-- definitions, theorems and attributes which should be moved to files in the HoTT library import homotopy.sphere2 homotopy.cofiber homotopy.wedge hit.prop_trunc hit.set_quotient eq2 types.pointed2 algebra.graph algebra.category.functor.equivalence open eq nat int susp pointed sigma is_equiv equiv fiber algebra trunc pi group is_trunc function unit prod bool universe variable u /- eq_of_homotopy_eta > eq_of_homotopy_apd10 pathover_of_tr_eq_idp > pathover_idp_of_eq pathover_of_tr_eq_idp' > pathover_of_tr_eq_idp homotopy_group_isomorphism_of_ptrunc_pequiv > ghomotopy_group_isomorphism_of_ptrunc_pequiv equiv_pathover <> equiv_pathover2 homotopy_group_functor_succ_phomotopy_in > homotopy_group_succ_in_natural homotopy_group_succ_in_natural > homotopy_group_succ_in_natural_unpointed le_step_left > le_of_succ_le pmap.eta > pmap_eta pType.sigma_char' > pType.sigma_char cghomotopy_group to aghomotopy_group is_trunc_loop_of_is_trunc > is_trunc_loopn_of_is_trunc first two arguments reordered in is_trunc_loopn_nat reorder pathover arguments of constructions with squareovers (mostly implicit) -/ namespace eq definition transport_lemma {A : Type} {C : A → Type} {g₁ : A → A} {x y : A} (p : x = y) (f : Π⦃x⦄, C x → C (g₁ x)) (z : C x) : transport C (ap g₁ p)⁻¹ (f (transport C p z)) = f z := by induction p; reflexivity definition transport_lemma2 {A : Type} {C : A → Type} {g₁ : A → A} {x y : A} (p : x = y) (f : Π⦃x⦄, C x → C (g₁ x)) (z : C x) : transport C (ap g₁ p) (f z) = f (transport C p z) := by induction p; reflexivity end eq open eq namespace nat -- definition rec_down_le_beta_lt (P : ℕ → Type) (s : ℕ) (H0 : Πn, s ≤ n → P n) -- (Hs : Πn, P (n+1) → P n) (n : ℕ) (Hn : n < s) : -- rec_down_le P s H0 Hs n = Hs n (rec_down_le P s H0 Hs (n+1)) := -- begin -- revert n Hn, induction s with s IH: intro n Hn, -- { exfalso, exact not_succ_le_zero n Hn }, -- { have Hn' : n ≤ s, from le_of_succ_le_succ Hn, -- --esimp [rec_down_le], -- exact sorry -- -- induction Hn' with s Hn IH, -- -- { }, -- -- { } -- } -- end end nat -- definition ppi_eq_equiv_internal : (k = l) ≃ (k ~* l) := -- calc (k = l) ≃ ppi.sigma_char P p₀ k = ppi.sigma_char P p₀ l -- : eq_equiv_fn_eq (ppi.sigma_char P p₀) k l -- ... ≃ Σ(p : k = l), -- pathover (λh, h pt = p₀) (respect_pt k) p (respect_pt l) -- : sigma_eq_equiv _ _ -- ... ≃ Σ(p : k = l), -- respect_pt k = ap (λh, h pt) p ⬝ respect_pt l -- : sigma_equiv_sigma_right -- (λp, eq_pathover_equiv_Fl p (respect_pt k) (respect_pt l)) -- ... ≃ Σ(p : k = l), -- respect_pt k = apd10 p pt ⬝ respect_pt l -- : sigma_equiv_sigma_right -- (λp, equiv_eq_closed_right _ (whisker_right _ (ap_eq_apd10 p _))) -- ... ≃ Σ(p : k ~ l), respect_pt k = p pt ⬝ respect_pt l -- : sigma_equiv_sigma_left' eq_equiv_homotopy -- ... ≃ Σ(p : k ~ l), p pt ⬝ respect_pt l = respect_pt k -- : sigma_equiv_sigma_right (λp, eq_equiv_eq_symm _ _) -- ... ≃ (k ~* l) : phomotopy.sigma_char k l namespace pointed /- move to pointed -/ open sigma.ops end pointed open pointed namespace trunc open trunc_index sigma.ops -- TODO: redefine loopn_ptrunc_pequiv definition apn_ptrunc_functor (n : ℕ₋₂) (k : ℕ) {A B : Type*} (f : A →* B) : Ω→[k] (ptrunc_functor (n+k) f) ∘* (loopn_ptrunc_pequiv n k A)⁻¹ᵉ* ~* (loopn_ptrunc_pequiv n k B)⁻¹ᵉ* ∘* ptrunc_functor n (Ω→[k] f) := begin revert n, induction k with k IH: intro n, { reflexivity }, { exact sorry } end end trunc open trunc namespace sigma open sigma.ops -- open sigma.ops -- definition eq.rec_sigma {A : Type} {B : A → Type} {a₀ : A} {b₀ : B a₀} -- {P : Π(a : A) (b : B a), ⟨a₀, b₀⟩ = ⟨a, b⟩ → Type} (H : P a₀ b₀ idp) {a : A} {b : B a} -- (p : ⟨a₀, b₀⟩ = ⟨a, b⟩) : P a b p := -- sorry -- definition sigma_pathover_equiv_of_is_prop {A : Type} {B : A → Type} {C : Πa, B a → Type} -- {a a' : A} {p : a = a'} {b : B a} {b' : B a'} {c : C a b} {c' : C a' b'} -- [Πa b, is_prop (C a b)] : ⟨b, c⟩ =[p] ⟨b', c'⟩ ≃ b =[p] b' := -- begin -- fapply equiv.MK, -- { exact pathover_pr1 }, -- { intro q, induction q, apply pathover_idp_of_eq, exact sigma_eq idp !is_prop.elimo }, -- { intro q, induction q, -- have c = c', from !is_prop.elim, induction this, -- rewrite [▸*, is_prop_elimo_self (C a) c] }, -- { esimp, generalize ⟨b, c⟩, intro x q, } -- end --rexact @(ap pathover_pr1) _ idpo _, definition sigma_functor2 [constructor] {A₁ A₂ A₃ : Type} {B₁ : A₁ → Type} {B₂ : A₂ → Type} {B₃ : A₃ → Type} (f : A₁ → A₂ → A₃) (g : Π⦃a₁ a₂⦄, B₁ a₁ → B₂ a₂ → B₃ (f a₁ a₂)) (x₁ : Σa₁, B₁ a₁) (x₂ : Σa₂, B₂ a₂) : Σa₃, B₃ a₃ := ⟨f x₁.1 x₂.1, g x₁.2 x₂.2⟩ definition eq.rec_sigma {A : Type} {B : A → Type} {a : A} {b : B a} (P : Π⦃a'⦄ {b' : B a'}, ⟨a, b⟩ = ⟨a', b'⟩ → Type) (IH : P idp) ⦃a' : A⦄ {b' : B a'} (p : ⟨a, b⟩ = ⟨a', b'⟩) : P p := begin apply transport (λp, P p) (to_left_inv !sigma_eq_equiv p), generalize !sigma_eq_equiv p, esimp, intro q, induction q with q₁ q₂, induction q₂, exact IH end definition ap_dpair_eq_dpair_pr {A A' : Type} {B : A → Type} {a a' : A} {b : B a} {b' : B a'} (f : Πa, B a → A') (p : a = a') (q : b =[p] b') : ap (λx, f x.1 x.2) (dpair_eq_dpair p q) = apd011 f p q := by induction q; reflexivity definition sigma_eq_equiv_of_is_prop_right [constructor] {A : Type} {B : A → Type} (u v : Σa, B a) [H : Π a, is_prop (B a)] : u = v ≃ u.1 = v.1 := !sigma_eq_equiv ⬝e !sigma_equiv_of_is_contr_right definition ap_sigma_pr1 {A B : Type} {C : B → Type} {a₁ a₂ : A} (f : A → B) (g : Πa, C (f a)) (p : a₁ = a₂) : (ap (λa, ⟨f a, g a⟩) p)..1 = ap f p := by induction p; reflexivity definition ap_sigma_pr2 {A B : Type} {C : B → Type} {a₁ a₂ : A} (f : A → B) (g : Πa, C (f a)) (p : a₁ = a₂) : (ap (λa, ⟨f a, g a⟩) p)..2 = change_path (ap_sigma_pr1 f g p)⁻¹ (pathover_ap C f (apd g p)) := by induction p; reflexivity definition ap_sigma_functor_sigma_eq {A A' : Type} {B : A → Type} {B' : A' → Type} {a a' : A} {b : B a} {b' : B a'} (f : A → A') (g : Πa, B a → B' (f a)) (p : a = a') (q : b =[p] b') : ap (sigma_functor f g) (sigma_eq p q) = sigma_eq (ap f p) (pathover_ap B' f (apo g q)) := by induction q; reflexivity definition ap_sigma_functor_id_sigma_eq {A : Type} {B B' : A → Type} {a a' : A} {b : B a} {b' : B a'} (g : Πa, B a → B' a) (p : a = a') (q : b =[p] b') : ap (sigma_functor id g) (sigma_eq p q) = sigma_eq p (apo g q) := by induction q; reflexivity definition sigma_eq_pr2_constant {A B : Type} {a a' : A} {b b' : B} (p : a = a') (q : b =[p] b') : ap pr2 (sigma_eq p q) = (eq_of_pathover q) := by induction q; reflexivity definition sigma_eq_pr2_constant2 {A B : Type} {a a' : A} {b b' : B} (p : a = a') (q : b = b') : ap pr2 (sigma_eq p (pathover_of_eq p q)) = q := by induction p; induction q; reflexivity definition sigma_eq_concato_eq {A : Type} {B : A → Type} {a a' : A} {b : B a} {b₁ b₂ : B a'} (p : a = a') (q : b =[p] b₁) (q' : b₁ = b₂) : sigma_eq p (q ⬝op q') = sigma_eq p q ⬝ ap (dpair a') q' := by induction q'; reflexivity definition sigma_functor_compose {A A' A'' : Type} {B : A → Type} {B' : A' → Type} {B'' : A'' → Type} {f' : A' → A''} {f : A → A'} (g' : Πa, B' a → B'' (f' a)) (g : Πa, B a → B' (f a)) (x : Σa, B a) : sigma_functor f' g' (sigma_functor f g x) = sigma_functor (f' ∘ f) (λa, g' (f a) ∘ g a) x := begin reflexivity end definition sigma_functor_homotopy {A A' : Type} {B : A → Type} {B' : A' → Type} {f f' : A → A'} {g : Πa, B a → B' (f a)} {g' : Πa, B a → B' (f' a)} (h : f ~ f') (k : Πa b, g a b =[h a] g' a b) (x : Σa, B a) : sigma_functor f g x = sigma_functor f' g' x := sigma_eq (h x.1) (k x.1 x.2) variables {A₀₀ A₂₀ A₀₂ A₂₂ : Type} {B₀₀ : A₀₀ → Type} {B₂₀ : A₂₀ → Type} {B₀₂ : A₀₂ → Type} {B₂₂ : A₂₂ → Type} {f₁₀ : A₀₀ → A₂₀} {f₁₂ : A₀₂ → A₂₂} {f₀₁ : A₀₀ → A₀₂} {f₂₁ : A₂₀ → A₂₂} {g₁₀ : Πa, B₀₀ a → B₂₀ (f₁₀ a)} {g₁₂ : Πa, B₀₂ a → B₂₂ (f₁₂ a)} {g₀₁ : Πa, B₀₀ a → B₀₂ (f₀₁ a)} {g₂₁ : Πa, B₂₀ a → B₂₂ (f₂₁ a)} definition sigma_functor_hsquare (h : hsquare f₁₀ f₁₂ f₀₁ f₂₁) (k : Πa (b : B₀₀ a), g₂₁ _ (g₁₀ _ b) =[h a] g₁₂ _ (g₀₁ _ b)) : hsquare (sigma_functor f₁₀ g₁₀) (sigma_functor f₁₂ g₁₂) (sigma_functor f₀₁ g₀₁) (sigma_functor f₂₁ g₂₁) := λx, sigma_functor_compose g₂₁ g₁₀ x ⬝ sigma_functor_homotopy h k x ⬝ (sigma_functor_compose g₁₂ g₀₁ x)⁻¹ definition sigma_equiv_of_is_embedding_left_fun [constructor] {X Y : Type} {P : Y → Type} {f : X → Y} (H : Πy, P y → fiber f y) (v : Σy, P y) : Σx, P (f x) := ⟨fiber.point (H v.1 v.2), transport P (point_eq (H v.1 v.2))⁻¹ v.2⟩ definition sigma_equiv_of_is_embedding_left_prop [constructor] {X Y : Type} {P : Y → Type} (f : X → Y) (Hf : is_embedding f) (HP : Πx, is_prop (P (f x))) (H : Πy, P y → fiber f y) : (Σy, P y) ≃ Σx, P (f x) := begin apply equiv.MK (sigma_equiv_of_is_embedding_left_fun H) (sigma_functor f (λa, id)), { intro v, induction v with x p, esimp [sigma_equiv_of_is_embedding_left_fun], fapply sigma_eq, apply @is_injective_of_is_embedding _ _ f, exact point_eq (H (f x) p), apply is_prop.elimo }, { intro v, induction v with y p, esimp, fapply sigma_eq, exact point_eq (H y p), apply tr_pathover } end definition sigma_equiv_of_is_embedding_left_contr [constructor] {X Y : Type} {P : Y → Type} (f : X → Y) (Hf : is_embedding f) (HP : Πx, is_contr (P (f x))) (H : Πy, P y → fiber f y) : (Σy, P y) ≃ X := sigma_equiv_of_is_embedding_left_prop f Hf _ H ⬝e !sigma_equiv_of_is_contr_right end sigma open sigma namespace group definition isomorphism.MK [constructor] {G H : Group} (φ : G →g H) (ψ : H →g G) (p : φ ∘g ψ ~ gid H) (q : ψ ∘g φ ~ gid G) : G ≃g H := isomorphism.mk φ (adjointify φ ψ p q) protected definition homomorphism.sigma_char [constructor] (A B : Group) : (A →g B) ≃ Σ(f : A → B), is_mul_hom f := begin fapply equiv.MK, {intro F, exact ⟨F, _⟩ }, {intro p, cases p with f H, exact (homomorphism.mk f H) }, {intro p, cases p, reflexivity }, {intro F, cases F, reflexivity }, end definition homomorphism_pathover {A : Type} {a a' : A} (p : a = a') {B : A → Group} {C : A → Group} (f : B a →g C a) (g : B a' →g C a') (r : homomorphism.φ f =[p] homomorphism.φ g) : f =[p] g := begin fapply pathover_of_fn_pathover_fn, { intro a, apply homomorphism.sigma_char }, { fapply sigma_pathover, exact r, apply is_prop.elimo } end protected definition isomorphism.sigma_char [constructor] (A B : Group) : (A ≃g B) ≃ Σ(f : A →g B), is_equiv f := begin fapply equiv.MK, {intro F, exact ⟨F, _⟩ }, {intro p, cases p with f H, exact (isomorphism.mk f H) }, {intro p, cases p, reflexivity }, {intro F, cases F, reflexivity }, end definition isomorphism_pathover {A : Type} {a a' : A} (p : a = a') {B : A → Group} {C : A → Group} (f : B a ≃g C a) (g : B a' ≃g C a') (r : pathover (λa, B a → C a) f p g) : f =[p] g := begin fapply pathover_of_fn_pathover_fn, { intro a, apply isomorphism.sigma_char }, { fapply sigma_pathover, apply homomorphism_pathover, exact r, apply is_prop.elimo } end -- definition is_equiv_isomorphism -- some extra instances for type class inference -- definition is_mul_hom_comm_homomorphism [instance] {G G' : AbGroup} (φ : G →g G') -- : @is_mul_hom G G' (@ab_group.to_group _ (AbGroup.struct G)) -- (@ab_group.to_group _ (AbGroup.struct G')) φ := -- homomorphism.struct φ -- definition is_mul_hom_comm_homomorphism1 [instance] {G G' : AbGroup} (φ : G →g G') -- : @is_mul_hom G G' _ -- (@ab_group.to_group _ (AbGroup.struct G')) φ := -- homomorphism.struct φ -- definition is_mul_hom_comm_homomorphism2 [instance] {G G' : AbGroup} (φ : G →g G') -- : @is_mul_hom G G' (@ab_group.to_group _ (AbGroup.struct G)) _ φ := -- homomorphism.struct φ definition pgroup_of_Group (X : Group) : pgroup X := pgroup_of_group _ idp definition isomorphism_ap {A : Type} (F : A → Group) {a b : A} (p : a = b) : F a ≃g F b := isomorphism_of_eq (ap F p) definition interchange (G : AbGroup) (a b c d : G) : (a * b) * (c * d) = (a * c) * (b * d) := calc (a * b) * (c * d) = a * (b * (c * d)) : by exact mul.assoc a b (c * d) ... = a * ((b * c) * d) : by exact ap (λ bcd, a * bcd) (mul.assoc b c d)⁻¹ ... = a * ((c * b) * d) : by exact ap (λ bc, a * (bc * d)) (mul.comm b c) ... = a * (c * (b * d)) : by exact ap (λ bcd, a * bcd) (mul.assoc c b d) ... = (a * c) * (b * d) : by exact (mul.assoc a c (b * d))⁻¹ definition homomorphism_comp_compute {G H K : Group} (g : H →g K) (f : G →g H) (x : G) : (g ∘g f) x = g (f x) := begin reflexivity end open option definition add_point_AbGroup [unfold 3] {X : Type} (G : X → AbGroup) : X₊ → AbGroup | (some x) := G x | none := trivial_ab_group_lift definition isomorphism_of_is_contr {G H : Group} (hG : is_contr G) (hH : is_contr H) : G ≃g H := trivial_group_of_is_contr G ⬝g (trivial_group_of_is_contr H)⁻¹ᵍ definition trunc_isomorphism_of_equiv {A B : Type} [inf_group A] [inf_group B] (f : A ≃ B) (h : is_mul_hom f) : Group.mk (trunc 0 A) (trunc_group A) ≃g Group.mk (trunc 0 B) (trunc_group B) := begin apply isomorphism_of_equiv (equiv.mk (trunc_functor 0 f) (is_equiv_trunc_functor 0 f)), intros x x', induction x with a, induction x' with a', apply ap tr, exact h a a' end /----------------- The following are properties for ∞-groups ----------------/ local attribute InfGroup_of_Group [coercion] /- left and right actions -/ definition is_equiv_mul_right_inf [constructor] {A : InfGroup} (a : A) : is_equiv (λb, b * a) := adjointify _ (λb : A, b * a⁻¹) (λb, !inv_mul_cancel_right) (λb, !mul_inv_cancel_right) definition right_action_inf [constructor] {A : InfGroup} (a : A) : A ≃ A := equiv.mk _ (is_equiv_mul_right_inf a) /- homomorphisms -/ structure inf_homomorphism (G₁ G₂ : InfGroup) : Type := (φ : G₁ → G₂) (p : is_mul_hom φ) infix ` →∞g `:55 := inf_homomorphism abbreviation inf_group_fun [unfold 3] [coercion] [reducible] := @inf_homomorphism.φ definition inf_homomorphism.struct [unfold 3] [instance] [priority 900] {G₁ G₂ : InfGroup} (φ : G₁ →∞g G₂) : is_mul_hom φ := inf_homomorphism.p φ definition homomorphism_of_inf_homomorphism [constructor] {G H : Group} (φ : G →∞g H) : G →g H := homomorphism.mk φ (inf_homomorphism.struct φ) definition inf_homomorphism_of_homomorphism [constructor] {G H : Group} (φ : G →g H) : G →∞g H := inf_homomorphism.mk φ (homomorphism.struct φ) variables {G G₁ G₂ G₃ : InfGroup} {g h : G₁} {ψ : G₂ →∞g G₃} {φ₁ φ₂ : G₁ →∞g G₂} (φ : G₁ →∞g G₂) definition to_respect_mul_inf /- φ -/ (g h : G₁) : φ (g * h) = φ g * φ h := respect_mul φ g h theorem to_respect_one_inf /- φ -/ : φ 1 = 1 := have φ 1 * φ 1 = φ 1 * 1, by rewrite [-to_respect_mul_inf φ, +mul_one], eq_of_mul_eq_mul_left' this theorem to_respect_inv_inf /- φ -/ (g : G₁) : φ g⁻¹ = (φ g)⁻¹ := have φ (g⁻¹) * φ g = 1, by rewrite [-to_respect_mul_inf φ, mul.left_inv, to_respect_one_inf φ], eq_inv_of_mul_eq_one this definition pmap_of_inf_homomorphism [constructor] /- φ -/ : G₁ →* G₂ := pmap.mk φ begin esimp, exact to_respect_one_inf φ end definition inf_homomorphism_change_fun [constructor] {G₁ G₂ : InfGroup} (φ : G₁ →∞g G₂) (f : G₁ → G₂) (p : φ ~ f) : G₁ →∞g G₂ := inf_homomorphism.mk f (λg h, (p (g * h))⁻¹ ⬝ to_respect_mul_inf φ g h ⬝ ap011 mul (p g) (p h)) /- categorical structure of groups + homomorphisms -/ definition inf_homomorphism_compose [constructor] [trans] [reducible] (ψ : G₂ →∞g G₃) (φ : G₁ →∞g G₂) : G₁ →∞g G₃ := inf_homomorphism.mk (ψ ∘ φ) (is_mul_hom_compose _ _) variable (G) definition inf_homomorphism_id [constructor] [refl] : G →∞g G := inf_homomorphism.mk (@id G) (is_mul_hom_id G) variable {G} abbreviation inf_gid [constructor] := @inf_homomorphism_id infixr ` ∘∞g `:75 := inf_homomorphism_compose structure inf_isomorphism (A B : InfGroup) := (to_hom : A →∞g B) (is_equiv_to_hom : is_equiv to_hom) infix ` ≃∞g `:25 := inf_isomorphism attribute inf_isomorphism.to_hom [coercion] attribute inf_isomorphism.is_equiv_to_hom [instance] attribute inf_isomorphism._trans_of_to_hom [unfold 3] definition equiv_of_inf_isomorphism [constructor] (φ : G₁ ≃∞g G₂) : G₁ ≃ G₂ := equiv.mk φ _ definition pequiv_of_inf_isomorphism [constructor] (φ : G₁ ≃∞g G₂) : G₁ ≃* G₂ := pequiv.mk φ begin esimp, exact _ end begin esimp, exact to_respect_one_inf φ end definition inf_isomorphism_of_equiv [constructor] (φ : G₁ ≃ G₂) (p : Πg₁ g₂, φ (g₁ * g₂) = φ g₁ * φ g₂) : G₁ ≃∞g G₂ := inf_isomorphism.mk (inf_homomorphism.mk φ p) !to_is_equiv definition inf_isomorphism_of_eq [constructor] {G₁ G₂ : InfGroup} (φ : G₁ = G₂) : G₁ ≃∞g G₂ := inf_isomorphism_of_equiv (equiv_of_eq (ap InfGroup.carrier φ)) begin intros, induction φ, reflexivity end definition to_ginv_inf [constructor] (φ : G₁ ≃∞g G₂) : G₂ →∞g G₁ := inf_homomorphism.mk φ⁻¹ abstract begin intro g₁ g₂, apply eq_of_fn_eq_fn' φ, rewrite [respect_mul φ, +right_inv φ] end end variable (G) definition inf_isomorphism.refl [refl] [constructor] : G ≃∞g G := inf_isomorphism.mk !inf_gid !is_equiv_id variable {G} definition inf_isomorphism.symm [symm] [constructor] (φ : G₁ ≃∞g G₂) : G₂ ≃∞g G₁ := inf_isomorphism.mk (to_ginv_inf φ) !is_equiv_inv definition inf_isomorphism.trans [trans] [constructor] (φ : G₁ ≃∞g G₂) (ψ : G₂ ≃∞g G₃) : G₁ ≃∞g G₃ := inf_isomorphism.mk (ψ ∘∞g φ) !is_equiv_compose definition inf_isomorphism.eq_trans [trans] [constructor] {G₁ G₂ : InfGroup} {G₃ : InfGroup} (φ : G₁ = G₂) (ψ : G₂ ≃∞g G₃) : G₁ ≃∞g G₃ := proof inf_isomorphism.trans (inf_isomorphism_of_eq φ) ψ qed definition inf_isomorphism.trans_eq [trans] [constructor] {G₁ : InfGroup} {G₂ G₃ : InfGroup} (φ : G₁ ≃∞g G₂) (ψ : G₂ = G₃) : G₁ ≃∞g G₃ := inf_isomorphism.trans φ (inf_isomorphism_of_eq ψ) postfix `⁻¹ᵍ⁸`:(max + 1) := inf_isomorphism.symm infixl ` ⬝∞g `:75 := inf_isomorphism.trans infixl ` ⬝∞gp `:75 := inf_isomorphism.trans_eq infixl ` ⬝∞pg `:75 := inf_isomorphism.eq_trans definition pmap_of_inf_isomorphism [constructor] (φ : G₁ ≃∞g G₂) : G₁ →* G₂ := pequiv_of_inf_isomorphism φ definition to_fun_inf_isomorphism_trans {G H K : InfGroup} (φ : G ≃∞g H) (ψ : H ≃∞g K) : φ ⬝∞g ψ ~ ψ ∘ φ := by reflexivity definition inf_homomorphism_mul [constructor] {G H : AbInfGroup} (φ ψ : G →∞g H) : G →∞g H := inf_homomorphism.mk (λg, φ g * ψ g) abstract begin intro g g', refine ap011 mul !to_respect_mul_inf !to_respect_mul_inf ⬝ _, refine !mul.assoc ⬝ ap (mul _) (!mul.assoc⁻¹ ⬝ ap (λx, x * _) !mul.comm ⬝ !mul.assoc) ⬝ !mul.assoc⁻¹ end end definition trivial_inf_homomorphism (A B : InfGroup) : A →∞g B := inf_homomorphism.mk (λa, 1) (λa a', (mul_one 1)⁻¹) /- given an equivalence A ≃ B we can transport a group structure on A to a group structure on B -/ section parameters {A B : Type} (f : A ≃ B) [inf_group A] definition inf_group_equiv_mul (b b' : B) : B := f (f⁻¹ᶠ b * f⁻¹ᶠ b') definition inf_group_equiv_one : B := f one definition inf_group_equiv_inv (b : B) : B := f (f⁻¹ᶠ b)⁻¹ local infix * := inf_group_equiv_mul local postfix ^ := inf_group_equiv_inv local notation 1 := inf_group_equiv_one theorem inf_group_equiv_mul_assoc (b₁ b₂ b₃ : B) : (b₁ * b₂) * b₃ = b₁ * (b₂ * b₃) := by rewrite [↑inf_group_equiv_mul, +left_inv f, mul.assoc] theorem inf_group_equiv_one_mul (b : B) : 1 * b = b := by rewrite [↑inf_group_equiv_mul, ↑inf_group_equiv_one, left_inv f, one_mul, right_inv f] theorem inf_group_equiv_mul_one (b : B) : b * 1 = b := by rewrite [↑inf_group_equiv_mul, ↑inf_group_equiv_one, left_inv f, mul_one, right_inv f] theorem inf_group_equiv_mul_left_inv (b : B) : b^ * b = 1 := by rewrite [↑inf_group_equiv_mul, ↑inf_group_equiv_one, ↑inf_group_equiv_inv, +left_inv f, mul.left_inv] definition inf_group_equiv_closed : inf_group B := ⦃inf_group, mul := inf_group_equiv_mul, mul_assoc := inf_group_equiv_mul_assoc, one := inf_group_equiv_one, one_mul := inf_group_equiv_one_mul, mul_one := inf_group_equiv_mul_one, inv := inf_group_equiv_inv, mul_left_inv := inf_group_equiv_mul_left_inv⦄ end section variables {A B : Type} (f : A ≃ B) [ab_inf_group A] definition inf_group_equiv_mul_comm (b b' : B) : inf_group_equiv_mul f b b' = inf_group_equiv_mul f b' b := by rewrite [↑inf_group_equiv_mul, mul.comm] definition ab_inf_group_equiv_closed : ab_inf_group B := ⦃ab_inf_group, inf_group_equiv_closed f, mul_comm := inf_group_equiv_mul_comm f⦄ end variable (G) /- the trivial ∞-group -/ open unit definition inf_group_unit [constructor] : inf_group unit := inf_group.mk (λx y, star) (λx y z, idp) star (unit.rec idp) (unit.rec idp) (λx, star) (λx, idp) definition ab_inf_group_unit [constructor] : ab_inf_group unit := ⦃ab_inf_group, inf_group_unit, mul_comm := λx y, idp⦄ definition trivial_inf_group [constructor] : InfGroup := InfGroup.mk _ inf_group_unit definition AbInfGroup_of_InfGroup (G : InfGroup.{u}) (H : Π x y : G, x * y = y * x) : AbInfGroup.{u} := begin induction G, fapply AbInfGroup.mk, assumption, exact ⦃ab_inf_group, struct', mul_comm := H⦄ end definition trivial_ab_inf_group : AbInfGroup.{0} := begin fapply AbInfGroup_of_InfGroup trivial_inf_group, intro x y, reflexivity end definition trivial_inf_group_of_is_contr [H : is_contr G] : G ≃∞g trivial_inf_group := begin fapply inf_isomorphism_of_equiv, { apply equiv_unit_of_is_contr}, { intros, reflexivity} end definition ab_inf_group_of_is_contr (A : Type) [is_contr A] : ab_inf_group A := have ab_inf_group unit, from ab_inf_group_unit, ab_inf_group_equiv_closed (equiv_unit_of_is_contr A)⁻¹ᵉ definition inf_group_of_is_contr (A : Type) [is_contr A] : inf_group A := have ab_inf_group A, from ab_inf_group_of_is_contr A, by apply _ definition ab_inf_group_lift_unit : ab_inf_group (lift unit) := ab_inf_group_of_is_contr (lift unit) definition trivial_ab_inf_group_lift : AbInfGroup := AbInfGroup.mk _ ab_inf_group_lift_unit definition from_trivial_ab_inf_group (A : AbInfGroup) : trivial_ab_inf_group →∞g A := trivial_inf_homomorphism trivial_ab_inf_group A definition to_trivial_ab_inf_group (A : AbInfGroup) : A →∞g trivial_ab_inf_group := trivial_inf_homomorphism A trivial_ab_inf_group end group open group namespace fiber open pointed sigma sigma.ops definition loopn_pfiber [constructor] {A B : Type*} (n : ℕ) (f : A →* B) : Ω[n] (pfiber f) ≃* pfiber (Ω→[n] f) := begin induction n with n IH, reflexivity, exact loop_pequiv_loop IH ⬝e* loop_pfiber (Ω→[n] f), end definition fiber_eq_pr2 {A B : Type} {f : A → B} {b : B} {x y : fiber f b} (p : x = y) : point_eq x = ap f (ap point p) ⬝ point_eq y := begin induction p, exact !idp_con⁻¹ end definition fiber_eq_eta {A B : Type} {f : A → B} {b : B} {x y : fiber f b} (p : x = y) : p = fiber_eq (ap point p) (fiber_eq_pr2 p) := begin induction p, induction x with a q, induction q, reflexivity end definition fiber_eq_con {A B : Type} {f : A → B} {b : B} {x y z : fiber f b} (p1 : point x = point y) (p2 : point y = point z) (q1 : point_eq x = ap f p1 ⬝ point_eq y) (q2 : point_eq y = ap f p2 ⬝ point_eq z) : fiber_eq p1 q1 ⬝ fiber_eq p2 q2 = fiber_eq (p1 ⬝ p2) (q1 ⬝ whisker_left (ap f p1) q2 ⬝ !con.assoc⁻¹ ⬝ whisker_right (point_eq z) (ap_con f p1 p2)⁻¹) := begin induction x with a₁ r₁, induction y with a₂ r₂, induction z with a₃ r₃, esimp at *, induction q2 using eq.rec_symm, induction q1 using eq.rec_symm, induction p2, induction p1, induction r₃, reflexivity end definition fiber_eq_equiv' [constructor] {A B : Type} {f : A → B} {b : B} (x y : fiber f b) : (x = y) ≃ (Σ(p : point x = point y), point_eq x = ap f p ⬝ point_eq y) := @equiv_change_inv _ _ (fiber_eq_equiv x y) (λpq, fiber_eq pq.1 pq.2) begin intro pq, cases pq, reflexivity end definition fiber_eq2_equiv {A B : Type} {f : A → B} {b : B} {x y : fiber f b} (p₁ p₂ : point x = point y) (q₁ : point_eq x = ap f p₁ ⬝ point_eq y) (q₂ : point_eq x = ap f p₂ ⬝ point_eq y) : (fiber_eq p₁ q₁ = fiber_eq p₂ q₂) ≃ (Σ(r : p₁ = p₂), q₁ ⬝ whisker_right (point_eq y) (ap02 f r) = q₂) := begin refine (eq_equiv_fn_eq_of_equiv (fiber_eq_equiv' x y)⁻¹ᵉ _ _)⁻¹ᵉ ⬝e sigma_eq_equiv _ _ ⬝e _, apply sigma_equiv_sigma_right, esimp, intro r, refine !eq_pathover_equiv_square ⬝e _, refine eq_hconcat_equiv !ap_constant ⬝e hconcat_eq_equiv (ap_compose (λx, x ⬝ _) _ _) ⬝e _, refine !square_equiv_eq ⬝e _, exact eq_equiv_eq_closed idp (idp_con q₂) end definition fiber_eq2 {A B : Type} {f : A → B} {b : B} {x y : fiber f b} {p₁ p₂ : point x = point y} {q₁ : point_eq x = ap f p₁ ⬝ point_eq y} {q₂ : point_eq x = ap f p₂ ⬝ point_eq y} (r : p₁ = p₂) (s : q₁ ⬝ whisker_right (point_eq y) (ap02 f r) = q₂) : (fiber_eq p₁ q₁ = fiber_eq p₂ q₂) := (fiber_eq2_equiv p₁ p₂ q₁ q₂)⁻¹ᵉ ⟨r, s⟩ definition is_contr_pfiber_pid (A : Type*) : is_contr (pfiber (pid A)) := is_contr.mk pt begin intro x, induction x with a p, esimp at p, cases p, reflexivity end definition fiber_functor [constructor] {A A' B B' : Type} {f : A → B} {f' : A' → B'} {b : B} {b' : B'} (g : A → A') (h : B → B') (H : hsquare g h f f') (p : h b = b') (x : fiber f b) : fiber f' b' := fiber.mk (g (point x)) (H (point x) ⬝ ap h (point_eq x) ⬝ p) definition pfiber_functor [constructor] {A A' B B' : Type*} {f : A →* B} {f' : A' →* B'} (g : A →* A') (h : B →* B') (H : psquare g h f f') : pfiber f →* pfiber f' := pmap.mk (fiber_functor g h H (respect_pt h)) begin fapply fiber_eq, exact respect_pt g, exact !con.assoc ⬝ to_homotopy_pt H end definition ppoint_natural {A A' B B' : Type*} {f : A →* B} {f' : A' →* B'} (g : A →* A') (h : B →* B') (H : psquare g h f f') : psquare (ppoint f) (ppoint f') (pfiber_functor g h H) g := begin fapply phomotopy.mk, { intro x, reflexivity }, { refine !idp_con ⬝ _ ⬝ !idp_con⁻¹, esimp, apply point_fiber_eq } end /- if we need this: do pfiber_functor_pcompose and so on first -/ -- definition psquare_pfiber_functor [constructor] {A₁ A₂ A₃ A₄ B₁ B₂ B₃ B₄ : Type*} -- {f₁ : A₁ →* B₁} {f₂ : A₂ →* B₂} {f₃ : A₃ →* B₃} {f₄ : A₄ →* B₄} -- {g₁₂ : A₁ →* A₂} {g₃₄ : A₃ →* A₄} {g₁₃ : A₁ →* A₃} {g₂₄ : A₂ →* A₄} -- {h₁₂ : B₁ →* B₂} {h₃₄ : B₃ →* B₄} {h₁₃ : B₁ →* B₃} {h₂₄ : B₂ →* B₄} -- (H₁₂ : psquare g₁₂ h₁₂ f₁ f₂) (H₃₄ : psquare g₃₄ h₃₄ f₃ f₄) -- (H₁₃ : psquare g₁₃ h₁₃ f₁ f₃) (H₂₄ : psquare g₂₄ h₂₄ f₂ f₄) -- (G : psquare g₁₂ g₃₄ g₁₃ g₂₄) (H : psquare h₁₂ h₃₄ h₁₃ h₂₄) -- /- pcube H₁₂ H₃₄ H₁₃ H₂₄ G H -/ : -- psquare (pfiber_functor g₁₂ h₁₂ H₁₂) (pfiber_functor g₃₄ h₃₄ H₃₄) -- (pfiber_functor g₁₃ h₁₃ H₁₃) (pfiber_functor g₂₄ h₂₄ H₂₄) := -- begin -- fapply phomotopy.mk, -- { intro x, induction x with x p, induction B₁ with B₁ b₁₀, induction f₁ with f₁ f₁₀, esimp at *, -- induction p, esimp [fiber_functor], }, -- { } -- end -- TODO: use this in pfiber_pequiv_of_phomotopy definition fiber_equiv_of_homotopy {A B : Type} {f g : A → B} (h : f ~ g) (b : B) : fiber f b ≃ fiber g b := begin refine (fiber.sigma_char f b ⬝e _ ⬝e (fiber.sigma_char g b)⁻¹ᵉ), apply sigma_equiv_sigma_right, intros a, apply equiv_eq_closed_left, apply h end definition fiber_equiv_of_square {A B C D : Type} {b : B} {d : D} {f : A → B} {g : C → D} (h : A ≃ C) (k : B ≃ D) (s : k ∘ f ~ g ∘ h) (p : k b = d) : fiber f b ≃ fiber g d := calc fiber f b ≃ fiber (k ∘ f) (k b) : fiber.equiv_postcompose ... ≃ fiber (k ∘ f) d : transport_fiber_equiv (k ∘ f) p ... ≃ fiber (g ∘ h) d : fiber_equiv_of_homotopy s d ... ≃ fiber g d : fiber.equiv_precompose definition fiber_equiv_of_triangle {A B C : Type} {b : B} {f : A → B} {g : C → B} (h : A ≃ C) (s : f ~ g ∘ h) : fiber f b ≃ fiber g b := fiber_equiv_of_square h erfl s idp definition is_trunc_fun_id (k : ℕ₋₂) (A : Type) : is_trunc_fun k (@id A) := λa, is_trunc_of_is_contr _ _ definition is_conn_fun_id (k : ℕ₋₂) (A : Type) : is_conn_fun k (@id A) := λa, _ open sigma.ops is_conn definition fiber_compose {A B C : Type} (g : B → C) (f : A → B) (c : C) : fiber (g ∘ f) c ≃ Σ(x : fiber g c), fiber f (point x) := begin fapply equiv.MK, { intro x, exact ⟨fiber.mk (f (point x)) (point_eq x), fiber.mk (point x) idp⟩ }, { intro x, exact fiber.mk (point x.2) (ap g (point_eq x.2) ⬝ point_eq x.1) }, { intro x, induction x with x₁ x₂, induction x₁ with b p, induction x₂ with a q, induction p, esimp at q, induction q, reflexivity }, { intro x, induction x with a p, induction p, reflexivity } end definition is_trunc_fun_compose (k : ℕ₋₂) {A B C : Type} {g : B → C} {f : A → B} (Hg : is_trunc_fun k g) (Hf : is_trunc_fun k f) : is_trunc_fun k (g ∘ f) := λc, is_trunc_equiv_closed_rev k (fiber_compose g f c) definition is_conn_fun_compose (k : ℕ₋₂) {A B C : Type} {g : B → C} {f : A → B} (Hg : is_conn_fun k g) (Hf : is_conn_fun k f) : is_conn_fun k (g ∘ f) := λc, is_conn_equiv_closed_rev k (fiber_compose g f c) _ end fiber open fiber namespace fin definition lift_succ2 [constructor] ⦃n : ℕ⦄ (x : fin n) : fin (nat.succ n) := fin.mk x (le.step (is_lt x)) end fin namespace function variables {A B : Type} {f f' : A → B} open is_conn sigma.ops definition is_contr_of_is_surjective (f : A → B) (H : is_surjective f) (HA : is_contr A) (HB : is_set B) : is_contr B := is_contr.mk (f !center) begin intro b, induction H b, exact ap f !is_prop.elim ⬝ p end definition is_surjective_of_is_contr [constructor] (f : A → B) (a : A) (H : is_contr B) : is_surjective f := λb, image.mk a !eq_of_is_contr definition is_contr_of_is_embedding (f : A → B) (H : is_embedding f) (HB : is_prop B) (a₀ : A) : is_contr A := is_contr.mk a₀ (λa, is_injective_of_is_embedding (is_prop.elim (f a₀) (f a))) definition merely_constant {A B : Type} (f : A → B) : Type := Σb, Πa, merely (f a = b) definition merely_constant_pmap {A B : Type*} {f : A →* B} (H : merely_constant f) (a : A) : merely (f a = pt) := tconcat (tconcat (H.2 a) (tinverse (H.2 pt))) (tr (respect_pt f)) definition merely_constant_of_is_conn {A B : Type*} (f : A →* B) [is_conn 0 A] : merely_constant f := ⟨pt, is_conn.elim -1 _ (tr (respect_pt f))⟩ definition homotopy_group_isomorphism_of_is_embedding (n : ℕ) [H : is_succ n] {A B : Type*} (f : A →* B) [H2 : is_embedding f] : πg[n] A ≃g πg[n] B := begin apply isomorphism.mk (homotopy_group_homomorphism n f), induction H with n, apply is_equiv_of_equiv_of_homotopy (ptrunc_pequiv_ptrunc 0 (loopn_pequiv_loopn_of_is_embedding (n+1) f)), exact sorry end definition is_embedding_of_square {A B C D : Type} {f : A → B} {g : C → D} (h : A ≃ C) (k : B ≃ D) (s : k ∘ f ~ g ∘ h) (Hf : is_embedding f) : is_embedding g := begin apply is_embedding_homotopy_closed, exact inv_homotopy_of_homotopy_pre _ _ _ s, apply is_embedding_compose, apply is_embedding_compose, apply is_embedding_of_is_equiv, exact Hf, apply is_embedding_of_is_equiv end definition is_embedding_of_square_rev {A B C D : Type} {f : A → B} {g : C → D} (h : A ≃ C) (k : B ≃ D) (s : k ∘ f ~ g ∘ h) (Hg : is_embedding g) : is_embedding f := is_embedding_of_square h⁻¹ᵉ k⁻¹ᵉ s⁻¹ʰᵗʸᵛ Hg end function open function namespace is_conn open unit trunc_index nat is_trunc pointed.ops sigma.ops prod.ops definition is_conn_of_eq {n m : ℕ₋₂} (p : n = m) {A : Type} (H : is_conn n A) : is_conn m A := transport (λk, is_conn k A) p H -- todo: make trunc_equiv_trunc_of_is_conn_fun a def. definition ptrunc_pequiv_ptrunc_of_is_conn_fun {A B : Type*} (n : ℕ₋₂) (f : A →* B) [H : is_conn_fun n f] : ptrunc n A ≃* ptrunc n B := pequiv_of_pmap (ptrunc_functor n f) (is_equiv_trunc_functor_of_is_conn_fun n f) definition is_conn_zero {A : Type} (a₀ : trunc 0 A) (p : Πa a' : A, ∥ a = a' ∥) : is_conn 0 A := is_conn_succ_intro a₀ (λa a', is_conn_minus_one _ (p a a')) definition is_conn_zero_pointed {A : Type*} (p : Πa a' : A, ∥ a = a' ∥) : is_conn 0 A := is_conn_zero (tr pt) p definition is_conn_zero_pointed' {A : Type*} (p : Πa : A, ∥ a = pt ∥) : is_conn 0 A := is_conn_zero_pointed (λa a', tconcat (p a) (tinverse (p a'))) definition is_conn_fiber (n : ℕ₋₂) {A B : Type} (f : A → B) (b : B) [is_conn n A] [is_conn (n.+1) B] : is_conn n (fiber f b) := is_conn_equiv_closed_rev _ !fiber.sigma_char _ definition is_conn_succ_of_is_conn_loop {n : ℕ₋₂} {A : Type*} (H : is_conn 0 A) (H2 : is_conn n (Ω A)) : is_conn (n.+1) A := begin apply is_conn_succ_intro, exact tr pt, intros a a', induction merely_of_minus_one_conn (is_conn_eq -1 a a') with p, induction p, induction merely_of_minus_one_conn (is_conn_eq -1 pt a) with p, induction p, exact H2 end definition is_conn_fun_compose {n : ℕ₋₂} {A B C : Type} (g : B → C) (f : A → B) (H : is_conn_fun n g) (K : is_conn_fun n f) : is_conn_fun n (g ∘ f) := sorry definition pconntype.sigma_char [constructor] (k : ℕ₋₂) : Type*[k] ≃ Σ(X : Type*), is_conn k X := equiv.MK (λX, ⟨pconntype.to_pType X, _⟩) (λX, pconntype.mk (carrier X.1) X.2 pt) begin intro X, induction X with X HX, induction X, reflexivity end begin intro X, induction X, reflexivity end definition is_embedding_pconntype_to_pType (k : ℕ₋₂) : is_embedding (@pconntype.to_pType k) := begin intro X Y, fapply is_equiv_of_equiv_of_homotopy, { exact eq_equiv_fn_eq (pconntype.sigma_char k) _ _ ⬝e subtype_eq_equiv _ _ }, intro p, induction p, reflexivity end definition pconntype_eq_equiv {k : ℕ₋₂} (X Y : Type*[k]) : (X = Y) ≃ (X ≃* Y) := equiv.mk _ (is_embedding_pconntype_to_pType k X Y) ⬝e pType_eq_equiv X Y definition pconntype_eq {k : ℕ₋₂} {X Y : Type*[k]} (e : X ≃* Y) : X = Y := (pconntype_eq_equiv X Y)⁻¹ᵉ e definition ptruncconntype.sigma_char [constructor] (n k : ℕ₋₂) : n-Type*[k] ≃ Σ(X : Type*), is_trunc n X × is_conn k X := equiv.MK (λX, ⟨ptruncconntype._trans_of_to_pconntype_1 X, (_, _)⟩) (λX, ptruncconntype.mk (carrier X.1) X.2.1 pt X.2.2) begin intro X, induction X with X HX, induction HX, induction X, reflexivity end begin intro X, induction X, reflexivity end definition ptruncconntype.sigma_char_pconntype [constructor] (n k : ℕ₋₂) : n-Type*[k] ≃ Σ(X : Type*[k]), is_trunc n X := equiv.MK (λX, ⟨ptruncconntype.to_pconntype X, _⟩) (λX, ptruncconntype.mk (pconntype._trans_of_to_pType X.1) X.2 pt _) begin intro X, induction X with X HX, induction HX, induction X, reflexivity end begin intro X, induction X, reflexivity end definition is_embedding_ptruncconntype_to_pconntype (n k : ℕ₋₂) : is_embedding (@ptruncconntype.to_pconntype n k) := begin intro X Y, fapply is_equiv_of_equiv_of_homotopy, { exact eq_equiv_fn_eq (ptruncconntype.sigma_char_pconntype n k) _ _ ⬝e subtype_eq_equiv _ _ }, intro p, induction p, reflexivity end definition ptruncconntype_eq_equiv {n k : ℕ₋₂} (X Y : n-Type*[k]) : (X = Y) ≃ (X ≃* Y) := equiv.mk _ (is_embedding_ptruncconntype_to_pconntype n k X Y) ⬝e pconntype_eq_equiv X Y /- duplicate -/ definition ptruncconntype_eq {n k : ℕ₋₂} {X Y : n-Type*[k]} (e : X ≃* Y) : X = Y := (ptruncconntype_eq_equiv X Y)⁻¹ᵉ e definition ptruncconntype_functor [constructor] {n n' k k' : ℕ₋₂} (p : n = n') (q : k = k') (X : n-Type*[k]) : n'-Type*[k'] := ptruncconntype.mk X (is_trunc_of_eq p _) pt (is_conn_of_eq q _) definition ptruncconntype_equiv [constructor] {n n' k k' : ℕ₋₂} (p : n = n') (q : k = k') : n-Type*[k] ≃ n'-Type*[k'] := equiv.MK (ptruncconntype_functor p q) (ptruncconntype_functor p⁻¹ q⁻¹) (λX, ptruncconntype_eq pequiv.rfl) (λX, ptruncconntype_eq pequiv.rfl) -- definition is_conn_pfiber_of_equiv_on_homotopy_groups (n : ℕ) {A B : pType.{u}} (f : A →* B) -- [H : is_conn 0 A] -- (H1 : Πk, k ≤ n → is_equiv (π→[k] f)) -- (H2 : is_surjective (π→[succ n] f)) : -- is_conn n (pfiber f) := -- _ -- definition is_conn_pelim [constructor] {k : ℕ} {X : Type*} (Y : Type*) (H : is_conn k X) : -- (X →* connect k Y) ≃ (X →* Y) := /- the k-connected cover of X, the fiber of the map X → ∥X∥ₖ. -/ definition connect (k : ℕ) (X : Type*) : Type* := pfiber (ptr k X) definition is_conn_connect (k : ℕ) (X : Type*) : is_conn k (connect k X) := is_conn_fun_tr k X (tr pt) definition connconnect [constructor] (k : ℕ) (X : Type*) : Type*[k] := pconntype.mk (connect k X) (is_conn_connect k X) pt definition connect_intro [constructor] {k : ℕ} {X : Type*} {Y : Type*} (H : is_conn k X) (f : X →* Y) : X →* connect k Y := pmap.mk (λx, fiber.mk (f x) (is_conn.elim (k.-1) _ (ap tr (respect_pt f)) x)) begin fapply fiber_eq, exact respect_pt f, apply is_conn.elim_β end definition ppoint_connect_intro [constructor] {k : ℕ} {X : Type*} {Y : Type*} (H : is_conn k X) (f : X →* Y) : ppoint (ptr k Y) ∘* connect_intro H f ~* f := begin induction f with f f₀, induction Y with Y y₀, esimp at (f,f₀), induction f₀, fapply phomotopy.mk, { intro x, reflexivity }, { symmetry, esimp, apply point_fiber_eq } end definition connect_intro_ppoint [constructor] {k : ℕ} {X : Type*} {Y : Type*} (H : is_conn k X) (f : X →* connect k Y) : connect_intro H (ppoint (ptr k Y) ∘* f) ~* f := begin cases f with f f₀, fapply phomotopy.mk, { intro x, fapply fiber_eq, reflexivity, refine @is_conn.elim (k.-1) _ _ _ (λx', !is_trunc_eq) _ x, refine !is_conn.elim_β ⬝ _, refine _ ⬝ !idp_con⁻¹, symmetry, refine _ ⬝ !con_idp, exact fiber_eq_pr2 f₀ }, { esimp, refine whisker_left _ !fiber_eq_eta ⬝ !fiber_eq_con ⬝ apd011 fiber_eq !idp_con _, esimp, apply eq_pathover_constant_left, refine whisker_right _ (whisker_right _ (whisker_right _ !is_conn.elim_β)) ⬝pv _, esimp [connect], refine _ ⬝vp !con_idp, apply move_bot_of_left, refine !idp_con ⬝ !con_idp⁻¹ ⬝ph _, refine !con.assoc ⬝ !con.assoc ⬝pv _, apply whisker_tl, note r := eq_bot_of_square (transpose (whisker_left_idp_square (fiber_eq_pr2 f₀))⁻¹ᵛ), refine !con.assoc⁻¹ ⬝ whisker_right _ r⁻¹ ⬝pv _, clear r, apply move_top_of_left, refine whisker_right_idp (ap_con tr idp (ap point f₀))⁻¹ᵖ ⬝pv _, exact (ap_con_idp_left tr (ap point f₀))⁻¹ʰ } end definition connect_intro_equiv [constructor] {k : ℕ} {X : Type*} (Y : Type*) (H : is_conn k X) : (X →* connect k Y) ≃ (X →* Y) := begin fapply equiv.MK, { intro f, exact ppoint (ptr k Y) ∘* f }, { intro g, exact connect_intro H g }, { intro g, apply eq_of_phomotopy, exact ppoint_connect_intro H g }, { intro f, apply eq_of_phomotopy, exact connect_intro_ppoint H f } end definition connect_intro_pequiv [constructor] {k : ℕ} {X : Type*} (Y : Type*) (H : is_conn k X) : ppmap X (connect k Y) ≃* ppmap X Y := pequiv_of_equiv (connect_intro_equiv Y H) (eq_of_phomotopy !pcompose_pconst) definition connect_pequiv {k : ℕ} {X : Type*} (H : is_conn k X) : connect k X ≃* X := @pfiber_pequiv_of_is_contr _ _ (ptr k X) H definition loop_connect (k : ℕ) (X : Type*) : Ω (connect (k+1) X) ≃* connect k (Ω X) := loop_pfiber (ptr (k+1) X) ⬝e* pfiber_pequiv_of_square pequiv.rfl (loop_ptrunc_pequiv k X) (phomotopy_of_phomotopy_pinv_left (ap1_ptr k X)) definition loopn_connect (k : ℕ) (X : Type*) : Ω[k+1] (connect k X) ≃* Ω[k+1] X := loopn_pfiber (k+1) (ptr k X) ⬝e* @pfiber_pequiv_of_is_contr _ _ _ (@is_contr_loop_of_is_trunc (k+1) _ !is_trunc_trunc) definition is_conn_of_is_conn_succ_nat (n : ℕ) (A : Type) [is_conn (n+1) A] : is_conn n A := is_conn_of_is_conn_succ n A definition connect_functor (k : ℕ) {X Y : Type*} (f : X →* Y) : connect k X →* connect k Y := pfiber_functor f (ptrunc_functor k f) (ptr_natural k f)⁻¹* definition connect_intro_pequiv_natural {k : ℕ} {X X' : Type*} {Y Y' : Type*} (f : X' →* X) (g : Y →* Y') (H : is_conn k X) (H' : is_conn k X') : psquare (connect_intro_pequiv Y H) (connect_intro_pequiv Y' H') (ppcompose_left (connect_functor k g) ∘* ppcompose_right f) (ppcompose_left g ∘* ppcompose_right f) := begin refine _ ⬝v* _, exact connect_intro_pequiv Y H', { fapply phomotopy.mk, { intro h, apply eq_of_phomotopy, apply passoc }, { xrewrite [▸*, pcompose_right_eq_of_phomotopy, pcompose_left_eq_of_phomotopy, -+eq_of_phomotopy_trans], apply ap eq_of_phomotopy, apply passoc_pconst_middle }}, { fapply phomotopy.mk, { intro h, apply eq_of_phomotopy, refine !passoc⁻¹* ⬝* pwhisker_right h (ppoint_natural _ _ _) ⬝* !passoc }, { xrewrite [▸*, +pcompose_left_eq_of_phomotopy, -+eq_of_phomotopy_trans], apply ap eq_of_phomotopy, refine !trans_assoc ⬝ idp ◾** !passoc_pconst_right ⬝ _, refine !trans_assoc ⬝ idp ◾** !pcompose_pconst_phomotopy ⬝ _, apply symm_trans_eq_of_eq_trans, symmetry, apply passoc_pconst_right }} end end is_conn namespace misc open is_conn open sigma.ops pointed trunc_index /- this is equivalent to pfiber (A → ∥A∥₀) ≡ connect 0 A -/ definition component [constructor] (A : Type*) : Type* := pType.mk (Σ(a : A), merely (pt = a)) ⟨pt, tr idp⟩ lemma is_conn_component [instance] (A : Type*) : is_conn 0 (component A) := is_conn_zero_pointed' begin intro x, induction x with a p, induction p with p, induction p, exact tidp end definition component_incl [constructor] (A : Type*) : component A →* A := pmap.mk pr1 idp definition is_embedding_component_incl [instance] (A : Type*) : is_embedding (component_incl A) := is_embedding_pr1 _ definition component_intro [constructor] {A B : Type*} (f : A →* B) (H : merely_constant f) : A →* component B := begin fapply pmap.mk, { intro a, refine ⟨f a, _⟩, exact tinverse (merely_constant_pmap H a) }, exact subtype_eq !respect_pt end definition component_functor [constructor] {A B : Type*} (f : A →* B) : component A →* component B := component_intro (f ∘* component_incl A) !merely_constant_of_is_conn -- definition component_elim [constructor] {A B : Type*} (f : A →* B) (H : merely_constant f) : -- A →* component B := -- begin -- fapply pmap.mk, -- { intro a, refine ⟨f a, _⟩, exact tinverse (merely_constant_pmap H a) }, -- exact subtype_eq !respect_pt -- end definition loop_component (A : Type*) : Ω (component A) ≃* Ω A := loop_pequiv_loop_of_is_embedding (component_incl A) lemma loopn_component (n : ℕ) (A : Type*) : Ω[n+1] (component A) ≃* Ω[n+1] A := !loopn_succ_in ⬝e* loopn_pequiv_loopn n (loop_component A) ⬝e* !loopn_succ_in⁻¹ᵉ* -- lemma fundamental_group_component (A : Type*) : π₁ (component A) ≃g π₁ A := -- isomorphism_of_equiv (trunc_equiv_trunc 0 (loop_component A)) _ lemma homotopy_group_component (n : ℕ) (A : Type*) : πg[n+1] (component A) ≃g πg[n+1] A := homotopy_group_isomorphism_of_is_embedding (n+1) (component_incl A) definition is_trunc_component [instance] (n : ℕ₋₂) (A : Type*) [is_trunc n A] : is_trunc n (component A) := begin apply @is_trunc_sigma, intro a, cases n with n, { apply is_contr_of_inhabited_prop, exact tr !is_prop.elim }, { apply is_trunc_succ_of_is_prop }, end definition ptrunc_component' (n : ℕ₋₂) (A : Type*) : ptrunc (n.+2) (component A) ≃* component (ptrunc (n.+2) A) := begin fapply pequiv.MK', { exact ptrunc.elim (n.+2) (component_functor !ptr) }, { intro x, cases x with x p, induction x with a, refine tr ⟨a, _⟩, note q := trunc_functor -1 !tr_eq_tr_equiv p, exact trunc_trunc_equiv_left _ !minus_one_le_succ q }, { exact sorry }, { exact sorry } end definition ptrunc_component (n : ℕ₋₂) (A : Type*) : ptrunc n (component A) ≃* component (ptrunc n A) := begin cases n with n, exact sorry, cases n with n, exact sorry, exact ptrunc_component' n A end definition break_into_components (A : Type) : A ≃ Σ(x : trunc 0 A), Σ(a : A), ∥ tr a = x ∥ := calc A ≃ Σ(a : A) (x : trunc 0 A), tr a = x : by exact (@sigma_equiv_of_is_contr_right _ _ (λa, !is_contr_sigma_eq))⁻¹ᵉ ... ≃ Σ(x : trunc 0 A) (a : A), tr a = x : by apply sigma_comm_equiv ... ≃ Σ(x : trunc 0 A), Σ(a : A), ∥ tr a = x ∥ : by exact sigma_equiv_sigma_right (λx, sigma_equiv_sigma_right (λa, !trunc_equiv⁻¹ᵉ)) definition pfiber_pequiv_component_of_is_contr [constructor] {A B : Type*} (f : A →* B) [is_contr B] /- extra condition, something like trunc_functor 0 f is an embedding -/ : pfiber f ≃* component A := sorry end misc namespace sphere -- definition constant_sphere_map_sphere {n m : ℕ} (H : n < m) (f : S n →* S m) : -- f ~* pconst (S n) (S m) := -- begin -- assert H : is_contr (Ω[n] (S m)), -- { apply homotopy_group_sphere_le, }, -- apply phomotopy_of_eq, -- apply eq_of_fn_eq_fn !sphere_pmap_pequiv, -- apply @is_prop.elim -- end end sphere section injective_surjective open trunc fiber image /- do we want to prove this without funext before we move it? -/ variables {A B C : Type} (f : A → B) definition is_embedding_factor [is_set A] [is_set B] (g : B → C) (h : A → C) (H : g ∘ f ~ h) : is_embedding h → is_embedding f := begin induction H using homotopy.rec_on_idp, intro E, fapply is_embedding_of_is_injective, intro x y p, fapply @is_injective_of_is_embedding _ _ _ E _ _ (ap g p) end definition is_surjective_factor (g : B → C) (h : A → C) (H : g ∘ f ~ h) : is_surjective h → is_surjective g := begin induction H using homotopy.rec_on_idp, intro S, intro c, note p := S c, induction p, apply tr, fapply fiber.mk, exact f a, exact p end end injective_surjective -- Yuri Sulyma's code from HoTT MRC notation `⅀→`:(max+5) := susp_functor notation `⅀⇒`:(max+5) := susp_functor_phomotopy notation `Ω⇒`:(max+5) := ap1_phomotopy definition ap1_phomotopy_symm {A B : Type*} {f g : A →* B} (p : f ~* g) : (Ω⇒ p)⁻¹* = Ω⇒ (p⁻¹*) := begin induction p using phomotopy_rec_idp, rewrite ap1_phomotopy_refl, xrewrite [+refl_symm], rewrite ap1_phomotopy_refl end definition ap1_phomotopy_trans {A B : Type*} {f g h : A →* B} (q : g ~* h) (p : f ~* g) : Ω⇒ (p ⬝* q) = Ω⇒ p ⬝* Ω⇒ q := begin induction p using phomotopy_rec_idp, induction q using phomotopy_rec_idp, rewrite trans_refl, rewrite [+ap1_phomotopy_refl], rewrite trans_refl end namespace pointed definition pbool_pequiv_add_point_unit [constructor] : pbool ≃* unit₊ := pequiv_of_equiv (bool_equiv_option_unit) idp definition to_homotopy_pt_mk {A B : Type*} {f g : A →* B} (h : f ~ g) (p : h pt ⬝ respect_pt g = respect_pt f) : to_homotopy_pt (phomotopy.mk h p) = p := to_right_inv !eq_con_inv_equiv_con_eq p variables {A₀₀ A₂₀ A₀₂ A₂₂ : Type*} {f₁₀ : A₀₀ →* A₂₀} {f₁₂ : A₀₂ →* A₂₂} {f₀₁ : A₀₀ →* A₀₂} {f₂₁ : A₂₀ →* A₂₂} definition psquare_transpose (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : psquare f₀₁ f₂₁ f₁₀ f₁₂ := p⁻¹* end pointed namespace pi definition pi_bool_left_nat {A B : bool → Type} (g : Πx, A x -> B x) : hsquare (pi_bool_left A) (pi_bool_left B) (pi_functor_right g) (prod_functor (g ff) (g tt)) := begin intro h, esimp end definition pi_bool_left_inv_nat {A B : bool → Type} (g : Πx, A x -> B x) : hsquare (pi_bool_left A)⁻¹ᵉ (pi_bool_left B)⁻¹ᵉ (prod_functor (g ff) (g tt)) (pi_functor_right g) := hhinverse (pi_bool_left_nat g) end pi namespace sum infix ` +→ `:62 := sum_functor variables {A₀₀ A₂₀ A₀₂ A₂₂ B₀₀ B₂₀ B₀₂ B₂₂ A A' B B' C C' : Type} {f₁₀ : A₀₀ → A₂₀} {f₁₂ : A₀₂ → A₂₂} {f₀₁ : A₀₀ → A₀₂} {f₂₁ : A₂₀ → A₂₂} {g₁₀ : B₀₀ → B₂₀} {g₁₂ : B₀₂ → B₂₂} {g₀₁ : B₀₀ → B₀₂} {g₂₁ : B₂₀ → B₂₂} {h₀₁ : B₀₀ → A₀₂} {h₂₁ : B₂₀ → A₂₂} definition flip_flip (x : A ⊎ B) : flip (flip x) = x := begin induction x: reflexivity end definition sum_rec_hsquare [unfold 16] (h : hsquare f₁₀ f₁₂ f₀₁ f₂₁) (k : hsquare g₁₀ f₁₂ h₀₁ h₂₁) : hsquare (f₁₀ +→ g₁₀) f₁₂ (sum.rec f₀₁ h₀₁) (sum.rec f₂₁ h₂₁) := begin intro x, induction x with a b, exact h a, exact k b end definition sum_functor_hsquare [unfold 19] (h : hsquare f₁₀ f₁₂ f₀₁ f₂₁) (k : hsquare g₁₀ g₁₂ g₀₁ g₂₁) : hsquare (f₁₀ +→ g₁₀) (f₁₂ +→ g₁₂) (f₀₁ +→ g₀₁) (f₂₁ +→ g₂₁) := sum_rec_hsquare (λa, ap inl (h a)) (λb, ap inr (k b)) definition sum_functor_compose (g : B → C) (f : A → B) (g' : B' → C') (f' : A' → B') : (g ∘ f) +→ (g' ∘ f') ~ g +→ g' ∘ f +→ f' := begin intro x, induction x with a a': reflexivity end definition sum_rec_sum_functor (g : B → C) (g' : B' → C) (f : A → B) (f' : A' → B') : sum.rec g g' ∘ sum_functor f f' ~ sum.rec (g ∘ f) (g' ∘ f') := begin intro x, induction x with a a': reflexivity end definition sum_rec_same_compose (g : B → C) (f : A → B) : sum.rec (g ∘ f) (g ∘ f) ~ g ∘ sum.rec f f := begin intro x, induction x with a a': reflexivity end definition sum_rec_same (f : A → B) : sum.rec f f ~ f ∘ sum.rec id id := sum_rec_same_compose f id end sum namespace prod infix ` ×→ `:63 := prod_functor infix ` ×≃ `:63 := prod_equiv_prod definition pprod_incl1 [constructor] (X Y : Type*) : X →* X ×* Y := pmap.mk (λx, (x, pt)) idp definition pprod_incl2 [constructor] (X Y : Type*) : Y →* X ×* Y := pmap.mk (λy, (pt, y)) idp end prod namespace equiv definition rec_eq_of_equiv {A : Type} {P : A → A → Type} (e : Πa a', a = a' ≃ P a a') {a a' : A} (Q : P a a' → Type) (H : Π(q : a = a'), Q (e a a' q)) : Π(p : P a a'), Q p := equiv_rect (e a a') Q H definition rec_idp_of_equiv {A : Type} {P : A → A → Type} (e : Πa a', a = a' ≃ P a a') {a : A} (r : P a a) (s : e a a idp = r) (Q : Πa', P a a' → Type) (H : Q a r) ⦃a' : A⦄ (p : P a a') : Q a' p := rec_eq_of_equiv e _ begin intro q, induction q, induction s, exact H end p definition rec_idp_of_equiv_idp {A : Type} {P : A → A → Type} (e : Πa a', a = a' ≃ P a a') {a : A} (r : P a a) (s : e a a idp = r) (Q : Πa', P a a' → Type) (H : Q a r) : rec_idp_of_equiv e r s Q H r = H := begin induction s, refine !is_equiv_rect_comp ⬝ _, reflexivity end end equiv namespace paths variables {A : Type} {R : A → A → Type} {a₁ a₂ a₃ a₄ : A} inductive all (T : Π⦃a₁ a₂ : A⦄, R a₁ a₂ → Type) : Π⦃a₁ a₂ : A⦄, paths R a₁ a₂ → Type := | nil {} : Π{a : A}, all T (@nil A R a) | cons : Π{a₁ a₂ a₃ : A} {r : R a₂ a₃} {p : paths R a₁ a₂}, T r → all T p → all T (cons r p) inductive Exists (T : Π⦃a₁ a₂ : A⦄, R a₁ a₂ → Type) : Π⦃a₁ a₂ : A⦄, paths R a₁ a₂ → Type := | base : Π{a₁ a₂ a₃ : A} {r : R a₂ a₃} (p : paths R a₁ a₂), T r → Exists T (cons r p) | cons : Π{a₁ a₂ a₃ : A} (r : R a₂ a₃) {p : paths R a₁ a₂}, Exists T p → Exists T (cons r p) inductive mem (l : R a₃ a₄) : Π⦃a₁ a₂ : A⦄, paths R a₁ a₂ → Type := | base : Π{a₂ : A} (p : paths R a₂ a₃), mem l (cons l p) | cons : Π{a₁ a₂ a₃ : A} (r : R a₂ a₃) {p : paths R a₁ a₂}, mem l p → mem l (cons r p) definition len (p : paths R a₁ a₂) : ℕ := begin induction p with a a₁ a₂ a₃ r p IH, { exact 0 }, { exact nat.succ IH } end definition mem_equiv_Exists (l : R a₁ a₂) (p : paths R a₃ a₄) : mem l p ≃ Exists (λa a' r, ⟨a₁, a₂, l⟩ = ⟨a, a', r⟩) p := sorry end paths namespace list open is_trunc trunc sigma.ops prod.ops lift variables {A B X : Type} definition foldl_homotopy {f g : A → B → A} (h : f ~2 g) (a : A) : foldl f a ~ foldl g a := begin intro bs, revert a, induction bs with b bs p: intro a, reflexivity, esimp [foldl], exact p (f a b) ⬝ ap010 (foldl g) (h a b) bs end definition cons_eq_cons {x x' : X} {l l' : list X} (p : x::l = x'::l') : x = x' × l = l' := begin refine lift.down (list.no_confusion p _), intro q r, split, exact q, exact r end definition concat_neq_nil (x : X) (l : list X) : concat x l ≠ nil := begin intro p, cases l: cases p, end definition concat_eq_singleton {x x' : X} {l : list X} (p : concat x l = [x']) : x = x' × l = [] := begin cases l with x₂ l, { cases cons_eq_cons p with q r, subst q, split: reflexivity }, { exfalso, esimp [concat] at p, apply concat_neq_nil x l, revert p, generalize (concat x l), intro l' p, cases cons_eq_cons p with q r, exact r } end definition foldr_concat (f : A → B → B) (b : B) (a : A) (l : list A) : foldr f b (concat a l) = foldr f (f a b) l := begin induction l with a' l p, reflexivity, rewrite [concat_cons, foldr_cons, p] end definition iterated_prod (X : Type.{u}) (n : ℕ) : Type.{u} := iterate (prod X) n (lift unit) definition is_trunc_iterated_prod {k : ℕ₋₂} {X : Type} {n : ℕ} (H : is_trunc k X) : is_trunc k (iterated_prod X n) := begin induction n with n IH, { apply is_trunc_of_is_contr, apply is_trunc_lift }, { exact @is_trunc_prod _ _ _ H IH } end definition list_of_iterated_prod {n : ℕ} (x : iterated_prod X n) : list X := begin induction n with n IH, { exact [] }, { exact x.1::IH x.2 } end definition list_of_iterated_prod_succ {n : ℕ} (x : X) (xs : iterated_prod X n) : @list_of_iterated_prod X (succ n) (x, xs) = x::list_of_iterated_prod xs := by reflexivity definition iterated_prod_of_list (l : list X) : Σn, iterated_prod X n := begin induction l with x l IH, { exact ⟨0, up ⋆⟩ }, { exact ⟨succ IH.1, (x, IH.2)⟩ } end definition iterated_prod_of_list_cons (x : X) (l : list X) : iterated_prod_of_list (x::l) = ⟨succ (iterated_prod_of_list l).1, (x, (iterated_prod_of_list l).2)⟩ := by reflexivity protected definition sigma_char [constructor] (X : Type) : list X ≃ Σ(n : ℕ), iterated_prod X n := begin apply equiv.MK iterated_prod_of_list (λv, list_of_iterated_prod v.2), { intro x, induction x with n x, esimp, induction n with n IH, { induction x with x, induction x, reflexivity }, { revert x, change Π(x : X × iterated_prod X n), _, intro xs, cases xs with x xs, rewrite [list_of_iterated_prod_succ, iterated_prod_of_list_cons], apply sigma_eq (ap succ (IH xs)..1), apply pathover_ap, refine prod_pathover _ _ _ _ (IH xs)..2, apply pathover_of_eq, reflexivity }}, { intro l, induction l with x l IH, { reflexivity }, { exact ap011 cons idp IH }} end local attribute [instance] is_trunc_iterated_prod definition is_trunc_list [instance] {n : ℕ₋₂} {X : Type} (H : is_trunc (n.+2) X) : is_trunc (n.+2) (list X) := begin assert H : is_trunc (n.+2) (Σ(k : ℕ), iterated_prod X k), { apply is_trunc_sigma, apply is_trunc_succ_succ_of_is_set, intro, exact is_trunc_iterated_prod H }, apply is_trunc_equiv_closed_rev _ (list.sigma_char X), end end list namespace chain_complex open fin definition LES_is_contr_of_is_embedding_of_is_surjective (n : ℕ) {X Y : pType.{u}} (f : X →* Y) (H : is_embedding (π→[n] f)) (H2 : is_surjective (π→[n+1] f)) : is_contr (π[n] (pfiber f)) := begin rexact @is_contr_of_is_embedding_of_is_surjective +3ℕ (LES_of_homotopy_groups f) (n, 0) (is_exact_LES_of_homotopy_groups f _) proof H qed proof H2 qed end end chain_complex namespace susp open trunc_index /- move to freudenthal -/ definition freudenthal_pequiv_trunc_index' (A : Type*) (n : ℕ) (k : ℕ₋₂) [HA : is_conn n A] (H : k ≤ of_nat (2 * n)) : ptrunc k A ≃* ptrunc k (Ω (susp A)) := begin assert lem : Π(l : ℕ₋₂), l ≤ 0 → ptrunc l A ≃* ptrunc l (Ω (susp A)), { intro l H', exact ptrunc_pequiv_ptrunc_of_le H' (freudenthal_pequiv A (zero_le (2 * n))) }, cases k with k, { exact lem -2 (minus_two_le 0) }, cases k with k, { exact lem -1 (succ_le_succ (minus_two_le -1)) }, rewrite [-of_nat_add_two at *, add_two_sub_two at HA], exact freudenthal_pequiv A (le_of_of_nat_le_of_nat H) end end susp /- namespace logic? -/ namespace decidable definition double_neg_elim {A : Type} (H : decidable A) (p : ¬ ¬ A) : A := begin induction H, assumption, contradiction end definition dite_true {C : Type} [H : decidable C] {A : Type} {t : C → A} {e : ¬ C → A} (c : C) (H' : is_prop C) : dite C t e = t c := begin induction H with H H, exact ap t !is_prop.elim, contradiction end definition dite_false {C : Type} [H : decidable C] {A : Type} {t : C → A} {e : ¬ C → A} (c : ¬ C) : dite C t e = e c := begin induction H with H H, contradiction, exact ap e !is_prop.elim, end definition decidable_eq_of_is_prop (A : Type) [is_prop A] : decidable_eq A := λa a', decidable.inl !is_prop.elim definition decidable_eq_sigma [instance] {A : Type} (B : A → Type) [HA : decidable_eq A] [HB : Πa, decidable_eq (B a)] : decidable_eq (Σa, B a) := begin intro v v', induction v with a b, induction v' with a' b', cases HA a a' with p np, { induction p, cases HB a b b' with q nq, induction q, exact decidable.inl idp, apply decidable.inr, intro p, apply nq, apply @eq_of_pathover_idp A B, exact change_path !is_prop.elim p..2 }, { apply decidable.inr, intro p, apply np, exact p..1 } end open sum definition decidable_eq_sum [instance] (A B : Type) [HA : decidable_eq A] [HB : decidable_eq B] : decidable_eq (A ⊎ B) := begin intro v v', induction v with a b: induction v' with a' b', { cases HA a a' with p np, { exact decidable.inl (ap sum.inl p) }, { apply decidable.inr, intro p, cases p, apply np, reflexivity }}, { apply decidable.inr, intro p, cases p }, { apply decidable.inr, intro p, cases p }, { cases HB b b' with p np, { exact decidable.inl (ap sum.inr p) }, { apply decidable.inr, intro p, cases p, apply np, reflexivity }}, end end decidable namespace category open functor /- shortening pullback to pb to keep names relatively short -/ definition pb_precategory [constructor] {A B : Type} (f : A → B) (C : precategory B) : precategory A := precategory.mk (λa a', hom (f a) (f a')) (λa a' a'' h g, h ∘ g) (λa, ID (f a)) (λa a' a'' a''' k h g, assoc k h g) (λa a' g, id_left g) (λa a' g, id_right g) definition pb_Precategory [constructor] {A : Type} (C : Precategory) (f : A → C) : Precategory := Precategory.mk A (pb_precategory f C) definition pb_Precategory_functor [constructor] {A : Type} (C : Precategory) (f : A → C) : pb_Precategory C f ⇒ C := functor.mk f (λa a' g, g) proof (λa, idp) qed proof (λa a' a'' h g, idp) qed definition fully_faithful_pb_Precategory_functor {A : Type} (C : Precategory) (f : A → C) : fully_faithful (pb_Precategory_functor C f) := begin intro a a', apply is_equiv_id end definition split_essentially_surjective_pb_Precategory_functor {A : Type} (C : Precategory) (f : A → C) (H : is_split_surjective f) : split_essentially_surjective (pb_Precategory_functor C f) := begin intro c, cases H c with a p, exact ⟨a, iso.iso_of_eq p⟩ end definition is_equivalence_pb_Precategory_functor {A : Type} (C : Precategory) (f : A → C) (H : is_split_surjective f) : is_equivalence (pb_Precategory_functor C f) := @(is_equivalence_of_fully_faithful_of_split_essentially_surjective _) (fully_faithful_pb_Precategory_functor C f) (split_essentially_surjective_pb_Precategory_functor C f H) definition pb_Precategory_equivalence [constructor] {A : Type} (C : Precategory) (f : A → C) (H : is_split_surjective f) : pb_Precategory C f ≃c C := equivalence.mk _ (is_equivalence_pb_Precategory_functor C f H) definition pb_Precategory_equivalence_of_equiv [constructor] {A : Type} (C : Precategory) (f : A ≃ C) : pb_Precategory C f ≃c C := pb_Precategory_equivalence C f (is_split_surjective_of_is_retraction f) definition is_isomorphism_pb_Precategory_functor [constructor] {A : Type} (C : Precategory) (f : A ≃ C) : is_isomorphism (pb_Precategory_functor C f) := (fully_faithful_pb_Precategory_functor C f, to_is_equiv f) definition pb_Precategory_isomorphism [constructor] {A : Type} (C : Precategory) (f : A ≃ C) : pb_Precategory C f ≅c C := isomorphism.mk _ (is_isomorphism_pb_Precategory_functor C f) end category