Spectral/archive/smash_assoc.hlean
Floris van Doorn da033c0f4c work on dependent smash and cup product on EM-spaces
also many small fixes
2018-09-20 02:08:45 +02:00

488 lines
24 KiB
Text
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- Authors: Floris van Doorn
-- In collaboration with Stefano, Robin
import ..homotopy.smash homotopy.red_susp
open bool pointed eq equiv is_equiv sum bool prod unit circle cofiber prod.ops wedge is_trunc
function red_susp unit sigma
exit
namespace smash
variables {A B C : Type*}
open pushout
definition prod3_of_sum3 [unfold 4] (A B C : Type*) : A × C ⊎ A × B ⊎ C × B → A × B × C :=
begin
intro v, induction v with ac v,
exact (ac.1, (pt, ac.2)),
induction v with ab cb,
exact (ab.1, (ab.2, pt)),
exact (pt, (cb.2, cb.1))
end
definition fin3_of_sum3 [unfold 4] (A B C : Type*) : A × C ⊎ A × B ⊎ C × B → A ⊎ B ⊎ C :=
sum_functor (λac, ac.1) (sum_functor (λab, ab.2) (λcb, cb.1))
definition smash3 (A B C : Type*) : Type* :=
pointed.MK (pushout (prod3_of_sum3 A B C) (fin3_of_sum3 A B C)) (inl (pt, (pt, pt)))
definition to_image {A B : Type} (f : A → B) (a : A) : sigma (image f) :=
⟨f a, image.mk a idp⟩
definition pushout_image_prod3_of_sum3 (A B C : Type*) : Type :=
pushout (to_image (prod3_of_sum3 A B C)) (fin3_of_sum3 A B C)
-- definition pushout_image_prod3_of_sum3_equiv (A B C : Type*) : pushout_image_prod3_of_sum3 A B C ≃ unit :=
-- begin
-- apply equiv_unit_of_is_contr,
-- fapply is_contr.mk,
-- { exact inr (sum.inl pt) },
-- { intro x, refine @center _ _,
-- induction x using pushout.rec_prop,
-- { induction x with abc p,
-- induction p with v p, induction p,
-- induction v with ac v,
-- { induction ac with a c, esimp [prod3_of_sum3], },
-- induction v with ab cb,
-- { },
-- { }},
-- { }}
-- end
-- definition pushout_wedge_of_sum_equiv_unit : pushout (@wedge_of_sum A B) bool_of_sum ≃ unit :=
-- begin
-- refine pushout_hcompose_equiv (sum_of_bool A B) (wedge_equiv_pushout_sum A B)
-- _ _ ⬝e _,
-- exact erfl,
-- intro x, induction x: esimp,
-- exact bool_of_sum_of_bool,
-- apply pushout_of_equiv_right
-- end
-- definition smash3_comm (A B C : Type*) : smash3 A B C ≃* smash3 C B A :=
-- begin
-- fapply pequiv_of_equiv,
-- { fapply pushout.equiv,
-- { apply sum_equiv_sum (prod_comm_equiv A C) (sum_comm_equiv (A × B) (C × B)) },
-- { refine prod_assoc_equiv A B C ⬝e prod_comm_equiv (A × B) C
-- ⬝e prod_equiv_prod_left (prod_comm_equiv A B) },
-- { refine sum_assoc_equiv A B C ⬝e sum_comm_equiv (A + B) C ⬝e sum_equiv_sum_left (sum_comm_equiv A B) },
-- { intro x, induction x with ac x, reflexivity, induction x with ab cb: reflexivity },
-- { intro x, induction x with ac x, induction ac with a c, esimp, reflexivity, induction x with ab cb: reflexivity }},
-- { reflexivity }
-- end
/- attempt 1, direct proof that A ∧ (B ∧ C) ≃ smash3 A B C -/
definition glue1 (a : A) (b : B) : inl (a, (b, pt)) = inr (inr (inl b)) :> smash3 A B C :=
pushout.glue (inr (inl (a, b)))
definition glue2 (b : B) (c : C) : inl (pt, (b, c)) = inr (inr (inr c)) :> smash3 A B C :=
pushout.glue (inr (inr (c, b)))
definition glue3 (c : C) (a : A) : inl (a, (pt, c)) = inr (inl a) :> smash3 A B C :=
pushout.glue (inl (a, c))
definition smash3_of_prod_smash [unfold 5] (a : A) (bc : B ∧ C) : smash3 A B C :=
begin
induction bc using smash.elim' with b c b c,
{ exact inl (a, (b, c)) },
{ refine glue1 a b ⬝ (glue1 pt b)⁻¹ ⬝ (glue2 b pt ⬝ (glue2 pt pt)⁻¹) ⬝ (glue1 pt pt ⬝ (glue1 a pt)⁻¹) },
{ refine glue3 c a ⬝ (glue3 pt a)⁻¹ ⬝ (glue1 a pt ⬝ (glue1 pt pt)⁻¹) ⬝ (glue1 pt pt ⬝ (glue1 a pt)⁻¹) },
{ exact abstract whisker_right _ (whisker_left _ !con.right_inv ⬝ !con_idp) ⬝ !con.assoc ⬝
whisker_left _ !inv_con_cancel_left ⬝ !con.right_inv end },
{ exact abstract whisker_right _ (whisker_right _ !con.right_inv ⬝ !idp_con) ⬝ !con.assoc ⬝
whisker_left _ !inv_con_cancel_left ⬝ !con.right_inv end }
end
-- definition smash3_of_prod_smash [unfold 5] (a : A) (bc : B ∧ C) : smash3 A B C :=
-- begin
-- induction bc with b c b c,
-- { exact inl (a, (b, c)) },
-- { exact pt },
-- { exact pt },
-- { refine glue1 a b ⬝ (glue1 pt b)⁻¹ ⬝ (glue2 b pt ⬝ (glue2 pt pt)⁻¹) },
-- { refine glue3 c a ⬝ (glue3 pt a)⁻¹ ⬝ (glue1 a pt ⬝ (glue1 pt pt)⁻¹) }
-- end
definition smash3_of_smash_smash_gluer [unfold 4] (bc : B ∧ C) :
smash3_of_prod_smash (pt : A) bc = pt :=
begin
induction bc with b c b c,
{ exact glue2 b c ⬝ (glue2 pt c)⁻¹ ⬝ (glue3 c pt ⬝ (glue3 pt pt)⁻¹) },
{ reflexivity },
{ reflexivity },
{ apply eq_pathover_constant_right, apply square_of_eq, refine !con_idp ⬝ _ ⬝ !elim_gluel⁻¹,
refine whisker_right _ !idp_con⁻¹ ⬝ !con.right_inv⁻¹ ◾ idp ◾ (!con.right_inv ⬝ !con.right_inv⁻¹) },
{ apply eq_pathover_constant_right, apply square_of_eq, refine !con_idp ⬝ _ ⬝ !elim_gluer⁻¹,
refine whisker_right _ !con.right_inv ⬝ !idp_con ⬝ !con_idp⁻¹ ⬝ whisker_left _ !con.right_inv⁻¹ ⬝
!con_idp⁻¹ ⬝ whisker_left _ !con.right_inv⁻¹ }
end
definition smash3_of_smash_smash [unfold 4] (x : A ∧ (B ∧ C)) : smash3 A B C :=
begin
induction x using smash.elim' with a bc a bc,
{ exact smash3_of_prod_smash a bc },
{ exact glue1 a pt ⬝ (glue1 pt pt)⁻¹ },
{ exact smash3_of_smash_smash_gluer bc },
{ apply con.right_inv },
{ exact !con.right_inv ◾ !con.right_inv }
end
definition smash_smash_of_smash3 [unfold 4] (x : smash3 A B C) : A ∧ (B ∧ C) :=
begin
induction x,
{ exact smash.mk a.1 (smash.mk a.2.1 a.2.2) },
{ exact pt },
{ exact abstract begin induction x with ac x,
{ induction ac with a c, exact ap (smash.mk a) (gluer' c pt) ⬝ gluel' a pt },
induction x with ab cb,
{ induction ab with a b, exact ap (smash.mk a) (gluel' b pt) ⬝ gluel' a pt },
{ induction cb with c b, exact gluer' (smash.mk b c) pt } end end },
end
definition smash3_of_smash_smash_of_smash3_inl [unfold 4] (x : A × B × C) :
smash3_of_smash_smash (smash_smash_of_smash3 (inl x)) = inl x :=
begin
induction x with a x, induction x with b c, reflexivity
end
definition smash3_of_smash_smash_of_smash3_inr [unfold 4] (x : A ⊎ B ⊎ C) :
smash3_of_smash_smash (smash_smash_of_smash3 (inr x)) = inr x :=
begin
induction x with a x,
{ exact (glue1 pt pt ⬝ (glue1 a pt)⁻¹) ⬝ glue3 pt a},
induction x with b c,
{ exact (glue2 pt pt ⬝ (glue2 b pt)⁻¹) ⬝ glue1 pt b},
{ exact (glue3 pt pt ⬝ (glue3 c pt)⁻¹) ⬝ glue2 pt c}
end
attribute smash_smash_of_smash3_1 [unfold 4]
definition smash_smash_of_smash3_of_prod_smash [unfold 5] (a : A) (bc : B ∧ C) :
smash_smash_of_smash3 (smash3_of_prod_smash a bc) = smash.mk a bc :=
begin
induction bc with b c b c,
{ reflexivity },
{ exact ap (smash.mk a) (gluel pt) },
{ exact ap (smash.mk a) (gluer pt) },
{ apply eq_pathover, refine ap_compose smash_smash_of_smash3 _ _ ⬝ ap02 _ !elim_gluel ⬝ph _,
refine !ap_con ⬝ (!ap_con ⬝ (!ap_con ⬝ !pushout.elim_glue ◾ (!ap_inv ⬝ _⁻²)) ◾ (!ap_con ⬝ !pushout.elim_glue ◾ (!ap_inv ⬝ _⁻²))) ◾ (!ap_con ⬝ !pushout.elim_glue ◾ (!ap_inv ⬝ _⁻²)) ⬝ph _, rotate 3, do 3 exact !pushout.elim_glue, esimp,
exact sorry },
{ apply eq_pathover, refine ap_compose smash_smash_of_smash3 _ _ ⬝ ap02 _ !elim_gluer ⬝ph _,
refine !ap_con ⬝ (!ap_con ⬝ (!ap_con ⬝ !pushout.elim_glue ◾ (!ap_inv ⬝ _⁻²)) ◾ (!ap_con ⬝ !pushout.elim_glue ◾ (!ap_inv ⬝ _⁻²))) ◾ (!ap_con ⬝ !pushout.elim_glue ◾ (!ap_inv ⬝ _⁻²)) ⬝ph _, rotate 3, do 3 exact !pushout.elim_glue,
exact sorry }
end
-- the commented out is a slow but correct proof
definition smash_smash_equiv_smash3 (A B C : Type*) : A ∧ (B ∧ C) ≃* smash3 A B C :=
begin
fapply pequiv_of_equiv,
{ fapply equiv.MK,
{ exact smash3_of_smash_smash },
{ exact smash_smash_of_smash3 },
{ intro x, --induction x,
-- { exact smash3_of_smash_smash_of_smash3_inl x },
-- { exact smash3_of_smash_smash_of_smash3_inr x },
-- { apply eq_pathover_id_right,
-- refine ap_compose smash3_of_smash_smash _ _ ⬝ ap02 _ !pushout.elim_glue ⬝ph _,
-- induction x with ac x,
-- { induction ac with a c,
-- refine !ap_con ⬝ !ap_compose'⁻¹ ◾ proof !elim'_gluel'_pt qed ⬝ph _,
-- xrewrite [{ap (smash3_of_smash_smash ∘ smash.mk a)}(idpath (ap (smash3_of_prod_smash a)))],
-- esimp, refine !elim'_gluer'_pt ◾ idp ⬝ph _,
-- refine _ ⬝vp whisker_right _ !inv_con_inv_right, apply whisker_lb,
-- refine whisker_left _ !inv_con_inv_right⁻¹ ⬝ !con_inv_cancel_right ⬝ph _,
-- apply whisker_bl, exact hrfl },
-- induction x with ab bc,
-- { induction ab with a b,
-- refine !ap_con ⬝ !ap_compose'⁻¹ ◾ proof !elim'_gluel'_pt qed ⬝ph _, esimp,
-- refine !elim'_gluel'_pt ◾ idp ⬝ph _,
-- refine whisker_left _ !inv_con_inv_right⁻¹ ⬝ !con.assoc ⬝ whisker_left _ !con.right_inv ⬝ !con_idp ⬝ph _,
-- refine _ ⬝vp whisker_right _ !inv_con_inv_right, apply whisker_lb, apply whisker_bl, exact hrfl
-- },
-- { induction bc with b c, refine !elim'_gluer'_pt ⬝ph _, esimp,
-- refine whisker_left _ !inv_con_inv_right⁻¹ ⬝ph _, apply whisker_bl, apply whisker_bl, exact hrfl }}
exact sorry
},
{ intro x, induction x with a bc a bc,
{ exact smash_smash_of_smash3_of_prod_smash a bc },
{ apply gluel },
{ apply gluer },
{ apply eq_pathover_id_right, refine ap_compose smash_smash_of_smash3 _ _ ⬝ ap02 _ !elim_gluel ⬝ph _,
refine !ap_con ⬝ (!pushout.elim_glue ◾ (!ap_inv ⬝ !pushout.elim_glue⁻²)) ⬝ph _, apply sorry, },
{ apply eq_pathover_id_right, refine ap_compose smash_smash_of_smash3 _ _ ⬝ ap02 _ !elim_gluer ⬝ph _,
induction bc with b c b c,
{ refine !ap_con ⬝ (!ap_con ⬝ !pushout.elim_glue ◾ (!ap_inv ⬝ _⁻²)) ◾ (!ap_con ⬝ !pushout.elim_glue ◾ (!ap_inv ⬝ _⁻²)) ⬝ph _, rotate 2, do 2 apply !pushout.elim_glue, exact sorry },
{ exact sorry },
{ exact sorry },
{ exact sorry },
{ exact sorry }}}},
{ reflexivity }
end
-- definition smash_assoc (A B C : Type*) : A ∧ (B ∧ C) ≃* (A ∧ B) ∧ C :=
-- calc
-- A ∧ (B ∧ C) ≃* smash3 A B C : smash_smash_equiv_smash3
-- ... ≃* smash3 C B A : smash3_comm
-- ... ≃* C ∧ (B ∧ A) : smash_smash_equiv_smash3
-- ... ≃* (B ∧ A) ∧ C : smash_comm C (B ∧ A)
-- ... ≃* (A ∧ B) ∧ C : smash_pequiv_smash_left C (smash_comm B A)
-- end
end smash
/- attempt 2: proving the induction principle of smash3 A B C for A ∧ (B ∧ C) -/
namespace smash
variables {A B C : Type*}
/- an induction principle which has only 1 point constructor, but which has bad computation properties -/
protected definition rec' {P : smash A B → Type} (Pmk : Πa b, P (smash.mk a b))
(Pgl : Πa, Pmk a pt =[gluel' a pt] Pmk pt pt)
(Pgr : Πb, Pmk pt b =[gluer' b pt] Pmk pt pt) (x : smash' A B) : P x :=
begin
induction x using smash.rec,
{ apply Pmk },
{ exact gluel pt ▸ Pmk pt pt },
{ exact gluer pt ▸ Pmk pt pt },
{ refine change_path _ (Pgl a ⬝o !pathover_tr), apply inv_con_cancel_right },
{ refine change_path _ (Pgr b ⬝o !pathover_tr), apply inv_con_cancel_right }
end
-- protected definition rec'_gluel' {P : smash A B → Type} (Pmk : Πa b, P (smash.mk a b))
-- (Pgl : Πa, Pmk a pt =[gluel' a pt] Pmk pt pt)
-- (Pgr : Πb, Pmk pt b =[gluer' b pt] Pmk pt pt) (a : A) : apd (smash.rec' Pmk Pgl Pgr) (gluel' a pt) = Pgl a :=
-- begin
-- refine !apd_con ⬝ _,
-- refine ap011 concato !rec_gluel (!apd_inv ⬝ ap inverseo !rec_gluel ⬝ !change_path_invo⁻¹) ⬝ _,
-- refine !change_path_cono⁻¹ ⬝ _,
-- -- refine cono_invo
-- -- refine change_path_invo
-- end
-- protected definition rec'_gluer' {P : smash A B → Type} (Pmk : Πa b, P (smash.mk a b))
-- (Pgl : Πa, Pmk a pt =[gluel' a pt] Pmk pt pt)
-- (Pgr : Πb, Pmk pt b =[gluer' b pt] Pmk pt pt) (b : B) : apd (smash.rec' Pmk Pgl Pgr) (gluer' b pt) = Pgr b :=
-- sorry
definition inl3 (a : A) (b : B) (c : C) : A ∧ (B ∧ C) :=
smash.mk a (smash.mk b c)
definition aux1 (a : A) : A ∧ (B ∧ C) := pt
definition aux2 (b : B) : A ∧ (B ∧ C) := pt
definition aux3 (c : C) : A ∧ (B ∧ C) := pt
definition glue12 (a : A) (b : B) : inl3 a b (pt : C) = aux1 a :=
ap (smash.mk a) (gluel' b pt) ⬝ gluel' a pt
definition glue23 (b : B) (c : C) : inl3 (pt : A) b c = aux2 b :=
gluer' (smash.mk b c) pt
definition glue31 (c : C) (a : A) : inl3 a (pt : B) c = aux3 c :=
ap (smash.mk a) (gluer' c pt) ⬝ gluel' a pt
definition glue1_eq (a : A) : glue12 a pt = glue31 pt a :> (_ = _ :> (A ∧ (B ∧ C))) :=
whisker_right _ (ap02 _ (!con.right_inv ⬝ !con.right_inv⁻¹))
definition glue2_eq (b : B) : glue23 b pt = glue12 pt b :> (_ = _ :> (A ∧ (B ∧ C))) :=
!con_idp⁻¹ ⬝ !ap_mk_right⁻¹ ◾ !con.right_inv⁻¹
definition glue3_eq (c : C) : glue31 c pt = glue23 pt c :> (_ = _ :> (A ∧ (B ∧ C))) :=
!ap_mk_right ◾ !con.right_inv ⬝ !con_idp
local attribute ap_mk_right [reducible]
definition concat3 {A : Type} {x y z : A} {p p' : x = y} {q q' : y = z}
{r r' : p = p'} {s s' : q = q'} : r = r' → s = s' → r ◾ s = r' ◾ s' :=
ap011 concat2
definition glue_eq2 : glue3_eq (pt : A) ⬝ glue2_eq (pt : B) ⬝ glue1_eq (pt : C) = idp :=
begin
unfold [glue1_eq, glue2_eq, glue3_eq],
refine proof ap011 concat2 proof (ap_is_constant_idp _ _ !con.right_inv) qed idp qed ◾
(!idp_con ⬝ proof ap011 concat2 proof (ap_is_constant_idp _ _ !con.right_inv) qed⁻² idp qed) ◾
idp ⬝ _,
refine whisker_right _ _ ⬝ _,
exact ((ap02 (smash.mk (Point C)) (con.right_inv (gluer (Point A))) ⬝ (con.right_inv
(gluer (smash.mk (Point B) (Point A))))⁻¹) ⬝ (ap02 (smash.mk (Point C))
(con.right_inv (gluel (Point B))) ⬝ (con.right_inv
(gluer (smash.mk (Point B) (Point A))))⁻¹)⁻¹) ◾ idp,
{ refine _ ⬝ concat3 idp (con.right_inv (con.right_inv (gluel (Point C)))),
refine proof idp qed ⬝ !con2_con_con2 },
refine !con2_con_con2 ⬝ _,
refine ap (whisker_right _) _ ⬝ whisker_right_idp_left _ _,
refine idp ◾ !inv_con_inv_right ◾ idp ⬝ _,
refine whisker_right _ (!con.assoc ⬝ whisker_left _ (!inv_con_cancel_left ⬝ !ap_inv⁻¹)) ⬝ _,
refine whisker_right _ !ap_con⁻¹ ⬝ !ap_con⁻¹ ⬝ _,
refine ap_is_constant (@is_constant.eq _ _ _ (@is_constant_ap _ _ _ _ _ _)) _ ⬝ !con.right_inv,
constructor, exact gluer
end
definition glue12_cancel (a : A) (b : B) : @glue12 A B C a b ⬝ (glue12 a pt)⁻¹ ⬝ ap (smash.mk a) (gluel pt) = ap (smash.mk a) (gluel b) :=
begin
unfold [glue12],
refine whisker_right _ (whisker_left _ !con_inv ⬝ whisker_left _ (whisker_left _ (ap02 _ !con.right_inv)⁻² ⬝ !con_idp) ⬝ !con_inv_cancel_right) ⬝ _,
refine !ap_con⁻¹ ⬝ ap02 _ !inv_con_cancel_right,
end
definition glue12_cancel_pt_pt : @glue12_cancel A B C pt pt = whisker_right _ !con.right_inv ⬝ !idp_con :=
sorry
definition glue12_over {P : A ∧ (B ∧ C) → Type} (Ppt : Πa b c, P (inl3 a b c))
(P1 : Πa, P (aux1 a))
(P12 : Πa b, Ppt a b pt =[glue12 a b] P1 a)
(a : A) (b : B) : pathover P (Ppt a b pt) (ap (smash.mk a) (gluel b)) (transport P (ap (smash.mk a) (gluel pt)) (Ppt a pt pt)) :=
begin
exact change_path (glue12_cancel a b) (P12 a b ⬝o (P12 a pt)⁻¹ᵒ ⬝o pathover_tr (ap (smash.mk a) (gluel pt)) (Ppt a pt pt))
end
definition glue12_over_pt_pt {P : A ∧ (B ∧ C) → Type} (Ppt : Πa b c, P (inl3 a b c))
(P1 : Πa, P (aux1 a))
(P12 : Πa b, Ppt a b pt =[glue12 a b] P1 a) :
glue12_over Ppt P1 P12 pt pt = pathover_tr (ap (smash.mk pt) (gluel pt)) (Ppt pt pt pt) :=
sorry
definition smash3_rec_mk [unfold 13] {P : A ∧ (B ∧ C) → Type} (Ppt : Πa b c, P (inl3 a b c))
(P1 : Πa, P (aux1 a)) (P2 : Πb, P (aux2 b)) (P3 : Πc, P (aux3 c))
(P12 : Πa b, Ppt a b pt =[glue12 a b] P1 a)
(P23 : Πb c, Ppt pt b c =[glue23 b c] P2 b)
(P31 : Πc a, Ppt a pt c =[glue31 c a] P3 c)
(a : A) (bc : B ∧ C) : P (smash.mk a bc) :=
begin
induction bc with b c b c,
{ exact Ppt a b c },
{ refine transport P _ (Ppt a pt pt), exact ap (smash.mk a) (gluel pt) }, --refine transport P _ (Ppt pt pt pt),
{ refine transport P _ (Ppt a pt pt), exact ap (smash.mk a) (gluer pt) },
{ exact pathover_of_pathover_ap P (smash.mk a) (glue12_over Ppt P1 P12 a b) },
{ exact sorry }
end
definition apd_constant' {A : Type} {B : Type} {a a' : A} (p : a = a') {b : B} : apd (λa, b) p = pathover_of_eq p idp :=
by induction p; reflexivity
definition change_path_eq_of_eq_change_path' {A : Type} {B : A → Type} {a a₂ : A} {p p' : a = a₂} {b : B a} {b₂ : B a₂}
{r : p = p'} {q : b =[p] b₂} {q' : b =[p'] b₂} : change_path r q = q' → q = change_path r⁻¹ q' :=
begin
induction r, intro s, exact s
end
definition change_path_eq_of_eq_change_path {A : Type} {B : A → Type} {a a₂ : A} {p p' : a = a₂} {b : B a} {b₂ : B a₂}
{r : p = p'} {q : b =[p] b₂} {q' : b =[p'] b₂} : change_path r⁻¹ q' = q → q' = change_path r q :=
begin
induction r, intro s, exact s
end
definition pathover_hconcato' {A : Type} {B : A → Type} {a₀₀ a₂₀ a₀₂ a₂₂ : A}
/-a₀₀-/ {p₁₀ : a₀₀ = a₂₀} /-a₂₀-/
{p₀₁ : a₀₀ = a₀₂} /-s₁₁-/ {p₂₁ : a₂₀ = a₂₂}
/-a₀₂-/ {p₁₂ : a₀₂ = a₂₂} /-a₂₂-/
{s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁}
{b₀₀ : B a₀₀} {b₂₀ : B a₂₀}
{b₀₂ : B a₀₂} {b₂₂ : B a₂₂}
/-b₀₀-/ {q₁₀ : b₀₀ =[p₁₀] b₂₀} /-b₂₀-/
{q₀₁ : b₀₀ =[p₀₁] b₀₂} /-t₁₁-/ {q₂₁ : b₂₀ =[p₂₁] b₂₂}
/-b₀₂-/ {q₁₂ : b₀₂ =[p₁₂] b₂₂} /-b₂₂-/ {p : a₀₀ = a₀₂} {sp : p = p₀₁} {q : b₀₀ =[p] b₀₂}
(r : change_path sp q = q₀₁) (t₁₁ : squareover B (sp ⬝ph s₁₁) q₁₀ q₁₂ q q₂₁) :
squareover B s₁₁ q₁₀ q₁₂ q₀₁ q₂₁ :=
by induction sp; induction r; exact t₁₁
definition pathover_hconcato_right_inv {A : Type} {B : A → Type} {a₀₀ a₂₀ a₀₂ a₀₄ a₂₂ : A}
/-a₀₀-/ {p₁₀ : a₀₀ = a₂₀} /-a₂₀-/
{p₀₁ : a₀₀ = a₀₂} {p₀₃ : a₀₂ = a₀₄} /-s₁₁-/ {p₂₁ : a₂₀ = a₂₂}
/-a₀₂-/ {p₁₂ : a₀₂ = a₂₂} /-a₂₂-/
{s₁₁ : square p₁₀ p₁₂ (p₀₁ ⬝ p₀₃ ⬝ p₀₃⁻¹) p₂₁}
{b₀₀ : B a₀₀} {b₂₀ : B a₂₀}
{b₀₂ : B a₀₂} {b₂₂ : B a₂₂} {b₀₄ : B a₀₄}
/-b₀₀-/ {q₁₀ : b₀₀ =[p₁₀] b₂₀} /-b₂₀-/
{q₀₁ : b₀₀ =[p₀₁] b₀₂} {q₀₃ : b₀₂ =[p₀₃] b₀₄} /-t₁₁-/ {q₂₁ : b₂₀ =[p₂₁] b₂₂}
/-b₀₂-/ {q₁₂ : b₀₂ =[p₁₂] b₂₂} /-b₂₂-/ --{p : a₀₀ = a₀₂} {sp : p = p₀₁} {q : b₀₀ =[p] b₀₂}
(t₁₁ : squareover B (!con_inv_cancel_right⁻¹ ⬝ph s₁₁) q₁₀ q₁₂ q₀₁ q₂₁) :
squareover B s₁₁ q₁₀ q₁₂ (q₀₁ ⬝o q₀₃ ⬝o q₀₃⁻¹ᵒ) q₂₁ :=
begin
exact sorry
end
definition smash3_rec_23 {P : A ∧ (B ∧ C) → Type} (Ppt : Πa b c, P (inl3 a b c))
(P1 : Πa, P (aux1 a)) (P2 : Πb, P (aux2 b)) (P3 : Πc, P (aux3 c))
(P12 : Πa b, Ppt a b pt =[glue12 a b] P1 a)
(P23 : Πb c, Ppt pt b c =[glue23 b c] P2 b)
(P31 : Πc a, Ppt a pt c =[glue31 c a] P3 c) (b : B) (c : C) :
pathover P (Ppt pt b c) (gluer' (smash.mk b c) (smash.mk' pt pt)) (Ppt pt pt pt) :=
begin
refine change_path _ (P23 b c ⬝o ((P23 b pt)⁻¹ᵒ ⬝o P12 pt b) ⬝o (P12 pt pt)⁻¹ᵒ),
refine whisker_left _ (whisker_right _ !glue2_eq⁻² ⬝ !con.left_inv) ◾ (ap02 _ !con.right_inv ◾ !con.right_inv)⁻² ⬝ _,
reflexivity
end
definition smash3_rec {P : A ∧ (B ∧ C) → Type} (Ppt : Πa b c, P (inl3 a b c))
(P1 : Πa, P (aux1 a)) (P2 : Πb, P (aux2 b)) (P3 : Πc, P (aux3 c))
(P12 : Πa b, Ppt a b pt =[glue12 a b] P1 a)
(P23 : Πb c, Ppt pt b c =[glue23 b c] P2 b)
(P31 : Πc a, Ppt a pt c =[glue31 c a] P3 c)
(x : A ∧ (B ∧ C)) : P x :=
begin
induction x using smash.rec' with a bc a bc,
{ exact smash3_rec_mk Ppt P1 P2 P3 P12 P23 P31 a bc },
{ refine change_path _ (P31 pt a ⬝o (P31 pt pt)⁻¹ᵒ),
refine (whisker_right _ (ap02 _ !con.right_inv)) ◾ (ap02 _ !con.right_inv ◾ !con.right_inv)⁻² ⬝ _, apply idp_con },
{ induction bc using smash.rec' with b c b c,
{ exact smash3_rec_23 Ppt P1 P2 P3 P12 P23 P31 b c },
{ apply pathover_pathover,
refine ap (pathover_ap _ _) (!apd_con ⬝ ap011 concato !rec_gluel
(!apd_inv ⬝ ap inverseo !rec_gluel ⬝ !pathover_of_pathover_ap_invo⁻¹) ⬝ !pathover_of_pathover_ap_cono⁻¹) ⬝pho _,
refine _ ⬝hop (ap (pathover_ap _ _) !apd_constant')⁻¹,
refine to_right_inv (pathover_compose P (smash.mk pt) _ _ _) _ ⬝pho _,
apply squareover_change_path_left,
refine !change_path_cono⁻¹ ⬝pho _,
apply squareover_change_path_left,
refine ap (λx, _ ⬝o x⁻¹ᵒ) !glue12_over_pt_pt ⬝pho _,
apply pathover_hconcato_right_inv,
exact sorry },
{ exact sorry }}
end
/- 3rd attempt, proving an induction principle without the aux-points induction principle for the smash -/
-- definition smash3_rec_mk [unfold 10] {P : A ∧ (B ∧ C) → Type} (Ppt : Πa b c, P (smash.mk a (smash.mk b c)))
-- (P12 : Πa b, Ppt a b pt =[glue12 a b] Ppt pt pt pt)
-- (P23 : Πb c, Ppt pt b c =[glue23 b c] Ppt pt pt pt)
-- (P31 : Πc a, Ppt a pt c =[glue31 c a] Ppt pt pt pt)
-- (a : A) (bc : B ∧ C) : P (smash.mk a bc) :=
-- begin
-- induction bc with b c b c,
-- { exact Ppt a b c },
-- { refine transport P _ (Ppt a pt pt), exact ap (smash.mk a) (gluel pt) }, --refine transport P _ (Ppt pt pt pt),
-- { refine transport P _ (Ppt a pt pt), exact ap (smash.mk a) (gluer pt) },
-- { },
-- { exact sorry }
-- end
-- definition smash3_rec {P : A ∧ (B ∧ C) → Type} (Ppt : Πa b c, P (smash.mk a (smash.mk b c)))
-- (P12 : Πa b, Ppt a b pt =[glue12 a b] Ppt pt pt pt)
-- (P23 : Πb c, Ppt pt b c =[glue23 b c] Ppt pt pt pt)
-- (P31 : Πc a, Ppt a pt c =[glue31 c a] Ppt pt pt pt)
-- (x : A ∧ (B ∧ C)) : P x :=
-- begin
-- induction x using smash.rec' with a bc a bc,
-- { exact smash3_rec_mk Ppt P12 P23 P31 a bc },
-- { esimp, exact sorry },
-- { induction bc using smash.rec' with b c b c,
-- { refine P23 b c },
-- { apply pathover_pathover,
-- refine ap (pathover_ap _ _) (!apd_con ⬝ ap011 concato !rec_gluel (!apd_inv ⬝ ap inverseo !rec_gluel)) ⬝pho _,
-- refine _ ⬝hop (ap (pathover_ap _ _) !apd_constant')⁻¹,
-- check_expr (natural_square (λ a, gluer' a pt) (gluel' b pt)),
-- },
-- --!rec_gluel (!apd_inv ⬝ ap inverseo !rec_gluel)
-- { }}
-- end
end smash