Spectral/homotopy/sec86.hlean
2016-03-24 13:27:21 -04:00

259 lines
9.2 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- TODO: in wedge connectivity and is_conn.elim, unbundle P
import homotopy.wedge types.pi .LES_applications --TODO: remove
open eq homotopy is_trunc pointed susp nat pi equiv is_equiv trunc fiber trunc_index
definition iterated_loop_ptrunc_pequiv_con (n : ℕ₋₂) (k : ) (A : Type*)
(p q : Ω[k](ptrunc (n+k) (Ω A))) :
iterated_loop_ptrunc_pequiv n k (Ω A) (loop_mul trunc_concat p q) =
trunc_functor2 (loop_mul concat) (iterated_loop_ptrunc_pequiv n k (Ω A) p)
(iterated_loop_ptrunc_pequiv n k (Ω A) q) :=
begin
revert n p q, induction k with k IH: intro n p q,
{ reflexivity},
{ exact sorry}
end
theorem elim_type_merid_inv {A : Type} (PN : Type) (PS : Type) (Pm : A → PN ≃ PS)
(a : A) : transport (susp.elim_type PN PS Pm) (merid a)⁻¹ = to_inv (Pm a) :=
by rewrite [tr_eq_cast_ap_fn,↑susp.elim_type,ap_inv,elim_merid]; apply cast_ua_inv_fn
definition is_conn_trunc (A : Type) (n k : ℕ₋₂) [H : is_conn n A]
: is_conn n (trunc k A) :=
begin
apply is_trunc_equiv_closed, apply trunc_trunc_equiv_trunc_trunc
end
section open sphere sphere.ops
definition psphere_succ [unfold_full] (n : ) : S. (n + 1) = psusp (S. n) := idp
end
namespace freudenthal section
parameters {A : Type*} {n : } [is_conn n A]
--porting from Agda
-- definition Q (x : susp A) : Type :=
-- trunc (k) (north = x)
definition up (a : A) : north = north :> susp A := -- up a = loop_susp_unit A a
merid a ⬝ (merid pt)⁻¹
definition code_merid : A → ptrunc (n + n) A → ptrunc (n + n) A :=
begin
have is_conn n (ptrunc (n + n) A), from !is_conn_trunc,
refine wedge_extension.ext n n (λ x y, ttrunc (n + n) A) _ _ _,
{ exact tr},
{ exact id},
{ reflexivity}
end
definition code_merid_β_left (a : A) : code_merid a pt = tr a :=
by apply wedge_extension.β_left
definition code_merid_β_right (b : ptrunc (n + n) A) : code_merid pt b = b :=
by apply wedge_extension.β_right
definition code_merid_coh : code_merid_β_left pt = code_merid_β_right pt :=
begin
symmetry, apply eq_of_inv_con_eq_idp, apply wedge_extension.coh
end
definition is_equiv_code_merid (a : A) : is_equiv (code_merid a) :=
begin
refine @is_conn.elim (n.-1) _ _ _ _ a,
{ intro a, apply is_trunc_of_le, apply minus_one_le_succ},
{ esimp, exact homotopy_closed id (homotopy.symm (code_merid_β_right))}
end
definition code_merid_equiv [constructor] (a : A) : trunc (n + n) A ≃ trunc (n + n) A :=
equiv.mk _ (is_equiv_code_merid a)
definition code_merid_inv_pt (x : trunc (n + n) A) : (code_merid_equiv pt)⁻¹ x = x :=
begin
refine ap010 @(is_equiv.inv _) _ x ⬝ _,
{ exact homotopy_closed id (homotopy.symm code_merid_β_right)},
{ apply is_conn.elim_β},
{ reflexivity}
end
definition code [unfold 4] : susp A → Type :=
susp.elim_type (trunc (n + n) A) (trunc (n + n) A) code_merid_equiv
definition is_trunc_code (x : susp A) : is_trunc (n + n) (code x) :=
begin
induction x with a: esimp,
{ exact _},
{ exact _},
{ apply is_prop.elimo}
end
local attribute is_trunc_code [instance]
definition decode_north [unfold 4] : code north → trunc (n + n) (north = north :> susp A) :=
trunc_functor (n + n) up
definition decode_north_pt : decode_north (tr pt) = tr idp :=
ap tr !con.right_inv
definition decode_south [unfold 4] : code south → trunc (n + n) (north = south :> susp A) :=
trunc_functor (n + n) merid
definition encode' {x : susp A} (p : north = x) : code x :=
transport code p (tr pt)
definition encode [unfold 5] {x : susp A} (p : trunc (n + n) (north = x)) : code x :=
begin
induction p with p,
exact transport code p (tr pt)
end
theorem encode_decode_north (c : code north) : encode (decode_north c) = c :=
begin
have H : Πc, is_trunc (n + n) (encode (decode_north c) = c), from _,
esimp at *,
induction c with a,
rewrite [↑[encode, decode_north, up, code], con_tr, elim_type_merid, ▸*,
code_merid_β_left, elim_type_merid_inv, ▸*, code_merid_inv_pt]
end
definition decode_coh_f (a : A) : tr (up pt) =[merid a] decode_south (code_merid a (tr pt)) :=
begin
refine _ ⬝op ap decode_south (code_merid_β_left a)⁻¹,
apply trunc_pathover,
apply eq_pathover,
refine !ap_constant ⬝ph _ ⬝hp !ap_id⁻¹,
apply square_of_eq,
exact whisker_right !con.right_inv (merid a)
end
definition decode_coh_g (a' : A) : tr (up a') =[merid pt] decode_south (code_merid pt (tr a')) :=
begin
refine _ ⬝op ap decode_south (code_merid_β_right (tr a'))⁻¹,
apply trunc_pathover,
apply eq_pathover,
refine !ap_constant ⬝ph _ ⬝hp !ap_id⁻¹,
apply square_of_eq, refine !inv_con_cancel_right ⬝ !idp_con⁻¹
end
definition decode_coh_equality {A : Type} {a a' : A} (p : a = a')
: whisker_right (con.right_inv p) p = inv_con_cancel_right p p ⬝ (idp_con p)⁻¹ :=
by induction p; reflexivity
theorem decode_coh (a : A) : decode_north =[merid a] decode_south :=
begin
apply arrow_pathover_left, intro c, esimp at *,
induction c with a',
rewrite [↑code, elim_type_merid, ▸*],
refine wedge_extension.ext n n _ _ _ _ a a',
{ exact _},
{ exact decode_coh_f},
{ exact decode_coh_g},
{ clear a a', unfold [decode_coh_f, decode_coh_g], refine ap011 concato_eq _ _,
{ apply ap (λp, trunc_pathover (eq_pathover (_ ⬝ph square_of_eq p ⬝hp _))),
apply decode_coh_equality},
{ apply ap (λp, ap decode_south p⁻¹), apply code_merid_coh}}
end
definition decode [unfold 4] {x : susp A} (c : code x) : trunc (n + n) (north = x) :=
begin
induction x with a,
{ exact decode_north c},
{ exact decode_south c},
{ exact decode_coh a}
end
theorem decode_encode {x : susp A} (p : trunc (n + n) (north = x)) : decode (encode p) = p :=
begin
induction p with p, induction p, esimp, apply decode_north_pt
end
parameters (A n)
definition equiv' : trunc (n + n) A ≃ trunc (n + n) (Ω (psusp A)) :=
equiv.MK decode_north encode decode_encode encode_decode_north
definition pequiv' : ptrunc (n + n) A ≃* ptrunc (n + n) (Ω (psusp A)) :=
pequiv_of_equiv equiv' decode_north_pt
-- can we get this?
-- definition freudenthal_suspension : is_conn_map (n+n) (loop_susp_unit A) :=
-- begin
-- intro p, esimp at *, fapply is_contr.mk,
-- { note c := encode (tr p), esimp at *, induction c with a, },
-- { exact sorry}
-- end
-- {- Used to prove stability in iterated suspensions -}
-- module FreudenthalIso
-- {i} (n : ℕ₋₂) (k : ) (t : k ≠ O) (kle : ⟨ k ⟩ ≤T S (n +2+ S n))
-- (X : Ptd i) (cX : is-connected (S (S n)) (fst X)) where
-- open FreudenthalEquiv n (⟨ k ⟩) kle (fst X) (snd X) cX public
-- hom : Ω^-Group k t (⊙Trunc ⟨ k ⟩ X) Trunc-level
-- →ᴳ Ω^-Group k t (⊙Trunc ⟨ k ⟩ (⊙Ω (⊙Susp X))) Trunc-level
-- hom = record {
-- f = fst F;
-- pres-comp = ap^-conc^ k t (decodeN , decodeN-pt) }
-- where F = ap^ k (decodeN , decodeN-pt)
-- iso : Ω^-Group k t (⊙Trunc ⟨ k ⟩ X) Trunc-level
-- ≃ᴳ Ω^-Group k t (⊙Trunc ⟨ k ⟩ (⊙Ω (⊙Susp X))) Trunc-level
-- iso = (hom , is-equiv-ap^ k (decodeN , decodeN-pt) (snd eq))
end end freudenthal
open algebra
definition freudenthal_pequiv (A : Type*) {n k : } [is_conn n A] (H : k ≤ 2 * n)
: ptrunc k A ≃* ptrunc k (Ω (psusp A)) :=
have H' : k ≤[ℕ₋₂] n + n,
by rewrite [mul.comm at H, -algebra.zero_add n at {1}]; exact of_nat_le_of_nat H,
ptrunc_pequiv_ptrunc_of_le H' (freudenthal.pequiv' A n)
definition freudenthal_equiv {A : Type*} {n k : } [is_conn n A] (H : k ≤ 2 * n)
: trunc k A ≃ trunc k (Ω (psusp A)) :=
freudenthal_pequiv A H
namespace sphere
open ops algebra pointed function
definition stability_pequiv (k n : ) (H : k + 2 ≤ 2 * n) : π*[k + 1] (S. (n+1)) ≃* π*[k] (S. n) :=
begin
have H' : k ≤ 2 * pred n,
begin
rewrite [mul_pred_right], change pred (pred (k + 2)) ≤ pred (pred (2 * n)),
apply pred_le_pred, apply pred_le_pred, exact H
end,
have is_conn (of_nat (pred n)) (S. n),
begin
cases n with n,
{ exfalso, exact not_succ_le_zero _ H},
{ esimp, apply is_conn_psphere}
end,
refine pequiv_of_eq (ap (ptrunc 0) (loop_space_succ_eq_in (S. (n+1)) k)) ⬝e* _,
rewrite psphere_succ,
refine !phomotopy_group_pequiv_loop_ptrunc ⬝e* _,
refine loopn_pequiv_loopn k (freudenthal_pequiv _ H')⁻¹ᵉ* ⬝e* _,
exact !phomotopy_group_pequiv_loop_ptrunc⁻¹ᵉ*,
end
print phomotopy_group_pequiv_loop_ptrunc
print iterated_loop_ptrunc_pequiv
definition to_fun_stability_pequiv (k n : ) (H : k + 2 ≤ 2 * n) --(p : π*[k + 1] (S. (n+1)))
: stability_pequiv k n H = _ ∘ _ ∘ cast (ap (ptrunc 0) (loop_space_succ_eq_in (S. (n+1)) k)) :=
sorry
-- definition stability (k n : ) (H : k + 3 ≤ 2 * n) : πg[k+1 +1] (S. (n+1)) = πg[k+1] (S. n) :=
-- begin
-- fapply Group_eq,
-- { refine equiv_of_pequiv (stability_pequiv _ _ _), rewrite succ_add, exact H},
-- { intro g h, esimp, }
-- end
end sphere
/-
changes in book:
proof 8.6.15: also mention that we ignore multiplication
proof 8.4.4: respects points
proof 8.4.8: do k=0 separately
-/