Spectral/algebra/subgroup.hlean
2018-11-12 13:02:20 -05:00

582 lines
22 KiB
Text
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Egbert Rijke. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Egbert Rijke, Jeremy Avigad
Basic concepts of group theory
-/
import algebra.group_theory ..move_to_lib ..property
open eq algebra is_trunc sigma sigma.ops prod trunc property is_equiv equiv
namespace group
/- #Subgroups -/
/-- Recall that a subtype of a type A is the same thing as a family
of mere propositions over A. Thus, we define a subgroup of a
group G to be a family of mere propositions over (the underlying
type of) G, closed under the constants and operations --/
structure is_subgroup [class] (G : Group) (H : property G) : Type :=
(one_mem : 1 ∈ H)
(mul_mem : Π{g h}, g ∈ H → h ∈ H → g * h ∈ H)
(inv_mem : Π{g}, g ∈ H → g⁻¹ ∈ H)
definition is_prop_is_subgroup [instance] (G : Group) (H : property G) : is_prop (is_subgroup G H) :=
proof -- this results in a simpler choice of universe metavariables
have 1 ∈ H × (Π{g h}, g ∈ H → h ∈ H → g * h ∈ H) × (Π{g}, g ∈ H → g⁻¹ ∈ H) ≃ is_subgroup G H,
begin
fapply equiv.MK,
{ intro p, cases p with p1 p2, cases p2 with p2 p3, exact is_subgroup.mk p1 @p2 @p3 },
{ intro p, split, exact is_subgroup.one_mem H, split, apply @is_subgroup.mul_mem G H p, apply @is_subgroup.inv_mem G H p},
{ intro b, cases b, reflexivity },
{ intro a, cases a with a1 a2, cases a2, reflexivity }
end,
is_trunc_equiv_closed _ this _
qed
/-- Every group G has at least two subgroups, the trivial subgroup containing only one, and the full subgroup. --/
definition trivial_subgroup [instance] (G : Group) : is_subgroup G '{1} :=
begin
fapply is_subgroup.mk,
{ esimp, apply mem_insert },
{ intros g h p q, esimp at *, apply mem_singleton_of_eq, rewrite [eq_of_mem_singleton p, eq_of_mem_singleton q, mul_one]},
{ intros g p, esimp at *, apply mem_singleton_of_eq, rewrite [eq_of_mem_singleton p, one_inv] }
end
definition full_subgroup [instance] (G : Group) : is_subgroup G univ :=
begin
fapply is_subgroup.mk,
{ apply logic.trivial },
{ intros, apply logic.trivial },
{ intros, apply logic.trivial }
end
/-- Every group homomorphism f : G -> H determines a subgroup of H,
the image of f, and a subgroup of G, the kernel of f. In the
following definition we define the image of f. Since a subgroup
is required to be closed under the group operations, showing
that the image of f is closed under the group operations is part
of the definition of the image of f. --/
definition is_subgroup_image [instance] {G : Group} {H : Group} (f : G →g H) :
is_subgroup H (image f) :=
begin
fapply is_subgroup.mk,
-- subproperty contains 1
{ fapply image.mk, exact 1, apply respect_one},
-- subproperty is closed under multiplication
{ intro h h', intro u v,
induction u with x p, induction v with y q,
induction p, induction q,
apply image.mk (x * y), apply respect_mul},
-- subproperty is closed under inverses
{ intro g, intro t, induction t with x p, induction p,
apply image.mk x⁻¹, apply respect_inv }
end
section kernels
variables {G₁ G₂ : Group}
-- TODO: maybe define this in more generality for pointed sets?
definition kernel [constructor] (φ : G₁ →g G₂) : property G₁ := { g | trunctype.mk (φ g = 1) _}
theorem mul_mem_kernel (φ : G₁ →g G₂) (g h : G₁) (H₁ : g ∈ kernel φ) (H₂ : h ∈ kernel φ) : g * h ∈ kernel φ :=
calc
φ (g * h) = (φ g) * (φ h) : to_respect_mul
... = 1 * (φ h) : H₁
... = 1 * 1 : H₂
... = 1 : one_mul
theorem inv_mem_kernel (φ : G₁ →g G₂) (g : G₁) (H : g ∈ kernel φ) : g⁻¹ ∈ kernel φ :=
calc
φ g⁻¹ = (φ g)⁻¹ : to_respect_inv
... = 1⁻¹ : H
... = 1 : one_inv
definition is_subgroup_kernel [constructor] [instance] (φ : G₁ →g G₂) : is_subgroup G₁ (kernel φ) :=
⦃ is_subgroup,
one_mem := respect_one φ,
mul_mem := mul_mem_kernel φ,
inv_mem := inv_mem_kernel φ
end kernels
/-- Now we should be able to show that if f is a homomorphism for which the kernel is trivial and the
image is full, then f is an isomorphism, except that no one defined the proposition that f is an
isomorphism :/ --/
/- definition is_iso_from_kertriv_imfull {G H : Group} (f : G →g H) :
is_trivial_subgroup G (kernel f) → is_full_subgroup H (image_subgroup f) → unit
/- replace unit by is_isomorphism f -/ := sorry -/
/- #Normal subgroups -/
/-- Next, we formalize some aspects of normal subgroups. Recall that a normal subgroup H of a
group G is a subgroup which is invariant under all inner automorophisms on G. --/
definition is_normal.{u v} [constructor] (G : Group) (N : property.{u v} G) : Prop :=
trunctype.mk (Π{g} h, g ∈ N → h * g * h⁻¹ ∈ N) _
structure is_normal_subgroup [class] (G : Group) (N : property G) extends is_subgroup G N :=
(is_normal : is_normal G N)
abbreviation subgroup_one_mem [unfold 2] := @is_subgroup.one_mem
abbreviation subgroup_mul_mem [unfold 2] := @is_subgroup.mul_mem
abbreviation subgroup_inv_mem [unfold 2] := @is_subgroup.inv_mem
abbreviation subgroup_is_normal [unfold 2] := @is_normal_subgroup.is_normal
section
variables {G G' G₁ G₂ G₃ : Group} {H N : property G} [is_subgroup G H]
[is_normal_subgroup G N] {g g' h h' k : G}
{A B : AbGroup}
theorem is_normal_subgroup' (h : G) (r : g ∈ N) : h⁻¹ * g * h ∈ N :=
inv_inv h ▸ subgroup_is_normal N h⁻¹ r
definition is_normal_subgroup_ab [constructor] {C : property A} (subgrpA : is_subgroup A C)
: is_normal_subgroup A C :=
⦃ is_normal_subgroup, subgrpA,
is_normal := abstract begin
intros g h r, xrewrite [mul.comm h g, mul_inv_cancel_right], exact r
end end⦄
theorem is_normal_subgroup_rev (h : G) (r : h * g * h⁻¹ ∈ N) : g ∈ N :=
have H : h⁻¹ * (h * g * h⁻¹) * h = g, from calc
h⁻¹ * (h * g * h⁻¹) * h = h⁻¹ * (h * g) * h⁻¹ * h : by rewrite [-mul.assoc h⁻¹]
... = h⁻¹ * (h * g) : by rewrite [inv_mul_cancel_right]
... = g : inv_mul_cancel_left,
H ▸ is_normal_subgroup' h r
theorem is_normal_subgroup_rev' (h : G) (r : h⁻¹ * g * h ∈ N) : g ∈ N :=
is_normal_subgroup_rev h⁻¹ ((inv_inv h)⁻¹ ▸ r)
theorem normal_subgroup_insert (r : k ∈ N) (r' : g * h ∈ N) : g * (k * h) ∈ N :=
have H1 : (g * h) * (h⁻¹ * k * h) ∈ N, from
subgroup_mul_mem r' (is_normal_subgroup' h r),
have H2 : (g * h) * (h⁻¹ * k * h) = g * (k * h), from calc
(g * h) * (h⁻¹ * k * h) = g * (h * (h⁻¹ * k * h)) : mul.assoc
... = g * (h * (h⁻¹ * (k * h))) : by rewrite [mul.assoc h⁻¹]
... = g * (k * h) : by rewrite [mul_inv_cancel_left],
show N (g * (k * h)), from H2 ▸ H1
/-- In the following, we show that the kernel of any group homomorphism f : G₁ →g G₂ is a normal subgroup of G₁ --/
theorem is_normal_subgroup_kernel {G₁ G₂ : Group} (φ : G₁ →g G₂) (g : G₁) (h : G₁)
: g ∈ kernel φ → h * g * h⁻¹ ∈ kernel φ :=
begin
esimp at *,
intro p,
exact calc
φ (h * g * h⁻¹) = (φ (h * g)) * φ (h⁻¹) : to_respect_mul
... = (φ h) * (φ g) * (φ h⁻¹) : to_respect_mul
... = (φ h) * 1 * (φ h⁻¹) : p
... = (φ h) * (φ h⁻¹) : mul_one
... = (φ h) * (φ h)⁻¹ : to_respect_inv
... = 1 : mul.right_inv
end
-- this is just (Σ(g : G), H g), but only defined if (H g) is a prop
definition sg {G : Group} (H : property G) : Type := subtype (λ x, x ∈ H)
local attribute sg [reducible]
definition subgroup_one [constructor] : sg H := ⟨one, subgroup_one_mem H⟩
definition subgroup_inv [unfold 3] : sg H → sg H :=
λv, ⟨v.1⁻¹, subgroup_inv_mem v.2⟩
definition subgroup_mul [unfold 3 4] : sg H → sg H → sg H :=
λv w, ⟨v.1 * w.1, subgroup_mul_mem v.2 w.2⟩
definition subgroup_elt (x : sg H) : G := x.1
section
local notation 1 := subgroup_one
local postfix ⁻¹ := subgroup_inv
local infix * := subgroup_mul
theorem subgroup_mul_assoc (g₁ g₂ g₃ : sg H) : g₁ * g₂ * g₃ = g₁ * (g₂ * g₃) :=
subtype_eq !mul.assoc
theorem subgroup_one_mul (g : sg H) : 1 * g = g :=
subtype_eq !one_mul
theorem subgroup_mul_one (g : sg H) : g * 1 = g :=
subtype_eq !mul_one
theorem subgroup_mul_left_inv (g : sg H) : g⁻¹ * g = 1 :=
subtype_eq !mul.left_inv
theorem subgroup_mul_comm {G : AbGroup} {H : property G} [subgrpH : is_subgroup G H] (g h : sg H)
: subgroup_mul g h = subgroup_mul h g :=
subtype_eq !mul.comm
end
variable (H)
definition group_sg [constructor] : group (sg H) :=
group.mk _ subgroup_mul subgroup_mul_assoc subgroup_one subgroup_one_mul subgroup_mul_one
subgroup_inv subgroup_mul_left_inv
definition subgroup [constructor] : Group :=
Group.mk _ (group_sg H)
variable {H}
definition ab_group_sg [constructor] {G : AbGroup} (H : property G) [is_subgroup G H]
: ab_group (sg H) :=
⦃ab_group, (group_sg H), mul_comm := subgroup_mul_comm⦄
definition ab_subgroup [constructor] {G : AbGroup} (H : property G) [is_subgroup G H]
: AbGroup :=
AbGroup.mk _ (ab_group_sg H)
definition Kernel {G H : Group} (f : G →g H) : Group := subgroup (kernel f)
definition ab_Kernel {G H : AbGroup} (f : G →g H) : AbGroup := ab_subgroup (kernel f)
definition incl_of_subgroup [constructor] {G : Group} (H : property G) [is_subgroup G H] :
subgroup H →g G :=
begin
fapply homomorphism.mk,
-- the underlying function
{ intro h, induction h with g, exact g},
-- is a homomorphism
intro g h, reflexivity
end
definition is_embedding_incl_of_subgroup {G : Group} (H : property G) [is_subgroup G H] :
is_embedding (incl_of_subgroup H) :=
begin
fapply function.is_embedding_of_is_injective,
intro h h',
fapply subtype_eq
end
definition ab_Kernel_incl {G H : AbGroup} (f : G →g H) : ab_Kernel f →g G :=
begin
fapply incl_of_subgroup,
end
definition is_embedding_ab_kernel_incl {G H : AbGroup} (f : G →g H) : is_embedding (ab_Kernel_incl f) :=
begin
fapply is_embedding_incl_of_subgroup,
end
definition is_subgroup_of_is_subgroup {G : Group} {H1 H2 : property G} [is_subgroup G H1]
[is_subgroup G H2] (hyp : Π (g : G), g ∈ H1 → g ∈ H2) :
is_subgroup (subgroup H2) {h | incl_of_subgroup H2 h ∈ H1} :=
is_subgroup.mk
(subgroup_one_mem H1)
(begin
intros g h p q,
apply mem_property_of,
apply subgroup_mul_mem (of_mem_property_of p) (of_mem_property_of q),
end)
(begin
intros h p,
apply mem_property_of,
apply subgroup_inv_mem (of_mem_property_of p)
end)
definition Image {G H : Group} (f : G →g H) : Group :=
subgroup (image f)
definition ab_Image {G : AbGroup} {H : Group} (f : G →g H) : AbGroup :=
AbGroup_of_Group (Image f)
begin
intro g h,
induction g with x t, induction h with y s,
fapply subtype_eq,
induction t with g p, induction s with h q, induction p, induction q,
refine (((respect_mul f g h)⁻¹ ⬝ _) ⬝ (respect_mul f h g)),
apply (ap f),
induction G, induction struct', apply mul_comm
end
definition image_incl {G H : Group} (f : G →g H) : Image f →g H :=
incl_of_subgroup (image f)
definition ab_Image_incl {A B : AbGroup} (f : A →g B) : ab_Image f →g B := incl_of_subgroup (image f)
definition is_equiv_surjection_ab_image_incl {A B : AbGroup} (f : A →g B) (H : is_surjective f) : is_equiv (ab_Image_incl f ) :=
begin
fapply is_equiv.adjointify (ab_Image_incl f),
intro b,
fapply sigma.mk,
exact b,
exact H b,
intro b,
reflexivity,
intro x,
apply subtype_eq,
reflexivity
end
definition iso_surjection_ab_image_incl [constructor] {A B : AbGroup} (f : A →g B) (H : is_surjective f) : ab_Image f ≃g B :=
begin
fapply isomorphism.mk,
exact (ab_Image_incl f),
exact is_equiv_surjection_ab_image_incl f H
end
definition hom_lift [constructor] {G H : Group} (f : G →g H) (K : property H) [is_subgroup H K] (Hyp : Π (g : G), K (f g)) : G →g subgroup K :=
begin
fapply homomorphism.mk,
intro g,
fapply sigma.mk,
exact f g,
fapply Hyp,
intro g h, apply subtype_eq, esimp, apply respect_mul
end
definition hom_factors_through_lift {G H : Group} (f : G →g H) (K : property H) [is_subgroup H K] (Hyp : Π (g : G), K (f g)) :
f = incl_of_subgroup K ∘g hom_lift f K Hyp :=
begin
fapply homomorphism_eq,
reflexivity
end
definition ab_hom_lift [constructor] {G H : AbGroup} (f : G →g H) (K : property H) [is_subgroup H K] (Hyp : Π (g : G), K (f g)) : G →g ab_subgroup K :=
begin
fapply homomorphism.mk,
intro g,
fapply sigma.mk,
exact f g,
fapply Hyp,
intro g h, apply subtype_eq, apply respect_mul,
end
definition ab_hom_factors_through_lift {G H : AbGroup} (f : G →g H) (K : property H) [is_subgroup H K] (Hyp : Π (g : G), K (f g)) :
f = incl_of_subgroup K ∘g hom_lift f K Hyp :=
begin
fapply homomorphism_eq,
reflexivity
end
definition ab_hom_lift_kernel [constructor] {A B C : AbGroup} (f : A →g B) (g : B →g C) (Hyp : Π (a : A), g (f a) = 1) : A →g ab_Kernel g :=
begin
fapply ab_hom_lift,
exact f,
intro a,
exact Hyp a,
end
definition ab_hom_lift_kernel_factors {A B C : AbGroup} (f : A →g B) (g : B →g C) (Hyp : Π (a : A), g (f a) = 1) :
f = ab_Kernel_incl g ∘g ab_hom_lift_kernel f g Hyp :=
begin
fapply ab_hom_factors_through_lift,
end
definition image_lift [constructor] {G H : Group} (f : G →g H) : G →g Image f :=
begin
fapply hom_lift f,
intro g,
apply tr,
fapply fiber.mk,
exact g, reflexivity
end
definition ab_image_lift [constructor] {G H : AbGroup} (f : G →g H) : G →g Image f :=
begin
fapply hom_lift f,
intro g,
apply tr,
fapply fiber.mk,
exact g, reflexivity
end
definition is_surjective_image_lift {G H : Group} (f : G →g H) : is_surjective (image_lift f) :=
begin
intro h,
induction h with h p, induction p with g,
fapply image.mk,
exact g, induction p, reflexivity
end
definition image_factor {G H : Group} (f : G →g H) : f = (image_incl f) ∘g (image_lift f) :=
begin
fapply homomorphism_eq,
reflexivity
end
definition image_incl_injective {G H : Group} (f : G →g H) : Π (x y : Image f),
(image_incl f x = image_incl f y) → (x = y) :=
begin
intro x y,
intro p,
fapply subtype_eq,
exact p
end
definition image_incl_eq_one {G H : Group} (f : G →g H) :
Π (x : Image f), (image_incl f x = 1) → x = 1 :=
begin
intro x,
fapply image_incl_injective f x 1,
end
definition image_elim_lemma {f₁ : G₁ →g G₂} {f₂ : G₁ →g G₃} (h : Π⦃g⦄, f₁ g = 1 → f₂ g = 1)
(g g' : G₁) (p : f₁ g = f₁ g') : f₂ g = f₂ g' :=
have f₁ (g * g'⁻¹) = 1, from !to_respect_mul ⬝ ap (mul _) !to_respect_inv ⬝
mul_inv_eq_of_eq_mul (p ⬝ !one_mul⁻¹),
have f₂ (g * g'⁻¹) = 1, from h this,
eq_of_mul_inv_eq_one (ap (mul _) !to_respect_inv⁻¹ ⬝ !to_respect_mul⁻¹ ⬝ this)
open image
definition image_elim {f₁ : G₁ →g G₂} (f₂ : G₁ →g G₃) (h : Π⦃g⦄, f₁ g = 1 → f₂ g = 1) :
Image f₁ →g G₃ :=
homomorphism.mk (total_image.elim_set f₂ (image_elim_lemma h))
begin
refine total_image.rec _, intro g,
refine total_image.rec _, intro g',
exact to_respect_mul f₂ g g'
end
end
definition image_homomorphism {A B C : AbGroup} (f : A →g B) (g : B →g C) :
ab_Image f →g ab_Image (g ∘g f) :=
begin
fapply image_elim,
exact image_lift (g ∘g f),
intro a p,
fapply subtype_eq, unfold image_lift,
exact calc
g (f a) = g 1 : by exact ap g p
... = 1 : to_respect_one,
end
definition image_homomorphism_square {A B C : AbGroup} (f : A →g B) (g : B →g C) :
g ∘g image_incl f ~ image_incl (g ∘g f ) ∘g image_homomorphism f g :=
begin
intro x, induction x with b p, induction p with x, induction p, reflexivity
end
variables {G H K : Group} {R : property G} [is_subgroup G R]
{S : property H} [is_subgroup H S] {T : property K} [is_subgroup K T]
open function
definition subgroup_functor_fun [unfold 7] (φ : G →g H) (h : Πg, g ∈ R → φ g ∈ S)
(x : subgroup R) : subgroup S :=
⟨φ x.1, h x.1 x.2⟩
definition subgroup_functor [constructor] (φ : G →g H)
(h : Πg, g ∈ R → φ g ∈ S) : subgroup R →g subgroup S :=
begin
fapply homomorphism.mk,
{ exact subgroup_functor_fun φ h },
{ intro x₁ x₂, induction x₁ with g₁ hg₁, induction x₂ with g₂ hg₂,
exact sigma_eq !to_respect_mul !is_prop.elimo }
end
definition ab_subgroup_functor [constructor] {G H : AbGroup}
{R : property G} [is_subgroup G R]
{S : property H} [is_subgroup H S]
(φ : G →g H)
(h : Πg, g ∈ R → φ g ∈ S) : ab_subgroup R →g ab_subgroup S :=
subgroup_functor φ h
theorem subgroup_functor_compose (ψ : H →g K) (φ : G →g H)
(hψ : Πg, g ∈ S → ψ g ∈ T) (hφ : Πg, g ∈ R → φ g ∈ S) :
subgroup_functor ψ hψ ∘g subgroup_functor φ hφ ~
subgroup_functor (ψ ∘g φ) (λg, proof hψ (φ g) qed ∘ hφ g) :=
begin
intro g, induction g with g hg, reflexivity
end
definition subgroup_functor_gid : subgroup_functor (gid G) (λg, id) ~ gid (subgroup R) :=
begin
intro g, induction g with g hg, reflexivity
end
definition subgroup_functor_mul {G H : AbGroup} {R : property G} [subgroupR : is_subgroup G R]
{S : property H} [subgroupS : is_subgroup H S]
(ψ φ : G →g H) (hψ : Πg, g ∈ R → ψ g ∈ S) (hφ : Πg, g ∈ R → φ g ∈ S) :
homomorphism_mul (ab_subgroup_functor ψ hψ) (ab_subgroup_functor φ hφ) ~
ab_subgroup_functor (homomorphism_mul ψ φ)
(λg hg, subgroup_mul_mem (hψ g hg) (hφ g hg)) :=
begin
intro g, induction g with g hg, reflexivity
end
definition subgroup_functor_homotopy {ψ φ : G →g H} (hψ : Πg, R g → S (ψ g))
(hφ : Πg, g ∈ R → φ g ∈ S) (p : φ ~ ψ) :
subgroup_functor φ hφ ~ subgroup_functor ψ hψ :=
begin
intro g, induction g with g hg,
exact subtype_eq (p g)
end
definition subgroup_isomorphism_subgroup [constructor] (φ : G ≃g H) (hφ : Πg, g ∈ R ↔ φ g ∈ S) :
subgroup R ≃g subgroup S :=
begin
apply isomorphism.mk (subgroup_functor φ (λg, iff.mp (hφ g))),
refine adjointify _ (subgroup_functor φ⁻¹ᵍ (λg gS, iff.mpr (hφ _) (transport S (right_inv φ g)⁻¹ gS))) _ _,
{ refine subgroup_functor_compose _ _ _ _ ⬝hty
subgroup_functor_homotopy _ _ proof right_inv φ qed ⬝hty
subgroup_functor_gid },
{ refine subgroup_functor_compose _ _ _ _ ⬝hty
subgroup_functor_homotopy _ _ proof left_inv φ qed ⬝hty
subgroup_functor_gid }
end
definition subgroup_of_subgroup_incl {R S : property G} [is_subgroup G R] [is_subgroup G S]
(H : Π (g : G), g ∈ R → g ∈ S) : subgroup R →g subgroup S
:=
subgroup_functor (gid G) H
definition is_embedding_subgroup_of_subgroup_incl {R S : property G} [is_subgroup G R] [is_subgroup G S]
(H : Π (g : G), g ∈ R -> g ∈ S) : is_embedding (subgroup_of_subgroup_incl H) :=
begin
fapply is_embedding_of_is_injective,
intro x y p,
induction x with x r, induction y with y s,
fapply subtype_eq, esimp,
unfold subgroup_of_subgroup_incl at p, exact ap pr1 p,
end
definition ab_subgroup_of_subgroup_incl {A : AbGroup} {R S : property A} [is_subgroup A R] [is_subgroup A S]
(H : Π (a : A), a ∈ R → a ∈ S) : ab_subgroup R →g ab_subgroup S
:=
ab_subgroup_functor (gid A) H
definition is_embedding_ab_subgroup_of_subgroup_incl {A : AbGroup} {R S : property A} [is_subgroup A R] [is_subgroup A S]
(H : Π (a : A), a ∈ R → a ∈ S) : is_embedding (ab_subgroup_of_subgroup_incl H) :=
begin
fapply is_embedding_subgroup_of_subgroup_incl
end
definition ab_subgroup_iso {A : AbGroup} {R S : property A} [is_subgroup A R] [is_subgroup A S]
(H : Π (a : A), a ∈ R → a ∈ S) (K : Π (a : A), a ∈ S → a ∈ R) :
ab_subgroup R ≃g ab_subgroup S :=
begin
fapply isomorphism.mk,
exact subgroup_of_subgroup_incl H,
fapply is_equiv.adjointify,
exact subgroup_of_subgroup_incl K,
intro s, induction s with a p, fapply subtype_eq, reflexivity,
intro r, induction r with a p, fapply subtype_eq, reflexivity
end
definition ab_subgroup_iso_triangle {A : AbGroup} {R S : property A} [is_subgroup A R] [is_subgroup A S]
(H : Π (a : A), a ∈ R → a ∈ S) (K : Π (a : A), a ∈ S → a ∈ R) :
incl_of_subgroup R ~ incl_of_subgroup S ∘g ab_subgroup_iso H K :=
begin
intro r, induction r, reflexivity
end
definition is_equiv_incl_of_subgroup {G : Group} (H : property G) [is_subgroup G H]
(h : Πg, g ∈ H) : is_equiv (incl_of_subgroup H) :=
have is_surjective (incl_of_subgroup H),
begin intro g, exact image.mk ⟨g, h g⟩ idp end,
have is_embedding (incl_of_subgroup H), from is_embedding_incl_of_subgroup H,
function.is_equiv_of_is_surjective_of_is_embedding (incl_of_subgroup H)
definition subgroup_isomorphism [constructor] {G : Group} (H : property G) [is_subgroup G H]
(h : Πg, g ∈ H) : subgroup H ≃g G :=
isomorphism.mk _ (is_equiv_incl_of_subgroup H h)
end group
open group
attribute is_subgroup_image [constructor]
attribute is_subgroup_kernel [constructor]