Spectral/cohomology/basic.hlean

551 lines
25 KiB
Text
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2016 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Ulrik Buchholtz
Reduced cohomology of spectra and cohomology theories
-/
import ..spectrum.basic ..algebra.arrow_group ..algebra.product_group ..choice
..homotopy.fwedge ..homotopy.pushout ..homotopy.EM ..homotopy.wedge
open eq spectrum int trunc pointed EM group algebra circle sphere nat EM.ops equiv susp is_trunc
function fwedge cofiber bool lift sigma is_equiv choice pushout algebra unit pi is_conn wedge
namespace cohomology
universe variables u u' v w
/- The cohomology of X with coefficients in Y is
trunc 0 (A →* Ω[2] (Y (n+2)))
In the file arrow_group (in algebra) we construct the group structure on this type.
Equivalently, it's
πₛ[n] (sp_cotensor X Y)
-/
definition cohomology (X : Type*) (Y : spectrum) (n : ) : AbGroup :=
AbGroup_trunc_pmap X (Y (n+2))
definition ordinary_cohomology [reducible] (X : Type*) (G : AbGroup) (n : ) : AbGroup :=
cohomology X (EM_spectrum G) n
definition ordinary_cohomology_Z [reducible] (X : Type*) (n : ) : AbGroup :=
ordinary_cohomology X ag n
definition unreduced_cohomology (X : Type) (Y : spectrum) (n : ) : AbGroup :=
cohomology X₊ Y n
definition unreduced_ordinary_cohomology [reducible] (X : Type) (G : AbGroup) (n : ) : AbGroup :=
unreduced_cohomology X (EM_spectrum G) n
definition unreduced_ordinary_cohomology_Z [reducible] (X : Type) (n : ) : AbGroup :=
unreduced_ordinary_cohomology X ag n
definition parametrized_cohomology {X : Type*} (Y : X → spectrum) (n : ) : AbGroup :=
AbGroup_trunc_ppi (λx, Y x (n+2))
definition ordinary_parametrized_cohomology [reducible] {X : Type*} (G : X → AbGroup) (n : ) :
AbGroup :=
parametrized_cohomology (λx, EM_spectrum (G x)) n
definition unreduced_parametrized_cohomology {X : Type} (Y : X → spectrum) (n : ) : AbGroup :=
parametrized_cohomology (add_point_spectrum Y) n
definition unreduced_ordinary_parametrized_cohomology [reducible] {X : Type} (G : X → AbGroup)
(n : ) : AbGroup :=
unreduced_parametrized_cohomology (λx, EM_spectrum (G x)) n
notation `H^` n `[`:0 X:0 `, ` Y:0 `]`:0 := cohomology X Y n
notation `oH^` n `[`:0 X:0 `, ` G:0 `]`:0 := ordinary_cohomology X G n
notation `H^` n `[`:0 X:0 `]`:0 := ordinary_cohomology_Z X n
notation `uH^` n `[`:0 X:0 `, ` Y:0 `]`:0 := unreduced_cohomology X Y n
notation `uoH^` n `[`:0 X:0 `, ` G:0 `]`:0 := unreduced_ordinary_cohomology X G n
notation `uH^` n `[`:0 X:0 `]`:0 := unreduced_ordinary_cohomology_Z X n
notation `pH^` n `[`:0 binders `, ` r:(scoped Y, parametrized_cohomology Y n) `]`:0 := r
notation `opH^` n `[`:0 binders `, ` r:(scoped G, ordinary_parametrized_cohomology G n) `]`:0 := r
notation `upH^` n `[`:0 binders `, ` r:(scoped Y, unreduced_parametrized_cohomology Y n) `]`:0 := r
notation `uopH^` n `[`:0 binders `, ` r:(scoped G, unreduced_ordinary_parametrized_cohomology G n) `]`:0 := r
/- an alternate definition of cohomology -/
definition parametrized_cohomology_isomorphism_shomotopy_group_spi {X : Type*} (Y : X → spectrum)
{n m : } (p : -m = n) : pH^n[(x : X), Y x] ≃g πₛ[m] (spi X Y) :=
begin
apply isomorphism.trans (trunc_ppi_loop_isomorphism (λx, Ω (Y x (n + 2))))⁻¹ᵍ,
apply homotopy_group_isomorphism_of_pequiv 0, esimp,
have q : sub 2 m = n + 2,
from (int.add_comm (of_nat 2) (-m) ⬝ ap (λk, k + of_nat 2) p),
rewrite q, symmetry, apply loop_pppi_pequiv
end
definition unreduced_parametrized_cohomology_isomorphism_shomotopy_group_supi {X : Type}
(Y : X → spectrum) {n m : } (p : -m = n) : upH^n[(x : X), Y x] ≃g πₛ[m] (supi X Y) :=
begin
refine parametrized_cohomology_isomorphism_shomotopy_group_spi (add_point_spectrum Y) p ⬝g _,
apply shomotopy_group_isomorphism_of_pequiv, intro k,
apply pppi_add_point_over
end
definition cohomology_isomorphism_shomotopy_group_sp_cotensor (X : Type*) (Y : spectrum) {n m : }
(p : -m = n) : H^n[X, Y] ≃g πₛ[m] (sp_cotensor X Y) :=
begin
refine parametrized_cohomology_isomorphism_shomotopy_group_spi (λx, Y) p ⬝g _,
apply shomotopy_group_isomorphism_of_pequiv, intro k,
apply pppi_pequiv_ppmap
end
definition unreduced_cohomology_isomorphism_shomotopy_group_sp_ucotensor (X : Type) (Y : spectrum)
{n m : } (p : -m = n) : uH^n[X, Y] ≃g πₛ[m] (sp_ucotensor X Y) :=
begin
refine cohomology_isomorphism_shomotopy_group_sp_cotensor X₊ Y p ⬝g _,
apply shomotopy_group_isomorphism_of_pequiv, intro k, apply ppmap_add_point
end
/- functoriality -/
definition cohomology_functor [constructor] {X X' : Type*} (f : X' →* X) (Y : spectrum)
(n : ) : cohomology X Y n →g cohomology X' Y n :=
Group_trunc_pmap_homomorphism f
notation `H^→` n `[`:0 f:0 `, ` Y:0 `]`:0 := cohomology_functor f Y n
definition cohomology_functor_pid (X : Type*) (Y : spectrum) (n : ) (f : H^n[X, Y]) :
cohomology_functor (pid X) Y n f = f :=
!Group_trunc_pmap_pid
definition cohomology_functor_pcompose {X X' X'' : Type*} (f : X' →* X) (g : X'' →* X')
(Y : spectrum) (n : ) (h : H^n[X, Y]) : cohomology_functor (f ∘* g) Y n h =
cohomology_functor g Y n (cohomology_functor f Y n h) :=
!Group_trunc_pmap_pcompose
definition cohomology_functor_phomotopy {X X' : Type*} {f g : X' →* X} (p : f ~* g)
(Y : spectrum) (n : ) : cohomology_functor f Y n ~ cohomology_functor g Y n :=
Group_trunc_pmap_phomotopy p
notation `H^~` n `[`:0 h:0 `, ` Y:0 `]`:0 := cohomology_functor_phomotopy h Y n
definition cohomology_functor_phomotopy_refl {X X' : Type*} (f : X' →* X) (Y : spectrum) (n : )
(x : H^n[X, Y]) : cohomology_functor_phomotopy (phomotopy.refl f) Y n x = idp :=
Group_trunc_pmap_phomotopy_refl f x
definition cohomology_functor_pconst {X X' : Type*} (Y : spectrum) (n : ) (f : H^n[X, Y]) :
cohomology_functor (pconst X' X) Y n f = 1 :=
!Group_trunc_pmap_pconst
definition cohomology_isomorphism {X X' : Type*} (f : X' ≃* X) (Y : spectrum) (n : ) :
H^n[X, Y] ≃g H^n[X', Y] :=
Group_trunc_pmap_isomorphism f
notation `H^≃` n `[`:0 e:0 `, ` Y:0 `]`:0 := cohomology_isomorphism e Y n
definition cohomology_isomorphism_refl (X : Type*) (Y : spectrum) (n : ) (x : H^n[X,Y]) :
H^≃n[pequiv.refl X, Y] x = x :=
!Group_trunc_pmap_isomorphism_refl
definition cohomology_isomorphism_right (X : Type*) {Y Y' : spectrum} (e : Πn, Y n ≃* Y' n)
(n : ) : H^n[X, Y] ≃g H^n[X, Y'] :=
cohomology_isomorphism_shomotopy_group_sp_cotensor X Y !neg_neg ⬝g
shomotopy_group_isomorphism_of_pequiv (-n) (λk, ppmap_pequiv_ppmap_right (e k)) ⬝g
(cohomology_isomorphism_shomotopy_group_sp_cotensor X Y' !neg_neg)⁻¹ᵍ
definition unreduced_cohomology_isomorphism {X X' : Type} (f : X' ≃ X) (Y : spectrum) (n : ) :
uH^n[X, Y] ≃g uH^n[X', Y] :=
cohomology_isomorphism (add_point_pequiv f) Y n
notation `uH^≃` n `[`:0 e:0 `, ` Y:0 `]`:0 := unreduced_cohomology_isomorphism e Y n
definition unreduced_cohomology_isomorphism_right (X : Type) {Y Y' : spectrum} (e : Πn, Y n ≃* Y' n)
(n : ) : uH^n[X, Y] ≃g uH^n[X, Y'] :=
cohomology_isomorphism_right X₊ e n
definition unreduced_ordinary_cohomology_isomorphism {X X' : Type} (f : X' ≃ X) (G : AbGroup)
(n : ) : uoH^n[X, G] ≃g uoH^n[X', G] :=
unreduced_cohomology_isomorphism f (EM_spectrum G) n
notation `uoH^≃` n `[`:0 e:0 `, ` Y:0 `]`:0 := unreduced_ordinary_cohomology_isomorphism e Y n
definition unreduced_ordinary_cohomology_isomorphism_right (X : Type) {G G' : AbGroup}
(e : G ≃g G') (n : ) : uoH^n[X, G] ≃g uoH^n[X, G'] :=
unreduced_cohomology_isomorphism_right X (EM_spectrum_pequiv e) n
definition parametrized_cohomology_isomorphism_right {X : Type*} {Y Y' : X → spectrum}
(e : Πx n, Y x n ≃* Y' x n) (n : ) : pH^n[(x : X), Y x] ≃g pH^n[(x : X), Y' x] :=
parametrized_cohomology_isomorphism_shomotopy_group_spi Y !neg_neg ⬝g
shomotopy_group_isomorphism_of_pequiv (-n) (λk, ppi_pequiv_right (λx, e x k)) ⬝g
(parametrized_cohomology_isomorphism_shomotopy_group_spi Y' !neg_neg)⁻¹ᵍ
definition unreduced_parametrized_cohomology_isomorphism_right {X : Type} {Y Y' : X → spectrum}
(e : Πx n, Y x n ≃* Y' x n) (n : ) : upH^n[(x : X), Y x] ≃g upH^n[(x : X), Y' x] :=
parametrized_cohomology_isomorphism_right (λx' k, add_point_over_pequiv (λx, e x k) x') n
definition unreduced_ordinary_parametrized_cohomology_isomorphism_right {X : Type}
{G G' : X → AbGroup} (e : Πx, G x ≃g G' x) (n : ) :
uopH^n[(x : X), G x] ≃g uopH^n[(x : X), G' x] :=
unreduced_parametrized_cohomology_isomorphism_right (λx, EM_spectrum_pequiv (e x)) n
definition ordinary_cohomology_isomorphism_right (X : Type*) {G G' : AbGroup} (e : G ≃g G')
(n : ) : oH^n[X, G] ≃g oH^n[X, G'] :=
cohomology_isomorphism_right X (EM_spectrum_pequiv e) n
definition ordinary_parametrized_cohomology_isomorphism_right {X : Type*} {G G' : X → AbGroup}
(e : Πx, G x ≃g G' x) (n : ) : opH^n[(x : X), G x] ≃g opH^n[(x : X), G' x] :=
parametrized_cohomology_isomorphism_right (λx, EM_spectrum_pequiv (e x)) n
definition uopH_isomorphism_opH {X : Type} (G : X → AbGroup) (n : ) :
uopH^n[(x : X), G x] ≃g opH^n[(x : X₊), add_point_AbGroup G x] :=
parametrized_cohomology_isomorphism_right
begin
intro x n, induction x with x,
{ symmetry, apply EM_spectrum_trivial, },
{ reflexivity }
end
n
definition pH_isomorphism_H {X : Type*} (Y : spectrum) (n : ) : pH^n[(x : X), Y] ≃g H^n[X, Y] :=
by reflexivity
definition opH_isomorphism_oH {X : Type*} (G : AbGroup) (n : ) : opH^n[(x : X), G] ≃g oH^n[X, G] :=
by reflexivity
definition upH_isomorphism_uH {X : Type} (Y : spectrum) (n : ) : upH^n[(x : X), Y] ≃g uH^n[X, Y] :=
unreduced_parametrized_cohomology_isomorphism_shomotopy_group_supi _ !neg_neg ⬝g
(unreduced_cohomology_isomorphism_shomotopy_group_sp_ucotensor _ _ !neg_neg)⁻¹ᵍ
definition uopH_isomorphism_uoH {X : Type} (G : AbGroup) (n : ) :
uopH^n[(x : X), G] ≃g uoH^n[X, G] :=
!upH_isomorphism_uH
definition uopH_isomorphism_uoH_of_is_conn {X : Type*} (G : X → AbGroup) (n : ) (H : is_conn 1 X) :
uopH^n[(x : X), G x] ≃g uoH^n[X, G pt] :=
begin
refine _ ⬝g !uopH_isomorphism_uoH,
apply unreduced_ordinary_parametrized_cohomology_isomorphism_right,
refine is_conn.elim 0 _ _, reflexivity
end
definition cohomology_change_int (X : Type*) (Y : spectrum) {n n' : } (p : n = n') :
H^n[X, Y] ≃g H^n'[X, Y] :=
isomorphism_of_eq (ap (λn, H^n[X, Y]) p)
definition parametrized_cohomology_change_int (X : Type*) (Y : X → spectrum) {n n' : }
(p : n = n') : pH^n[(x : X), Y x] ≃g pH^n'[(x : X), Y x] :=
isomorphism_of_eq (ap (λn, pH^n[(x : X), Y x]) p)
/- suspension axiom -/
definition cohomology_susp_2 (Y : spectrum) (n : ) :
Ω (Ω[2] (Y ((n+1)+2))) ≃* Ω[2] (Y (n+2)) :=
begin
apply loopn_pequiv_loopn 2,
exact loop_pequiv_loop (pequiv_of_eq (ap Y (add.right_comm n 1 2))) ⬝e* !equiv_glue⁻¹ᵉ*
end
definition cohomology_susp_1 (X : Type*) (Y : spectrum) (n : ) :
susp X →* Ω (Ω (Y (n + 1 + 2))) ≃ X →* Ω (Ω (Y (n+2))) :=
calc
susp X →* Ω[2] (Y (n + 1 + 2)) ≃ X →* Ω (Ω[2] (Y (n + 1 + 2))) : susp_adjoint_loop_unpointed
... ≃ X →* Ω[2] (Y (n+2)) : equiv_of_pequiv (ppmap_pequiv_ppmap_right
(cohomology_susp_2 Y n))
definition cohomology_susp_1_pmap_mul {X : Type*} {Y : spectrum} {n : }
(f g : susp X →* Ω (Ω (Y (n + 1 + 2)))) : cohomology_susp_1 X Y n (pmap_mul f g) ~*
pmap_mul (cohomology_susp_1 X Y n f) (cohomology_susp_1 X Y n g) :=
begin
unfold [cohomology_susp_1],
refine pwhisker_left _ !loop_susp_intro_pmap_mul ⬝* _,
apply pcompose_pmap_mul
end
definition cohomology_susp_equiv (X : Type*) (Y : spectrum) (n : ) :
H^n+1[susp X, Y] ≃ H^n[X, Y] :=
trunc_equiv_trunc _ (cohomology_susp_1 X Y n)
definition cohomology_susp (X : Type*) (Y : spectrum) (n : ) :
H^n+1[susp X, Y] ≃g H^n[X, Y] :=
isomorphism_of_equiv (cohomology_susp_equiv X Y n)
begin
intro f₁ f₂, induction f₁ with f₁, induction f₂ with f₂,
apply ap tr, apply eq_of_phomotopy, exact cohomology_susp_1_pmap_mul f₁ f₂
end
definition cohomology_susp_natural {X X' : Type*} (f : X →* X') (Y : spectrum) (n : ) :
cohomology_susp X Y n ∘ cohomology_functor (susp_functor f) Y (n+1) ~
cohomology_functor f Y n ∘ cohomology_susp X' Y n :=
begin
refine (trunc_functor_compose _ _ _)⁻¹ʰᵗʸ ⬝hty _ ⬝hty trunc_functor_compose _ _ _,
apply trunc_functor_homotopy, intro g,
apply eq_of_phomotopy, refine _ ⬝* !passoc⁻¹*, apply pwhisker_left,
apply loop_susp_intro_natural
end
/- exactness -/
definition cohomology_exact {X X' : Type*} (f : X →* X') (Y : spectrum) (n : ) :
is_exact_g (cohomology_functor (pcod f) Y n) (cohomology_functor f Y n) :=
is_exact_trunc_functor (cofiber_exact f)
/- additivity -/
definition additive_hom [constructor] {I : Type} (X : I → Type*) (Y : spectrum) (n : ) :
H^n[X, Y] →g Πᵍ i, H^n[X i, Y] :=
Group_pi_intro (λi, cohomology_functor (pinl i) Y n)
definition additive_equiv {I : Type.{u}} (H : has_choice.{u (max v w)} 0 I) (X : I → pType.{v})
(Y : spectrum.{w}) (n : ) : H^n[X, Y] ≃ Πᵍ i, H^n[X i, Y] :=
trunc_fwedge_pmap_equiv H X (Ω[2] (Y (n+2)))
definition spectrum_additive {I : Type} (H : has_choice 0 I) (X : I → Type*) (Y : spectrum)
(n : ) : is_equiv (additive_hom X Y n) :=
is_equiv_of_equiv_of_homotopy (additive_equiv H X Y n) begin intro f, induction f, reflexivity end
definition cohomology_fwedge {I : Type.{u}} (H : has_choice 0 I) (X : I → Type*) (Y : spectrum)
(n : ) : H^n[X, Y] ≃g Πᵍ i, H^n[X i, Y] :=
isomorphism.mk (additive_hom X Y n) (spectrum_additive H X Y n)
/- dimension axiom for ordinary cohomology -/
open is_conn trunc_index
theorem ordinary_cohomology_dimension (G : AbGroup) (n : ) (H : n ≠ 0) :
is_contr (oH^n[pbool, G]) :=
begin
apply is_conn_equiv_closed 0 !pmap_pbool_equiv⁻¹ᵉ,
apply is_conn_equiv_closed 0 !equiv_glue2⁻¹ᵉ,
cases n with n n,
{ cases n with n,
{ exfalso, apply H, reflexivity },
{ apply is_conn_of_le, apply zero_le_of_nat n, exact is_conn_EMadd1 G n, }},
{ apply is_trunc_trunc_of_is_trunc, apply @is_contr_loop_of_is_trunc (n+1) (K G 0),
apply is_trunc_of_le _ (zero_le_of_nat n) _ }
end
theorem ordinary_cohomology_dimension_plift (G : AbGroup) (n : ) (H : n ≠ 0) :
is_contr (oH^n[plift pbool, G]) :=
is_trunc_equiv_closed_rev -2
(equiv_of_isomorphism (cohomology_isomorphism (pequiv_plift pbool) _ _))
(ordinary_cohomology_dimension G n H)
definition cohomology_iterate_susp (X : Type*) (Y : spectrum) (n : ) (k : ) :
H^n+k[iterate_susp k X, Y] ≃g H^n[X, Y] :=
begin
induction k with k IH,
{ exact cohomology_change_int X Y !add_zero },
{ exact cohomology_change_int _ _ !add.assoc⁻¹ ⬝g cohomology_susp _ _ _ ⬝g IH }
end
definition ordinary_cohomology_pbool (G : AbGroup) : oH^0[pbool, G] ≃g G :=
begin
refine cohomology_isomorphism_shomotopy_group_sp_cotensor _ _ !neg_neg ⬝g _,
change πg[2] (pbool →** EM G 2) ≃g G,
refine homotopy_group_isomorphism_of_pequiv 1 !ppmap_pbool_pequiv ⬝g ghomotopy_group_EM G 1
end
definition ordinary_cohomology_sphere (G : AbGroup) (n : ) : oH^n[sphere n, G] ≃g G :=
begin
refine cohomology_isomorphism_shomotopy_group_sp_cotensor _ _ !neg_neg ⬝g _,
change πg[2] (sphere n →** EM_spectrum G (2 - -n)) ≃g G,
refine homotopy_group_isomorphism_of_pequiv 1 _ ⬝g ghomotopy_group_EMadd1 G 1,
have p : 2 - (-n) = succ (1 + n),
from !sub_eq_add_neg ⬝ ap (add 2) !neg_neg ⬝ ap of_nat !succ_add,
refine !sphere_pmap_pequiv ⬝e* Ω≃[n] (pequiv_ap (EM_spectrum G) p) ⬝e* loopn_EMadd1_add G n 1,
end
definition ordinary_cohomology_sphere_of_neq (G : AbGroup) {n : } {k : } (p : n ≠ k) :
is_contr (oH^n[sphere k, G]) :=
begin
refine is_contr_equiv_closed_rev _
(ordinary_cohomology_dimension G (n-k) (λh, p (eq_of_sub_eq_zero h))),
apply equiv_of_isomorphism,
exact cohomology_change_int _ _ !neg_add_cancel_right⁻¹ ⬝g
cohomology_iterate_susp pbool (EM_spectrum G) (n - k) k
end
definition cohomology_punit (Y : spectrum) (n : ) :
is_contr (H^n[punit, Y]) :=
@is_trunc_trunc_of_is_trunc _ _ _ !is_contr_punit_pmap
definition cohomology_wedge (X : pType.{u}) (X' : pType.{u'}) (Y : spectrum.{v}) (n : ) :
H^n[wedge X X', Y] ≃g H^n[X, Y] ×ag H^n[X', Y] :=
H^≃n[(wedge_pequiv !pequiv_plift !pequiv_plift ⬝e*
wedge_pequiv_fwedge (plift.{u u'} X) (plift.{u' u} X'))⁻¹ᵉ*, Y] ⬝g
cohomology_fwedge (has_choice_bool _) _ Y n ⬝g
Group_pi_isomorphism_Group_pi erfl begin intro b, induction b: reflexivity end ⬝g
(product_isomorphism_Group_pi H^n[plift.{u u'} X, Y] H^n[plift.{u' u} X', Y])⁻¹ᵍ ⬝g
proof H^≃n[!pequiv_plift, Y] ×≃g H^≃n[!pequiv_plift, Y] qed
definition cohomology_isomorphism_of_equiv {X X' : Type*} (e : X ≃ X') (Y : spectrum) (n : ) :
H^n[X', Y] ≃g H^n[X, Y] :=
!cohomology_susp⁻¹ᵍ ⬝g H^≃n+1[susp_pequiv_of_equiv e, Y] ⬝g !cohomology_susp
definition unreduced_cohomology_split (X : pType.{u}) (Y : spectrum.{v}) (n : ) :
uH^n[X, Y] ≃g H^n[X, Y] ×ag H^n[pbool, Y] :=
cohomology_isomorphism_of_equiv (wedge_pbool_equiv_add_point X) Y n ⬝g
cohomology_wedge X pbool Y n
definition unreduced_ordinary_cohomology_nonzero (X : pType.{u}) (G : AbGroup.{v}) (n : ) (H : n ≠ 0) :
uoH^n[X, G] ≃g oH^n[X, G] :=
unreduced_cohomology_split X (EM_spectrum G) n ⬝g
product_trivial_right _ _ (ordinary_cohomology_dimension _ _ H)
definition unreduced_ordinary_cohomology_zero (X : Type*) (G : AbGroup) :
uoH^0[X, G] ≃g oH^0[X, G] ×ag G :=
unreduced_cohomology_split X (EM_spectrum G) 0 ⬝g
(!isomorphism.refl ×≃g ordinary_cohomology_pbool G)
definition unreduced_ordinary_cohomology_pbool (G : AbGroup.{v}) : uoH^0[pbool, G] ≃g G ×ag G :=
unreduced_ordinary_cohomology_zero pbool G ⬝g (ordinary_cohomology_pbool G ×≃g !isomorphism.refl)
definition unreduced_ordinary_cohomology_pbool_nonzero (G : AbGroup) (n : ) (H : n ≠ 0) :
is_contr (uoH^n[pbool, G]) :=
is_contr_equiv_closed_rev (equiv_of_isomorphism (unreduced_ordinary_cohomology_nonzero pbool G n H))
(ordinary_cohomology_dimension G n H)
definition unreduced_ordinary_cohomology_sphere_zero (G : AbGroup.{u}) (n : ) (H : n ≠ 0) :
uoH^0[sphere n, G] ≃g G :=
unreduced_ordinary_cohomology_zero (sphere n) G ⬝g
product_trivial_left _ _ (ordinary_cohomology_sphere_of_neq _ (λh, H (of_nat.inj h⁻¹)))
definition unreduced_ordinary_cohomology_sphere (G : AbGroup) (n : ) (H : n ≠ 0) :
uoH^n[sphere n, G] ≃g G :=
unreduced_ordinary_cohomology_nonzero (sphere n) G n (λh, H (of_nat.inj h)) ⬝g
ordinary_cohomology_sphere G n
definition unreduced_ordinary_cohomology_sphere_of_neq (G : AbGroup) {n : } {k : } (p : n ≠ k)
(q : n ≠ 0) : is_contr (uoH^n[sphere k, G]) :=
is_contr_equiv_closed_rev
(equiv_of_isomorphism (unreduced_ordinary_cohomology_nonzero (sphere k) G n q))
(ordinary_cohomology_sphere_of_neq G p)
definition unreduced_ordinary_cohomology_sphere_of_neq_nat (G : AbGroup) {n k : } (p : n ≠ k)
(q : n ≠ 0) : is_contr (uoH^n[sphere k, G]) :=
unreduced_ordinary_cohomology_sphere_of_neq G (λh, p (of_nat.inj h)) (λh, q (of_nat.inj h))
definition unreduced_ordinary_cohomology_sphere_of_gt (G : AbGroup) {n k : } (p : n > k) :
is_contr (uoH^n[sphere k, G]) :=
unreduced_ordinary_cohomology_sphere_of_neq_nat
G (ne_of_gt p) (ne_of_gt (lt_of_le_of_lt (zero_le k) p))
theorem is_contr_cohomology_of_is_contr_spectrum (n : ) (X : Type*) (Y : spectrum)
(H : is_contr (Y n)) : is_contr (H^n[X, Y]) :=
begin
apply is_trunc_trunc_of_is_trunc,
apply is_trunc_pmap,
refine is_contr_equiv_closed_rev _ H,
exact loop_pequiv_loop (loop_pequiv_loop (pequiv_ap Y (add.assoc n 1 1)⁻¹) ⬝e* (equiv_glue Y (n+1))⁻¹ᵉ*) ⬝e
(equiv_glue Y n)⁻¹ᵉ*
end
theorem is_contr_ordinary_cohomology (n : ) (X : Type*) (G : AbGroup) (H : is_contr G) :
is_contr (oH^n[X, G]) :=
begin
apply is_contr_cohomology_of_is_contr_spectrum,
exact is_contr_EM_spectrum _ _ H
end
theorem is_contr_unreduced_ordinary_cohomology (n : ) (X : Type) (G : AbGroup) (H : is_contr G) :
is_contr (uoH^n[X, G]) :=
is_contr_ordinary_cohomology _ _ _ H
theorem is_contr_ordinary_cohomology_of_neg {n : } (X : Type*) (G : AbGroup) (H : n < 0) :
is_contr (oH^n[X, G]) :=
begin
apply is_contr_cohomology_of_is_contr_spectrum,
cases n with n n, contradiction,
apply is_contr_EM_spectrum_neg
end
/- cohomology theory -/
structure cohomology_theory : Type :=
(HH : → pType.{u} → AbGroup.{u})
(Hiso : Π(n : ) {X Y : Type*} (f : X ≃* Y), HH n Y ≃g HH n X)
(Hiso_refl : Π(n : ) (X : Type*) (x : HH n X), Hiso n pequiv.rfl x = x)
(Hh : Π(n : ) {X Y : Type*} (f : X →* Y), HH n Y →g HH n X)
(Hhomotopy : Π(n : ) {X Y : Type*} {f g : X →* Y} (p : f ~* g), Hh n f ~ Hh n g)
(Hhomotopy_refl : Π(n : ) {X Y : Type*} (f : X →* Y) (x : HH n Y),
Hhomotopy n (phomotopy.refl f) x = idp)
(Hid : Π(n : ) {X : Type*} (x : HH n X), Hh n (pid X) x = x)
(Hcompose : Π(n : ) {X Y Z : Type*} (g : Y →* Z) (f : X →* Y) (z : HH n Z),
Hh n (g ∘* f) z = Hh n f (Hh n g z))
(Hsusp : Π(n : ) (X : Type*), HH (succ n) (susp X) ≃g HH n X)
(Hsusp_natural : Π(n : ) {X Y : Type*} (f : X →* Y),
Hsusp n X ∘ Hh (succ n) (susp_functor f) ~ Hh n f ∘ Hsusp n Y)
(Hexact : Π(n : ) {X Y : Type*} (f : X →* Y), is_exact_g (Hh n (pcod f)) (Hh n f))
(Hadditive : Π(n : ) {I : Type.{u}} (X : I → Type*), has_choice.{u u} 0 I →
is_equiv (Group_pi_intro (λi, Hh n (pinl i)) : HH n ( X) → Πᵍ i, HH n (X i)))
structure ordinary_cohomology_theory extends cohomology_theory.{u} : Type :=
(Hdimension : Π(n : ), n ≠ 0 → is_contr (HH n (plift pbool)))
attribute cohomology_theory.HH [coercion]
postfix `^→`:90 := cohomology_theory.Hh
open cohomology_theory
definition Hequiv (H : cohomology_theory) (n : ) {X Y : Type*} (f : X ≃* Y) : H n Y ≃ H n X :=
equiv_of_isomorphism (Hiso H n f)
definition Hsusp_neg (H : cohomology_theory) (n : ) (X : Type*) : H n (susp X) ≃g H (pred n) X :=
isomorphism_of_eq (ap (λn, H n _) proof (sub_add_cancel n 1)⁻¹ qed) ⬝g cohomology_theory.Hsusp H (pred n) X
definition Hsusp_neg_natural (H : cohomology_theory) (n : ) {X Y : Type*} (f : X →* Y) :
Hsusp_neg H n X ∘ H ^→ n (susp_functor f) ~ H ^→ (pred n) f ∘ Hsusp_neg H n Y :=
sorry
definition Hsusp_inv_natural (H : cohomology_theory) (n : ) {X Y : Type*} (f : X →* Y) :
H ^→ (succ n) (susp_functor f) ∘g (Hsusp H n Y)⁻¹ᵍ ~ (Hsusp H n X)⁻¹ᵍ ∘ H ^→ n f :=
sorry
definition Hsusp_neg_inv_natural (H : cohomology_theory) (n : ) {X Y : Type*} (f : X →* Y) :
H ^→ n (susp_functor f) ∘g (Hsusp_neg H n Y)⁻¹ᵍ ~ (Hsusp_neg H n X)⁻¹ᵍ ∘ H ^→ (pred n) f :=
sorry
definition Hadditive_equiv (H : cohomology_theory) (n : ) {I : Type} (X : I → Type*) (H2 : has_choice 0 I)
: H n ( X) ≃g Πᵍ i, H n (X i) :=
isomorphism.mk _ (Hadditive H n X H2)
definition Hlift_empty (H : cohomology_theory.{u}) (n : ) :
is_contr (H n (plift punit)) :=
let P : lift empty → Type* := lift.rec empty.elim in
let x := Hadditive H n P _ in
begin
note z := equiv.mk _ x,
refine @(is_trunc_equiv_closed_rev -2 (_ ⬝e z ⬝e _)) !is_contr_unit,
refine Hequiv H n (pequiv_punit_of_is_contr _ _ ⬝e* !pequiv_plift),
apply is_contr_fwedge_of_neg, intro y, induction y with y, exact y,
apply equiv_unit_of_is_contr, apply is_contr_pi_of_neg, intro y, induction y with y, exact y
end
definition Hempty (H : cohomology_theory.{0}) (n : ) :
is_contr (H n punit) :=
@(is_trunc_equiv_closed _ (Hequiv H n !pequiv_plift)) (Hlift_empty H n)
definition Hconst (H : cohomology_theory) (n : ) {X Y : Type*} (y : H n Y) : H ^→ n (pconst X Y) y = 1 :=
begin
refine Hhomotopy H n (pconst_pcompose (pconst X (plift punit)))⁻¹* y ⬝ _,
refine Hcompose H n _ _ y ⬝ _,
refine ap (H ^→ n _) (@eq_of_is_contr _ (Hlift_empty H n) _ 1) ⬝ _,
apply respect_one
end
-- definition Hwedge (H : cohomology_theory) (n : ) (A B : Type*) : H n (A B) ≃g H n A ×ag H n B :=
-- begin
-- refine Hiso H n (wedge_pequiv_fwedge A B)⁻¹ᵉ* ⬝g _,
-- refine Hadditive_equiv H n _ _ ⬝g _
-- end
definition cohomology_theory_spectrum [constructor] (Y : spectrum.{u}) : cohomology_theory.{u} :=
cohomology_theory.mk
(λn A, H^n[A, Y])
(λn A B f, cohomology_isomorphism f Y n)
(λn A, cohomology_isomorphism_refl A Y n)
(λn A B f, cohomology_functor f Y n)
(λn A B f g p, cohomology_functor_phomotopy p Y n)
(λn A B f x, cohomology_functor_phomotopy_refl f Y n x)
(λn A x, cohomology_functor_pid A Y n x)
(λn A B C g f x, cohomology_functor_pcompose g f Y n x)
(λn A, cohomology_susp A Y n)
(λn A B f, cohomology_susp_natural f Y n)
(λn A B f, cohomology_exact f Y n)
(λn I A H, spectrum_additive H A Y n)
definition ordinary_cohomology_theory_EM [constructor] (G : AbGroup) : ordinary_cohomology_theory :=
⦃ordinary_cohomology_theory, cohomology_theory_spectrum (EM_spectrum G), Hdimension := ordinary_cohomology_dimension_plift G ⦄
end cohomology