Spectral/algebra/short_five.hlean

136 lines
5.2 KiB
Text
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Author: Jeremy Avigad
-/
import .module_chain_complex
open eq pointed sigma fiber equiv is_equiv sigma.ops is_trunc nat trunc
open algebra function succ_str
open left_module
section short_five
variable {R : Ring}
variables {A₀ B₀ C₀ A₁ B₁ C₁ : LeftModule R}
variables {f₀ : A₀ →lm B₀} {g₀ : B₀ →lm C₀}
variables {f₁ : A₁ →lm B₁} {g₁ : B₁ →lm C₁}
variables {h : A₀ →lm A₁} {k : B₀ →lm B₁} {l : C₀ →lm C₁}
premise (short_exact₀ : is_short_exact f₀ g₀)
premise (short_exact₁ : is_short_exact f₁ g₁)
premise (hsquare₁ : hsquare f₀ f₁ h k)
premise (hsquare₂ : hsquare g₀ g₁ k l)
include short_exact₀ short_exact₁ hsquare₁ hsquare₂
open algebra.is_short_exact
lemma short_five_mono [embh : is_embedding h] [embl : is_embedding l] :
is_embedding k :=
have is_embedding f₁, from is_emb short_exact₁,
is_embedding_of_is_add_hom k
(take b, suppose k b = 0,
have l (g₀ b) = 0, by rewrite [hsquare₂, ▸*, this, respect_zero],
have g₀ b = 0, from eq_zero_of_eq_zero_of_is_embedding this,
image.elim (ker_in_im short_exact₀ _ this)
(take a,
suppose f₀ a = b,
have f₁ (h a) = 0, by rewrite [-hsquare₁, ▸*, this]; assumption,
have h a = 0, from eq_zero_of_eq_zero_of_is_embedding this,
have a = 0, from eq_zero_of_eq_zero_of_is_embedding this,
show b = 0, by rewrite [-`f₀ a = b`, this, respect_zero]))
lemma short_five_epi (surjh : is_surjective h) (surjl : is_surjective l) :
is_surjective k :=
have surjg₀ : is_surjective g₀, from is_surj short_exact₀,
take b₁ : B₁,
image.elim (surjl (g₁ b₁)) (
take c₀ : C₀,
assume lc₀ : l c₀ = g₁ b₁,
image.elim (surjg₀ c₀) (
take b₀ : B₀,
assume g₀b₀ : g₀ b₀ = c₀,
have g₁ (k b₀ - b₁) = 0, by rewrite [respect_sub, -hsquare₂, ▸*, g₀b₀, lc₀, sub_self],
image.elim (ker_in_im short_exact₁ _ this) (
take a₁ : A₁,
assume f₁a₁ : f₁ a₁ = k b₀ - b₁,
image.elim (surjh a₁) (
take a₀ : A₀,
assume ha₀ : h a₀ = a₁,
have k (f₀ a₀) = k b₀ - b₁, by rewrite [hsquare₁, ▸*, ha₀, f₁a₁],
have k (b₀ - f₀ a₀) = b₁, by rewrite [respect_sub, this, sub_sub_self],
image.mk _ this))))
end short_five
section short_exact
open module_chain_complex
variables {R : Ring} {N : succ_str}
record is_short_exact_at (C : module_chain_complex R N) (n : N) :=
(is_contr_0 : is_contr (C n))
(is_exact_at_1 : is_exact_at_m C n)
(is_exact_at_2 : is_exact_at_m C (S n))
(is_exact_at_3 : is_exact_at_m C (S (S n)))
(is_contr_4 : is_contr (C (S (S (S (S n))))))
/- TODO: show that this gives rise to a short exact sequence in the sense above -/
end short_exact
section short_five_redux
open module_chain_complex
variables {R : Ring} {N : succ_str}
/- TODO: restate short five in these terms -/
end short_five_redux
/- TODO: state and prove strong_four, adapting the template below.
section strong_four
variables {R : Type} [ring R]
variables {A B C D A' B' C' D' : Type}
variables [left_module R A] [left_module R B] [left_module R C] [left_module R D]
variables [left_module R A'] [left_module R B'] [left_module R C'] [left_module R D']
variables (ρ : A → B) [is_module_hom R ρ]
variables (σ : B → C) [is_module_hom R σ]
variables (τ : C → D) [is_module_hom R τ]
variable (chainρσ : ∀ a, σ (ρ a) = 0)
variable (exactρσ : ∀ {b}, σ b = 0 → ∃ a, ρ a = b)
variable (chainστ : ∀ b, τ (σ b) = 0)
variable (exactστ : ∀ {c}, τ c = 0 → ∃ b, σ b = c)
variables (ρ' : A' → B') [is_module_hom R ρ']
variables (σ' : B' → C') [is_module_hom R σ']
variables (τ' : C' → D') [is_module_hom R τ']
variable (chainρ'σ' : ∀ a', σ' (ρ' a') = 0)
variable (exactρ'σ' : ∀ {b'}, σ' b' = 0 → ∃ a', ρ' a' = b')
variable (chainσ'τ' : ∀ b', τ' (σ' b') = 0)
variable (exactσ'τ' : ∀ {c'}, τ' c' = 0 → ∃ b', σ' b' = c')
variables (α : A → A') [is_module_hom R α]
variables (β : B → B') [is_module_hom R β]
variables (γ : C → C') [is_module_hom R γ]
variables (δ : D → D') [is_module_hom R δ]
variables (sq₁ : comm_square ρ ρ' α β)
variables (sq₂ : comm_square σ σ' β γ)
variables (sq₃ : comm_square τ τ' γ δ)
include sq₃ σ' sq₂ exactρ'σ' sq₁ chainρσ
theorem strong_four_a (epiα : is_surjective α) (monoδ : is_embedding δ) (c : C) (γc0 : γ c = 0) :
Σ b, (β b = 0 × σ b = c) :=
have δ (τ c) = 0, by rewrite [sq₃, γc0, hom_zero],
have τ c = 0, from eq_zero_of_eq_zero_of_is_embedding this,
obtain b (σbc : σ b = c), from exactστ this,
have σ' (β b) = 0, by rewrite [-sq₂, σbc, γc0],
obtain a' (ρ'a'βb : ρ' a' = β b), from exactρ'σ' this,
obtain a (αaa' : α a = a'), from epiα a',
exists.intro (b - ρ a)
(pair
(show β (b - ρ a) = 0, by rewrite [hom_sub, -ρ'a'βb, sq₁, αaa', sub_self])
(show σ (b - ρ a) = c, from calc
σ (b - ρ a) = σ b - σ (ρ a) : hom_sub _
... = σ b : by rewrite [chainρσ, sub_zero]
... = c : σbc))
end strong_four
-/