*) definition EM_spectrum_pequiv {G H : AbGroup} (e : G ≃g H) (n : ℤ) : EM_spectrum G n ≃* EM_spectrum H n := spectrum_pequiv_of_nat (λk, EM_pequiv_EM k e) n definition EM_spectrum_trivial.{u} (n : ℤ) : EM_spectrum trivial_ab_group_lift.{u} n ≃* trivial_ab_group_lift.{u} := pequiv_of_is_contr _ _ (is_contr_spectrum_of_nat (λk, is_contr_EM k !is_trunc_lift) n) !is_trunc_lift definition is_contr_EM_spectrum_neg (G : AbGroup) (n : ℕ) : is_contr (EM_spectrum G (-[1+n])) := begin induction n with n IH, { apply is_contr_loop, exact is_trunc_EM G 0 }, { apply is_contr_loop_of_is_contr, exact IH } end definition is_contr_EM_spectrum (G : AbGroup) (n : ℤ) (H : is_contr G) : is_contr (EM_spectrum G n) := begin cases n with n n, { apply is_contr_EM n H }, { apply is_contr_EM_spectrum_neg G n } end /- K(πₗ(Aₖ),l) ≃* K(πₙ(A),l) for l = n + k -/ definition EM_type_pequiv_EM (A : spectrum) {n k : ℤ} {l : ℕ} (p : n + k = l) : EM_type (A k) l ≃* EM (πₛ[n] A) l := begin symmetry, cases l with l, { exact shomotopy_group_pequiv_homotopy_group A p }, { cases l with l, { apply EM1_pequiv_EM1, exact shomotopy_group_isomorphism_homotopy_group A p }, { apply EMadd1_pequiv_EMadd1 (l+1), exact shomotopy_group_isomorphism_homotopy_group A p }} end /- Wedge of prespectra -/ open fwedge definition fwedge_prespectrum.{u v} {I : Type.{v}} (X : I -> prespectrum.{u}) : prespectrum.{max u v} := begin fconstructor, { intro n, exact fwedge (λ i, X i n) }, { intro n, fapply fwedge_pmap, intro i, exact Ω→ !pinl ∘* !glue } end end spectrum