import .omega_compact ..homotopy.fwedge open eq nat seq_colim is_trunc equiv is_equiv trunc sigma sum pi function algebra sigma.ops variables {A A' : ℕ → Type} (f : seq_diagram A) (f' : seq_diagram A') {n : ℕ} (a : A n) universe variable u definition kshift_up (k : ℕ) (x : seq_colim f) : seq_colim (kshift_diag f k) := begin induction x with n a n a, { apply ι' (kshift_diag f k) n, exact lrep f (le_add_left n k) a }, { exact ap (ι _) (lrep_f f _ a ⬝ lrep_irrel f _ _ a ⬝ !f_lrep⁻¹) ⬝ !glue } end definition kshift_down [unfold 4] (k : ℕ) (x : seq_colim (kshift_diag f k)) : seq_colim f := begin induction x with n a n a, { exact ι' f (k + n) a }, { exact glue f a } end definition kshift_equiv_eq_kshift_up (k : ℕ) (a : A n) : kshift_equiv f k (ι f a) = kshift_up f k (ι f a) := begin induction k with k p, { exact ap (ι _) !lrep_eq_transport⁻¹ }, { exact sorry } end definition kshift_equiv2 [constructor] (k : ℕ) : seq_colim f ≃ seq_colim (kshift_diag f k) := begin refine equiv_change_fun (kshift_equiv f k) _, exact kshift_up f k, intro x, induction x with n a n a, { exact kshift_equiv_eq_kshift_up f k a }, { exact sorry } end definition kshift_equiv_inv_eq_kshift_down (k : ℕ) (a : A (k + n)) : kshift_equiv_inv f k (ι' (kshift_diag f k) n a) = kshift_down f k (ι' (kshift_diag f k) n a) := begin induction k with k p, { exact apd011 (ι' _) _ !pathover_tr⁻¹ᵒ }, { exact sorry } end definition kshift_equiv_inv2 [constructor] (k : ℕ) : seq_colim (kshift_diag f k) ≃ seq_colim f := begin refine equiv_change_fun (equiv_change_inv (kshift_equiv_inv f k) _) _, { exact kshift_up f k }, { intro x, induction x with n a n a, { exact kshift_equiv_eq_kshift_up f k a }, { exact sorry }}, { exact kshift_down f k }, { intro x, induction x with n a n a, { exact !kshift_equiv_inv_eq_kshift_down }, { exact sorry }} end definition seq_colim_over_weakened_sequence [unfold 5] (x : seq_colim f) : seq_colim_over (weakened_sequence f f') x ≃ seq_colim f' := begin induction x with n a n a, { exact kshift_equiv_inv2 f' n }, { apply equiv_pathover_inv, apply arrow_pathover_constant_left, intro x, apply pathover_of_tr_eq, refine !seq_colim_over_glue ⬝ _, exact sorry } end definition seq_colim_prod' [constructor] : seq_colim (seq_diagram_prod f f') ≃ seq_colim f × seq_colim f' := calc seq_colim (seq_diagram_prod f f') ≃ seq_colim (seq_diagram_sigma (weakened_sequence f f')) : by exact seq_colim_equiv (λn, !sigma.equiv_prod⁻¹ᵉ) (λn a, idp) ... ≃ Σ(x : seq_colim f), seq_colim_over (weakened_sequence f f') x : by exact (sigma_seq_colim_over_equiv _ (weakened_sequence f f'))⁻¹ᵉ ... ≃ Σ(x : seq_colim f), seq_colim f' : by exact sigma_equiv_sigma_right (seq_colim_over_weakened_sequence f f') ... ≃ seq_colim f × seq_colim f' : by exact sigma.equiv_prod (seq_colim f) (seq_colim f') open prod prod.ops example {a' : A' n} : seq_colim_prod' f f' (ι _ (a, a')) = (ι f a, ι f' a') := idp definition seq_colim_prod_inv {a' : A' n} : (seq_colim_prod' f f')⁻¹ᵉ (ι f a, ι f' a') = (ι _ (a, a')) := begin exact sorry end definition prod_seq_colim_of_seq_colim_prod (x : seq_colim (seq_diagram_prod f f')) : seq_colim f × seq_colim f' := begin induction x with n x n x, { exact (ι f x.1, ι f' x.2) }, { exact prod_eq (glue f x.1) (glue f' x.2) } end definition seq_colim_prod [constructor] : seq_colim (seq_diagram_prod f f') ≃ seq_colim f × seq_colim f' := begin refine equiv_change_fun (seq_colim_prod' f f') _, exact prod_seq_colim_of_seq_colim_prod f f', intro x, induction x with n x n x, { reflexivity }, { induction x with a a', apply eq_pathover, apply hdeg_square, esimp, refine _ ⬝ !elim_glue⁻¹, refine ap_compose ((sigma.equiv_prod (seq_colim f) (seq_colim f') ∘ sigma_equiv_sigma_right (seq_colim_over_weakened_sequence f f')) ∘ sigma_colim_of_colim_sigma (weakened_sequence f f')) _ _ ⬝ _, refine ap02 _ (!elim_glue ⬝ !idp_con) ⬝ _, refine !ap_compose ⬝ _, refine ap02 _ !elim_glue ⬝ _, refine !ap_compose ⬝ _, esimp, refine ap02 _ !ap_sigma_functor_id_sigma_eq ⬝ _, apply eq_of_fn_eq_fn (prod_eq_equiv _ _), apply pair_eq, { exact !ap_compose'⁻¹ ⬝ !sigma_eq_pr1 ⬝ !prod_eq_pr1⁻¹ }, { refine !ap_compose'⁻¹ ⬝ _ ⬝ !prod_eq_pr2⁻¹, esimp, refine !sigma_eq_pr2_constant ⬝ _, refine !eq_of_pathover_apo ⬝ _, exact sorry }} end local attribute equiv_of_omega_compact [constructor] definition omega_compact_sum [instance] [constructor] {X Y : Type} [omega_compact.{_ u} X] [omega_compact.{u u} Y] : omega_compact.{_ u} (X ⊎ Y) := begin fapply omega_compact_of_equiv, { intro A f, exact calc seq_colim (seq_diagram_arrow_left f (X ⊎ Y)) ≃ seq_colim (seq_diagram_prod (seq_diagram_arrow_left f X) (seq_diagram_arrow_left f Y)) : by exact seq_colim_equiv (λn, !imp_prod_imp_equiv_sum_imp⁻¹ᵉ) (λn f, idp) ... ≃ seq_colim (seq_diagram_arrow_left f X) × seq_colim (seq_diagram_arrow_left f Y) : by apply seq_colim_prod ... ≃ (X → seq_colim f) × (Y → seq_colim f) : by exact prod_equiv_prod (equiv_of_omega_compact X f) (equiv_of_omega_compact Y f) ... ≃ ((X ⊎ Y) → seq_colim f) : by exact !imp_prod_imp_equiv_sum_imp }, { intros, induction x with x y: reflexivity }, { intros, induction x with x y: apply hdeg_square, { refine ap_compose (((λz, arrow_colim_of_colim_arrow f z _) ∘ pr1) ∘ seq_colim_prod _ _) _ _ ⬝ _, refine ap02 _ (!elim_glue ⬝ !idp_con) ⬝ _, refine !ap_compose ⬝ _, refine ap02 _ !elim_glue ⬝ _, refine !ap_compose ⬝ _, refine ap02 _ !prod_eq_pr1 ⬝ !elim_glue }, { refine ap_compose (((λz, arrow_colim_of_colim_arrow f z _) ∘ pr2) ∘ seq_colim_prod _ _) _ _ ⬝ _, refine ap02 _ (!elim_glue ⬝ !idp_con) ⬝ _, refine !ap_compose ⬝ _, refine ap02 _ !elim_glue ⬝ _, refine !ap_compose ⬝ _, refine ap02 _ !prod_eq_pr2 ⬝ !elim_glue }}, end open wedge pointed circle /- needs fwedge! -/ definition seq_diagram_fwedge (X : Type*) : seq_diagram (λn, @fwedge (A n) (λa, X)) := sorry f definition seq_colim_fwedge_equiv (X : Type*) [is_trunc 1 X] : seq_colim (seq_diagram_fwedge f X) ≃ @fwedge (seq_colim f) (λn, X) := sorry definition not_omega_compact_fwedge_nat_circle : ¬(omega_compact.{0 0} (@fwedge ℕ (λn, S¹*))) := assume H, sorry