259 lines
9.2 KiB
Text
259 lines
9.2 KiB
Text
-- TODO: in wedge connectivity and is_conn.elim, unbundle P
|
||
|
||
import homotopy.wedge types.pi .LES_applications --TODO: remove
|
||
|
||
open eq homotopy is_trunc pointed susp nat pi equiv is_equiv trunc fiber trunc_index
|
||
|
||
definition iterated_loop_ptrunc_pequiv_con (n : ℕ₋₂) (k : ℕ) (A : Type*)
|
||
(p q : Ω[k](ptrunc (n+k) (Ω A))) :
|
||
iterated_loop_ptrunc_pequiv n k (Ω A) (loop_mul trunc_concat p q) =
|
||
trunc_functor2 (loop_mul concat) (iterated_loop_ptrunc_pequiv n k (Ω A) p)
|
||
(iterated_loop_ptrunc_pequiv n k (Ω A) q) :=
|
||
begin
|
||
revert n p q, induction k with k IH: intro n p q,
|
||
{ reflexivity},
|
||
{ exact sorry}
|
||
end
|
||
|
||
theorem elim_type_merid_inv {A : Type} (PN : Type) (PS : Type) (Pm : A → PN ≃ PS)
|
||
(a : A) : transport (susp.elim_type PN PS Pm) (merid a)⁻¹ = to_inv (Pm a) :=
|
||
by rewrite [tr_eq_cast_ap_fn,↑susp.elim_type,ap_inv,elim_merid]; apply cast_ua_inv_fn
|
||
|
||
definition is_conn_trunc (A : Type) (n k : ℕ₋₂) [H : is_conn n A]
|
||
: is_conn n (trunc k A) :=
|
||
begin
|
||
apply is_trunc_equiv_closed, apply trunc_trunc_equiv_trunc_trunc
|
||
end
|
||
|
||
section open sphere sphere.ops
|
||
definition psphere_succ [unfold_full] (n : ℕ) : S. (n + 1) = psusp (S. n) := idp
|
||
end
|
||
|
||
namespace freudenthal section
|
||
|
||
parameters {A : Type*} {n : ℕ} [is_conn n A]
|
||
|
||
--porting from Agda
|
||
-- definition Q (x : susp A) : Type :=
|
||
-- trunc (k) (north = x)
|
||
|
||
definition up (a : A) : north = north :> susp A := -- up a = loop_susp_unit A a
|
||
merid a ⬝ (merid pt)⁻¹
|
||
|
||
definition code_merid : A → ptrunc (n + n) A → ptrunc (n + n) A :=
|
||
begin
|
||
have is_conn n (ptrunc (n + n) A), from !is_conn_trunc,
|
||
refine wedge_extension.ext n n (λ x y, ttrunc (n + n) A) _ _ _,
|
||
{ exact tr},
|
||
{ exact id},
|
||
{ reflexivity}
|
||
end
|
||
|
||
definition code_merid_β_left (a : A) : code_merid a pt = tr a :=
|
||
by apply wedge_extension.β_left
|
||
|
||
definition code_merid_β_right (b : ptrunc (n + n) A) : code_merid pt b = b :=
|
||
by apply wedge_extension.β_right
|
||
|
||
definition code_merid_coh : code_merid_β_left pt = code_merid_β_right pt :=
|
||
begin
|
||
symmetry, apply eq_of_inv_con_eq_idp, apply wedge_extension.coh
|
||
end
|
||
|
||
definition is_equiv_code_merid (a : A) : is_equiv (code_merid a) :=
|
||
begin
|
||
refine @is_conn.elim (n.-1) _ _ _ _ a,
|
||
{ intro a, apply is_trunc_of_le, apply minus_one_le_succ},
|
||
{ esimp, exact homotopy_closed id (homotopy.symm (code_merid_β_right))}
|
||
end
|
||
|
||
definition code_merid_equiv [constructor] (a : A) : trunc (n + n) A ≃ trunc (n + n) A :=
|
||
equiv.mk _ (is_equiv_code_merid a)
|
||
|
||
definition code_merid_inv_pt (x : trunc (n + n) A) : (code_merid_equiv pt)⁻¹ x = x :=
|
||
begin
|
||
refine ap010 @(is_equiv.inv _) _ x ⬝ _,
|
||
{ exact homotopy_closed id (homotopy.symm code_merid_β_right)},
|
||
{ apply is_conn.elim_β},
|
||
{ reflexivity}
|
||
end
|
||
|
||
definition code [unfold 4] : susp A → Type :=
|
||
susp.elim_type (trunc (n + n) A) (trunc (n + n) A) code_merid_equiv
|
||
|
||
definition is_trunc_code (x : susp A) : is_trunc (n + n) (code x) :=
|
||
begin
|
||
induction x with a: esimp,
|
||
{ exact _},
|
||
{ exact _},
|
||
{ apply is_prop.elimo}
|
||
end
|
||
local attribute is_trunc_code [instance]
|
||
|
||
definition decode_north [unfold 4] : code north → trunc (n + n) (north = north :> susp A) :=
|
||
trunc_functor (n + n) up
|
||
|
||
definition decode_north_pt : decode_north (tr pt) = tr idp :=
|
||
ap tr !con.right_inv
|
||
|
||
definition decode_south [unfold 4] : code south → trunc (n + n) (north = south :> susp A) :=
|
||
trunc_functor (n + n) merid
|
||
|
||
definition encode' {x : susp A} (p : north = x) : code x :=
|
||
transport code p (tr pt)
|
||
|
||
definition encode [unfold 5] {x : susp A} (p : trunc (n + n) (north = x)) : code x :=
|
||
begin
|
||
induction p with p,
|
||
exact transport code p (tr pt)
|
||
end
|
||
|
||
theorem encode_decode_north (c : code north) : encode (decode_north c) = c :=
|
||
begin
|
||
have H : Πc, is_trunc (n + n) (encode (decode_north c) = c), from _,
|
||
esimp at *,
|
||
induction c with a,
|
||
rewrite [↑[encode, decode_north, up, code], con_tr, elim_type_merid, ▸*,
|
||
code_merid_β_left, elim_type_merid_inv, ▸*, code_merid_inv_pt]
|
||
end
|
||
|
||
definition decode_coh_f (a : A) : tr (up pt) =[merid a] decode_south (code_merid a (tr pt)) :=
|
||
begin
|
||
refine _ ⬝op ap decode_south (code_merid_β_left a)⁻¹,
|
||
apply trunc_pathover,
|
||
apply eq_pathover,
|
||
refine !ap_constant ⬝ph _ ⬝hp !ap_id⁻¹,
|
||
apply square_of_eq,
|
||
exact whisker_right !con.right_inv (merid a)
|
||
end
|
||
|
||
definition decode_coh_g (a' : A) : tr (up a') =[merid pt] decode_south (code_merid pt (tr a')) :=
|
||
begin
|
||
refine _ ⬝op ap decode_south (code_merid_β_right (tr a'))⁻¹,
|
||
apply trunc_pathover,
|
||
apply eq_pathover,
|
||
refine !ap_constant ⬝ph _ ⬝hp !ap_id⁻¹,
|
||
apply square_of_eq, refine !inv_con_cancel_right ⬝ !idp_con⁻¹
|
||
end
|
||
|
||
definition decode_coh_equality {A : Type} {a a' : A} (p : a = a')
|
||
: whisker_right (con.right_inv p) p = inv_con_cancel_right p p ⬝ (idp_con p)⁻¹ :=
|
||
by induction p; reflexivity
|
||
|
||
theorem decode_coh (a : A) : decode_north =[merid a] decode_south :=
|
||
begin
|
||
apply arrow_pathover_left, intro c, esimp at *,
|
||
induction c with a',
|
||
rewrite [↑code, elim_type_merid, ▸*],
|
||
refine wedge_extension.ext n n _ _ _ _ a a',
|
||
{ exact _},
|
||
{ exact decode_coh_f},
|
||
{ exact decode_coh_g},
|
||
{ clear a a', unfold [decode_coh_f, decode_coh_g], refine ap011 concato_eq _ _,
|
||
{ apply ap (λp, trunc_pathover (eq_pathover (_ ⬝ph square_of_eq p ⬝hp _))),
|
||
apply decode_coh_equality},
|
||
{ apply ap (λp, ap decode_south p⁻¹), apply code_merid_coh}}
|
||
end
|
||
|
||
definition decode [unfold 4] {x : susp A} (c : code x) : trunc (n + n) (north = x) :=
|
||
begin
|
||
induction x with a,
|
||
{ exact decode_north c},
|
||
{ exact decode_south c},
|
||
{ exact decode_coh a}
|
||
end
|
||
|
||
theorem decode_encode {x : susp A} (p : trunc (n + n) (north = x)) : decode (encode p) = p :=
|
||
begin
|
||
induction p with p, induction p, esimp, apply decode_north_pt
|
||
end
|
||
|
||
parameters (A n)
|
||
definition equiv' : trunc (n + n) A ≃ trunc (n + n) (Ω (psusp A)) :=
|
||
equiv.MK decode_north encode decode_encode encode_decode_north
|
||
|
||
definition pequiv' : ptrunc (n + n) A ≃* ptrunc (n + n) (Ω (psusp A)) :=
|
||
pequiv_of_equiv equiv' decode_north_pt
|
||
|
||
-- can we get this?
|
||
-- definition freudenthal_suspension : is_conn_map (n+n) (loop_susp_unit A) :=
|
||
-- begin
|
||
-- intro p, esimp at *, fapply is_contr.mk,
|
||
-- { note c := encode (tr p), esimp at *, induction c with a, },
|
||
-- { exact sorry}
|
||
-- end
|
||
|
||
-- {- Used to prove stability in iterated suspensions -}
|
||
-- module FreudenthalIso
|
||
-- {i} (n : ℕ₋₂) (k : ℕ) (t : k ≠ O) (kle : ⟨ k ⟩ ≤T S (n +2+ S n))
|
||
-- (X : Ptd i) (cX : is-connected (S (S n)) (fst X)) where
|
||
|
||
-- open FreudenthalEquiv n (⟨ k ⟩) kle (fst X) (snd X) cX public
|
||
|
||
-- hom : Ω^-Group k t (⊙Trunc ⟨ k ⟩ X) Trunc-level
|
||
-- →ᴳ Ω^-Group k t (⊙Trunc ⟨ k ⟩ (⊙Ω (⊙Susp X))) Trunc-level
|
||
-- hom = record {
|
||
-- f = fst F;
|
||
-- pres-comp = ap^-conc^ k t (decodeN , decodeN-pt) }
|
||
-- where F = ap^ k (decodeN , decodeN-pt)
|
||
|
||
-- iso : Ω^-Group k t (⊙Trunc ⟨ k ⟩ X) Trunc-level
|
||
-- ≃ᴳ Ω^-Group k t (⊙Trunc ⟨ k ⟩ (⊙Ω (⊙Susp X))) Trunc-level
|
||
-- iso = (hom , is-equiv-ap^ k (decodeN , decodeN-pt) (snd eq))
|
||
|
||
end end freudenthal
|
||
|
||
open algebra
|
||
definition freudenthal_pequiv (A : Type*) {n k : ℕ} [is_conn n A] (H : k ≤ 2 * n)
|
||
: ptrunc k A ≃* ptrunc k (Ω (psusp A)) :=
|
||
have H' : k ≤[ℕ₋₂] n + n,
|
||
by rewrite [mul.comm at H, -algebra.zero_add n at {1}]; exact of_nat_le_of_nat H,
|
||
ptrunc_pequiv_ptrunc_of_le H' (freudenthal.pequiv' A n)
|
||
|
||
definition freudenthal_equiv {A : Type*} {n k : ℕ} [is_conn n A] (H : k ≤ 2 * n)
|
||
: trunc k A ≃ trunc k (Ω (psusp A)) :=
|
||
freudenthal_pequiv A H
|
||
|
||
namespace sphere
|
||
open ops algebra pointed function
|
||
|
||
definition stability_pequiv (k n : ℕ) (H : k + 2 ≤ 2 * n) : π*[k + 1] (S. (n+1)) ≃* π*[k] (S. n) :=
|
||
begin
|
||
have H' : k ≤ 2 * pred n,
|
||
begin
|
||
rewrite [mul_pred_right], change pred (pred (k + 2)) ≤ pred (pred (2 * n)),
|
||
apply pred_le_pred, apply pred_le_pred, exact H
|
||
end,
|
||
have is_conn (of_nat (pred n)) (S. n),
|
||
begin
|
||
cases n with n,
|
||
{ exfalso, exact not_succ_le_zero _ H},
|
||
{ esimp, apply is_conn_psphere}
|
||
end,
|
||
refine pequiv_of_eq (ap (ptrunc 0) (loop_space_succ_eq_in (S. (n+1)) k)) ⬝e* _,
|
||
rewrite psphere_succ,
|
||
refine !phomotopy_group_pequiv_loop_ptrunc ⬝e* _,
|
||
refine loopn_pequiv_loopn k (freudenthal_pequiv _ H')⁻¹ᵉ* ⬝e* _,
|
||
exact !phomotopy_group_pequiv_loop_ptrunc⁻¹ᵉ*,
|
||
end
|
||
print phomotopy_group_pequiv_loop_ptrunc
|
||
print iterated_loop_ptrunc_pequiv
|
||
definition to_fun_stability_pequiv (k n : ℕ) (H : k + 2 ≤ 2 * n) --(p : π*[k + 1] (S. (n+1)))
|
||
: stability_pequiv k n H = _ ∘ _ ∘ cast (ap (ptrunc 0) (loop_space_succ_eq_in (S. (n+1)) k)) :=
|
||
sorry
|
||
|
||
-- definition stability (k n : ℕ) (H : k + 3 ≤ 2 * n) : πg[k+1 +1] (S. (n+1)) = πg[k+1] (S. n) :=
|
||
-- begin
|
||
-- fapply Group_eq,
|
||
-- { refine equiv_of_pequiv (stability_pequiv _ _ _), rewrite succ_add, exact H},
|
||
-- { intro g h, esimp, }
|
||
-- end
|
||
|
||
end sphere
|
||
|
||
/-
|
||
changes in book:
|
||
proof 8.6.15: also mention that we ignore multiplication
|
||
proof 8.4.4: respects points
|
||
proof 8.4.8: do k=0 separately
|
||
-/
|