Spectral/algebra/free_group.hlean
2018-11-02 13:39:40 +01:00

664 lines
26 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015-2018 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Egbert Rijke, Ulrik Buchholtz
Constructions with groups
-/
import algebra.group_theory hit.set_quotient types.list types.sum ..move_to_lib
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod sum list trunc function equiv
prod.ops decidable is_equiv pointed
universe variable u
namespace group
variables {G G' : Group} {g g' h h' k : G} {A B : AbGroup}
/- Free Group of a pointed set -/
variables (X : Type*) [is_set X] {l l' : list (X ⊎ X)}
namespace free_group
inductive free_group_rel : list (X ⊎ X) → list (X ⊎ X) → Type :=
| rrefl : Πl, free_group_rel l l
| cancel1 : Πx, free_group_rel [inl x, inr x] []
| cancel2 : Πx, free_group_rel [inr x, inl x] []
| cancelpt1 : free_group_rel [inl pt] []
| cancelpt2 : free_group_rel [inr pt] []
| resp_append : Π{l₁ l₂ l₃ l₄}, free_group_rel l₁ l₂ → free_group_rel l₃ l₄ →
free_group_rel (l₁ ++ l₃) (l₂ ++ l₄)
| rtrans : Π{l₁ l₂ l₃}, free_group_rel l₁ l₂ → free_group_rel l₂ l₃ →
free_group_rel l₁ l₃
open free_group_rel
local abbreviation R [reducible] := free_group_rel
attribute free_group_rel.rrefl [refl]
definition free_group_carrier [reducible] : Type := set_quotient (λx y, ∥R X x y∥)
local abbreviation FG := free_group_carrier
definition is_reflexive_R : is_reflexive (λx y, ∥R X x y∥) :=
begin constructor, intro s, apply tr, unfold R end
local attribute is_reflexive_R [instance]
variable {X}
theorem rel_respect_flip (r : R X l l') : R X (map sum.flip l) (map sum.flip l') :=
begin
induction r with l x x l₁ l₂ l₃ l₄ r₁ r₂ IH₁ IH₂ l₁ l₂ l₃ r₁ r₂ IH₁ IH₂,
{ reflexivity},
{ repeat esimp [map], exact cancel2 x},
{ repeat esimp [map], exact cancel1 x},
{ exact cancelpt2 X },
{ exact cancelpt1 X },
{ rewrite [+map_append], exact resp_append IH₁ IH₂},
{ exact rtrans IH₁ IH₂}
end
theorem rel_respect_reverse (r : R X l l') : R X (reverse l) (reverse l') :=
begin
induction r with l x x l₁ l₂ l₃ l₄ r₁ r₂ IH₁ IH₂ l₁ l₂ l₃ r₁ r₂ IH₁ IH₂,
{ reflexivity},
{ repeat esimp [map], exact cancel2 x},
{ repeat esimp [map], exact cancel1 x},
{ exact cancelpt1 X },
{ exact cancelpt2 X },
{ rewrite [+reverse_append], exact resp_append IH₂ IH₁},
{ exact rtrans IH₁ IH₂}
end
definition free_group_one [constructor] : FG X := class_of []
definition free_group_inv [unfold 3] : FG X → FG X :=
quotient_unary_map (reverse ∘ map sum.flip)
(λl l', trunc_functor -1 (rel_respect_reverse ∘ rel_respect_flip))
definition free_group_mul [unfold 3 4] : FG X → FG X → FG X :=
quotient_binary_map append (λl l', trunc.elim (λr m m', trunc.elim (λs, tr (resp_append r s))))
section
local notation 1 := free_group_one
local postfix ⁻¹ := free_group_inv
local infix * := free_group_mul
theorem free_group_mul_assoc (g₁ g₂ g₃ : FG X) : g₁ * g₂ * g₃ = g₁ * (g₂ * g₃) :=
begin
refine set_quotient.rec_prop _ g₁,
refine set_quotient.rec_prop _ g₂,
refine set_quotient.rec_prop _ g₃,
clear g₁ g₂ g₃, intro g₁ g₂ g₃,
exact ap class_of !append.assoc
end
theorem free_group_one_mul (g : FG X) : 1 * g = g :=
begin
refine set_quotient.rec_prop _ g, clear g, intro g,
exact ap class_of !append_nil_left
end
theorem free_group_mul_one (g : FG X) : g * 1 = g :=
begin
refine set_quotient.rec_prop _ g, clear g, intro g,
exact ap class_of !append_nil_right
end
theorem free_group_mul_left_inv (g : FG X) : g⁻¹ * g = 1 :=
begin
refine set_quotient.rec_prop _ g, clear g, intro g,
apply eq_of_rel, apply tr,
induction g with s l IH,
{ reflexivity},
{ rewrite [▸*, map_cons, reverse_cons, concat_append],
refine rtrans _ IH,
apply resp_append, reflexivity,
change R X ([flip s, s] ++ l) ([] ++ l),
apply resp_append,
induction s, apply cancel2, apply cancel1,
reflexivity}
end
end
end free_group open free_group
-- export [reduce_hints] free_group
variables (X)
definition group_free_group [constructor] : group (free_group_carrier X) :=
group.mk _ free_group_mul free_group_mul_assoc free_group_one free_group_one_mul
free_group_mul_one free_group_inv free_group_mul_left_inv
definition free_group [constructor] : Group :=
Group.mk _ (group_free_group X)
/- The universal property of the free group -/
variables {X G}
definition free_group_inclusion [constructor] : X →* free_group X :=
ppi.mk (λ x, class_of [inl x]) (eq_of_rel (tr (free_group_rel.cancelpt1 X)))
definition fgh_helper [unfold 6] (f : X → G) (g : G) (x : X ⊎ X) : G :=
g * sum.rec (λz, f z) (λz, (f z)⁻¹) x
theorem fgh_helper_respect_rel (f : X →* G) (r : free_group_rel X l l')
: Π(g : G), foldl (fgh_helper f) g l = foldl (fgh_helper f) g l' :=
begin
induction r with l x x l₁ l₂ l₃ l₄ r₁ r₂ IH₁ IH₂ l₁ l₂ l₃ r₁ r₂ IH₁ IH₂: intro g,
{ reflexivity},
{ unfold [foldl], apply mul_inv_cancel_right},
{ unfold [foldl], apply inv_mul_cancel_right},
{ unfold [foldl], rewrite (respect_pt f), apply mul_one },
{ unfold [foldl], rewrite [respect_pt f, one_inv], apply mul_one },
{ rewrite [+foldl_append, IH₁, IH₂]},
{ exact !IH₁ ⬝ !IH₂}
end
theorem fgh_helper_mul (f : X → G) (l)
: Π(g : G), foldl (fgh_helper f) g l = g * foldl (fgh_helper f) 1 l :=
begin
induction l with s l IH: intro g,
{ unfold [foldl], exact !mul_one⁻¹},
{ rewrite [+foldl_cons, IH], refine _ ⬝ (ap (λx, g * x) !IH⁻¹),
rewrite [-mul.assoc, ↑fgh_helper, one_mul]}
end
definition free_group_hom [constructor] (f : X →* G) : free_group X →g G :=
begin
fapply homomorphism.mk,
{ intro g, refine set_quotient.elim _ _ g,
{ intro l, exact foldl (fgh_helper f) 1 l},
{ intro l l' r, esimp at *, refine trunc.rec _ r, clear r, intro r,
exact fgh_helper_respect_rel f r 1}},
{ refine set_quotient.rec_prop _, intro l, refine set_quotient.rec_prop _, intro l',
esimp, refine !foldl_append ⬝ _, esimp, apply fgh_helper_mul}
end
definition free_group_hom_eq [constructor] {φ ψ : free_group X →g G}
(H : Πx, φ (free_group_inclusion x) = ψ (free_group_inclusion x)) : φ ~ ψ :=
begin
refine set_quotient.rec_prop _, intro l,
induction l with s l IH,
{ exact respect_one φ ⬝ (respect_one ψ)⁻¹ },
{ refine respect_mul φ (class_of [s]) (class_of l) ⬝ _ ⬝
(respect_mul ψ (class_of [s]) (class_of l))⁻¹,
refine ap011 mul _ IH, induction s with x x, exact H x,
refine respect_inv φ (class_of [inl x]) ⬝ ap inv (H x) ⬝
(respect_inv ψ (class_of [inl x]))⁻¹ }
end
definition fn_of_free_group_hom [unfold_full] (φ : free_group X →g G) : X →* G :=
ppi.mk (φ ∘ free_group_inclusion)
begin
refine (_ ⬝ respect_one φ),
apply ap φ, apply eq_of_rel, apply tr,
exact (free_group_rel.cancelpt1 X)
end
variables (X G)
definition free_group_hom_equiv_fn : (free_group X →g G) ≃ (X →* G) :=
begin
fapply equiv.MK,
{ exact fn_of_free_group_hom},
{ exact free_group_hom},
{ intro f, apply eq_of_phomotopy, fapply phomotopy.mk,
{ intro x, esimp, unfold [foldl], apply one_mul },
{ apply is_prop.elim } },
{ intro φ, apply homomorphism_eq, apply free_group_hom_eq, intro x, apply one_mul }
end
end group
/- alternative definition of free group on a set with decidable equality -/
namespace list
variables {X : Type.{u}} {v w : X ⊎ X} {l : list (X ⊎ X)}
inductive is_reduced {X : Type} : list (X ⊎ X) → Type :=
| nil : is_reduced []
| singleton : Πv, is_reduced [v]
| cons : Π⦃v w l⦄, sum.flip v ≠ w → is_reduced (w::l) → is_reduced (v::w::l)
definition is_reduced_code (H : is_reduced l) : Type.{u} :=
begin
cases l with v l, { exact is_reduced.nil = H },
cases l with w l, { exact is_reduced.singleton v = H },
exact Σ(pH : sum.flip v ≠ w × is_reduced (w::l)), is_reduced.cons pH.1 pH.2 = H
end
definition is_reduced_encode (H : is_reduced l) : is_reduced_code H :=
begin
induction H with v v w l p Hl IH,
{ exact idp },
{ exact idp },
{ exact ⟨(p, Hl), idp⟩ }
end
definition is_prop_is_reduced (l : list (X ⊎ X)) : is_prop (is_reduced l) :=
begin
apply is_prop.mk, intro H₁ H₂, induction H₁ with v v w l p Hl IH,
{ exact is_reduced_encode H₂ },
{ exact is_reduced_encode H₂ },
{ cases is_reduced_encode H₂ with pH' q, cases pH' with p' Hl', esimp at q,
subst q, exact ap011 (λx y, is_reduced.cons x y) !is_prop.elim (IH Hl') }
end
definition rlist (X : Type) : Type :=
Σ(l : list (X ⊎ X)), is_reduced l
local attribute [instance] is_prop_is_reduced
definition rlist_eq {l l' : rlist X} (p : l.1 = l'.1) : l = l' :=
subtype_eq p
definition is_trunc_rlist {n : ℕ₋₂} {X : Type} (H : is_trunc (n.+2) X) :
is_trunc (n.+2) (rlist X) :=
begin
apply is_trunc_sigma, { apply is_trunc_list, apply is_trunc_sum },
intro l, exact is_trunc_succ_of_is_prop _ _ _
end
definition is_reduced_invert (v : X ⊎ X) : is_reduced (v::l) → is_reduced l :=
begin
assert H : Π⦃l'⦄, is_reduced l' → l' = v::l → is_reduced l,
{ intro l' Hl', revert l, induction Hl' with v' v' w' l' p' Hl' IH: intro l p,
{ cases p },
{ cases cons_eq_cons p with q r, subst r, apply is_reduced.nil },
{ cases cons_eq_cons p with q r, subst r, exact Hl' }},
intro Hl, exact H Hl idp
end
definition is_reduced_invert_rev (v : X ⊎ X) : is_reduced (l++[v]) → is_reduced l :=
begin
assert H : Π⦃l'⦄, is_reduced l' → l' = l++[v] → is_reduced l,
{ intro l' Hl', revert l, induction Hl' with v' v' w' l' p' Hl' IH: intro l p,
{ induction l: cases p },
{ induction l with v'' l IH, apply is_reduced.nil, esimp [append] at p,
cases cons_eq_cons p with q r, induction l: cases r },
{ induction l with v'' l IH', cases p, induction l with v''' l IH'',
apply is_reduced.singleton, do 2 esimp [append] at p, cases cons_eq_cons p with q r,
cases cons_eq_cons r with r₁ r₂, subst r₁, subst q, subst r₂,
apply is_reduced.cons p' (IH _ idp) }},
intro Hl, exact H Hl idp
end
definition rnil [constructor] : rlist X :=
⟨[], !is_reduced.nil⟩
definition rsingleton [constructor] (x : X ⊎ X) : rlist X :=
⟨[x], !is_reduced.singleton⟩
definition is_reduced_doubleton [constructor] {x y : X ⊎ X} (p : flip x ≠ y) :
is_reduced [x, y] :=
is_reduced.cons p !is_reduced.singleton
definition rdoubleton [constructor] {x y : X ⊎ X} (p : flip x ≠ y) : rlist X :=
⟨[x, y], is_reduced_doubleton p⟩
definition is_reduced_concat (Hn : sum.flip v ≠ w) (Hl : is_reduced (concat v l)) :
is_reduced (concat w (concat v l)) :=
begin
assert H : Π⦃l'⦄, is_reduced l' → l' = concat v l → is_reduced (concat w l'),
{ clear Hl, intro l' Hl', revert l, induction Hl' with v' v' w' l' p' Hl' IH: intro l p,
{ exfalso, exact concat_neq_nil _ _ p⁻¹ },
{ cases concat_eq_singleton p⁻¹ with q r, subst q,
exact is_reduced_doubleton Hn },
{ do 2 esimp [concat], apply is_reduced.cons p', cases l with x l,
{ cases p },
{ apply IH l, esimp [concat] at p, revert p, generalize concat v l, intro l'' p,
cases cons_eq_cons p with q r, exact r }}},
exact H Hl idp
end
definition is_reduced_reverse (H : is_reduced l) : is_reduced (reverse l) :=
begin
induction H with v v w l p Hl IH,
{ apply is_reduced.nil },
{ apply is_reduced.singleton },
{ refine is_reduced_concat _ IH, intro q, apply p, subst q, apply flip_flip }
end
definition rreverse [constructor] (l : rlist X) : rlist X := ⟨reverse l.1, is_reduced_reverse l.2⟩
definition rreverse_rreverse (l : rlist X) : rreverse (rreverse l) = l :=
subtype_eq (reverse_reverse l.1)
definition is_reduced_flip (H : is_reduced l) : is_reduced (map flip l) :=
begin
induction H with v v w l p Hl IH,
{ apply is_reduced.nil },
{ apply is_reduced.singleton },
{ refine is_reduced.cons _ IH, intro q, apply p, exact !flip_flip⁻¹ ⬝ ap flip q ⬝ !flip_flip }
end
definition rflip [constructor] (l : rlist X) : rlist X := ⟨map flip l.1, is_reduced_flip l.2⟩
definition rcons' [decidable_eq X] (v : X ⊎ X) (l : list (X ⊎ X)) : list (X ⊎ X) :=
begin
cases l with w l,
{ exact [v] },
{ exact if q : sum.flip v = w then l else v::w::l }
end
definition is_reduced_rcons [decidable_eq X] (v : X ⊎ X) (Hl : is_reduced l) :
is_reduced (rcons' v l) :=
begin
cases l with w l, apply is_reduced.singleton,
apply dite (sum.flip v = w): intro q,
{ have is_set (X ⊎ X), from !is_trunc_sum,
rewrite [↑rcons', dite_true q _], exact is_reduced_invert w Hl },
{ rewrite [↑rcons', dite_false q], exact is_reduced.cons q Hl, }
end
definition rcons [constructor] [decidable_eq X] (v : X ⊎ X) (l : rlist X) : rlist X :=
⟨rcons' v l.1, is_reduced_rcons v l.2⟩
definition rcons_eq [decidable_eq X] : is_reduced (v::l) → rcons' v l = v :: l :=
begin
assert H : Π⦃l'⦄, is_reduced l' → l' = v::l → rcons' v l = l',
{ intro l' Hl', revert l, induction Hl' with v' v' w' l' p' Hl' IH: intro l p,
{ cases p },
{ cases cons_eq_cons p with q r, subst r, cases p, reflexivity },
{ cases cons_eq_cons p with q r, subst q, subst r, rewrite [↑rcons', dite_false p'], }},
intro Hl, exact H Hl idp
end
definition rcons_eq2 [decidable_eq X] (H : is_reduced (v::l)) :
⟨v :: l, H⟩ = rcons v ⟨l, is_reduced_invert _ H⟩ :=
subtype_eq (rcons_eq H)⁻¹
definition rcons_rcons_eq [decidable_eq X] (p : flip v = w) (l : rlist X) :
rcons v (rcons w l) = l :=
begin
have is_set (X ⊎ X), from !is_trunc_sum,
induction l with l Hl,
apply rlist_eq, esimp,
induction l with u l IH,
{ exact dite_true p _ },
{ apply dite (sum.flip w = u): intro q,
{ rewrite [↑rcons' at {1}, dite_true q _], subst p, induction (!flip_flip⁻¹ ⬝ q),
exact rcons_eq Hl },
{ rewrite [↑rcons', dite_false q, dite_true p _] }}
end
definition rlist.rec [decidable_eq X] {P : rlist X → Type}
(P1 : P rnil) (Pcons : Πv l, P l → P (rcons v l)) (l : rlist X) : P l :=
begin
induction l with l Hl, induction Hl with v v w l p Hl IH,
{ exact P1 },
{ exact Pcons v rnil P1 },
{ exact transport P (subtype_eq (rcons_eq (is_reduced.cons p Hl))) (Pcons v ⟨w :: l, Hl⟩ IH) }
end
definition reduce_list' [decidable_eq X] (l : list (X ⊎ X)) : list (X ⊎ X) :=
begin
induction l with v l IH,
{ exact [] },
{ exact rcons' v IH }
end
definition is_reduced_reduce_list [decidable_eq X] (l : list (X ⊎ X)) :
is_reduced (reduce_list' l) :=
begin
induction l with v l IH, apply is_reduced.nil,
apply is_reduced_rcons, exact IH
end
definition reduce_list [constructor] [decidable_eq X] (l : list (X ⊎ X)) : rlist X :=
⟨reduce_list' l, is_reduced_reduce_list l⟩
definition rappend' [decidable_eq X] (l : list (X ⊎ X)) (l' : rlist X) : rlist X := foldr rcons l' l
definition rappend_rcons' [decidable_eq X] (x : X ⊎ X) (l₁ : list (X ⊎ X)) (l₂ : rlist X) :
rappend' (rcons' x l₁) l₂ = rcons x (rappend' l₁ l₂) :=
begin
induction l₁ with x' l₁ IH,
{ reflexivity },
{ apply dite (sum.flip x = x'): intro p,
{ have is_set (X ⊎ X), from !is_trunc_sum, rewrite [↑rcons', dite_true p _],
exact (rcons_rcons_eq p _)⁻¹ },
{ rewrite [↑rcons', dite_false p] }}
end
definition rappend_cons' [decidable_eq X] (x : X ⊎ X) (l₁ : list (X ⊎ X)) (l₂ : rlist X) :
rappend' (x::l₁) l₂ = rcons x (rappend' l₁ l₂) :=
idp
definition rappend [decidable_eq X] (l l' : rlist X) : rlist X := rappend' l.1 l'
definition rappend_rcons [decidable_eq X] (x : X ⊎ X) (l₁ l₂ : rlist X) :
rappend (rcons x l₁) l₂ = rcons x (rappend l₁ l₂) :=
rappend_rcons' x l₁.1 l₂
definition rappend_assoc [decidable_eq X] (l₁ l₂ l₃ : rlist X) :
rappend (rappend l₁ l₂) l₃ = rappend l₁ (rappend l₂ l₃) :=
begin
induction l₁ with l₁ h, unfold rappend, clear h, induction l₁ with x l₁ IH,
{ reflexivity },
{ rewrite [rappend_cons', ▸*, rappend_rcons', IH] }
end
definition rappend_rnil [decidable_eq X] (l : rlist X) : rappend l rnil = l :=
begin
induction l with l H, apply rlist_eq, esimp, induction H with v v w l p Hl IH,
{ reflexivity },
{ reflexivity },
{ rewrite [↑rappend at *, rappend_cons', ↑rcons, IH, ↑rcons', dite_false p] }
end
definition rnil_rappend [decidable_eq X] (l : rlist X) : rappend rnil l = l :=
by reflexivity
definition rsingleton_rappend [decidable_eq X] (x : X ⊎ X) (l : rlist X) :
rappend (rsingleton x) l = rcons x l :=
by reflexivity
definition rappend_left_inv [decidable_eq X] (l : rlist X) :
rappend (rflip (rreverse l)) l = rnil :=
begin
induction l with l H, apply rlist_eq, induction l with x l IH,
{ reflexivity },
{ have is_set (X ⊎ X), from !is_trunc_sum,
rewrite [↑rappend, ↑rappend', reverse_cons, map_concat, foldr_concat],
refine ap (λx, (rappend' _ x).1) (rlist_eq (dite_true !flip_flip _)) ⬝
IH (is_reduced_invert _ H) }
end
definition rappend'_eq [decidable_eq X] (v : X ⊎ X) (l : list (X ⊎ X)) (H : is_reduced (l ++ [v])) :
⟨l ++ [v], H⟩ = rappend' l (rsingleton v) :=
begin
assert Hlem : Π⦃l'⦄ (Hl' : is_reduced l'), l' = l ++ [v] → rappend' l (rsingleton v) = ⟨l', Hl'⟩,
{ intro l' Hl', clear H, revert l,
induction Hl' with v' v' w' l' p' Hl' IH: intro l p,
{ induction l: cases p },
{ induction l with v'' l IH,
{ cases cons_eq_cons p with q r, subst q },
{ esimp [append] at p, cases cons_eq_cons p with q r, induction l: cases r }},
{ induction l with v'' l IH', cases p,
induction l with v''' l IH'',
{ do 2 esimp [append] at p, cases cons_eq_cons p with q r, subst q,
cases cons_eq_cons r with q r', subst q, subst r', apply subtype_eq, exact dite_false p' },
{ do 2 esimp [append] at p, cases cons_eq_cons p with q r,
cases cons_eq_cons r with r₁ r₂, subst r₁, subst q, subst r₂,
rewrite [rappend_cons', IH (w' :: l) idp],
apply subtype_eq, apply rcons_eq, apply is_reduced.cons p' Hl' }}},
exact (Hlem H idp)⁻¹
end
definition rappend_eq [decidable_eq X] (v : X ⊎ X) (l : list (X ⊎ X)) (H : is_reduced (l ++ [v])) :
⟨l ++ [v], H⟩ = rappend ⟨l, is_reduced_invert_rev _ H⟩ (rsingleton v) :=
rappend'_eq v l H
definition rreverse_cons [decidable_eq X] (v : X ⊎ X) (l : list (X ⊎ X))
(H : is_reduced (v :: l)) : rreverse ⟨v::l, H⟩ =
rappend ⟨reverse l, is_reduced_reverse (is_reduced_invert _ H)⟩ (rsingleton v) :=
begin
refine dpair_eq_dpair (reverse_cons _ _) !pathover_tr ⬝ _,
refine dpair_eq_dpair (concat_eq_append _ _) !pathover_tr ⬝ _,
refine !rappend_eq ⬝ _,
exact ap (λx, rappend ⟨_, x⟩ _) !is_prop.elim
end
definition rreverse_rcons [decidable_eq X] (v : X ⊎ X) (l : rlist X) :
rreverse (rcons v l) = rappend (rreverse l) (rsingleton v) :=
begin
induction l with l Hl, induction l with v' l IH, reflexivity,
{ symmetry, refine ap (λx, rappend x _) !rreverse_cons ⬝ _,
apply dite (sum.flip v = v'): intro p,
{ have is_set (X ⊎ X), from !is_trunc_sum,
rewrite [↑rcons, ↑rcons', dpair_eq_dpair (dite_true p _) !pathover_tr ],
refine !rappend_assoc ⬝ _, refine ap (rappend _) !rsingleton_rappend ⬝ _,
refine ap (rappend _) (subtype_eq _) ⬝ !rappend_rnil,
exact dite_true (ap flip p⁻¹ ⬝ flip_flip v) _ },
{ rewrite [↑rcons, ↑rcons', dpair_eq_dpair (dite_false p) !pathover_tr],
note H1 := is_reduced_reverse (transport is_reduced (dite_false p) (is_reduced_rcons v Hl)),
rewrite [+reverse_cons at H1, +concat_eq_append at H1],
note H2 := is_reduced_invert_rev _ H1,
refine ap (λx, rappend x _) (rappend_eq _ _ H2)⁻¹ ⬝ _,
refine (rappend_eq _ _ H1)⁻¹ ⬝ _, apply subtype_eq,
rewrite [-+concat_eq_append] }}
end
definition rlist.rec_rev [decidable_eq X] {P : rlist X → Type}
(P1 : P rnil) (Pappend : Πl v, P l → P (rappend l (rsingleton v))) : Π(l : rlist X), P l :=
begin
assert H : Π(l : rlist X), P (rreverse l),
{ refine rlist.rec _ _, exact P1, intro v l p,
rewrite [rreverse_rcons], apply Pappend, exact p },
intro l, exact transport P (rreverse_rreverse l) (H (rreverse l))
end
end list open list
namespace group
open sigma.ops
variables (X : Type) [decidable_eq X] {G : InfGroup}
definition group_dfree_group [constructor] : group (rlist X) :=
group.mk (is_trunc_rlist _) rappend rappend_assoc rnil rnil_rappend rappend_rnil
(rflip ∘ rreverse) rappend_left_inv
definition dfree_group [constructor] : Group :=
Group.mk _ (group_dfree_group X)
variable {X}
definition dfree_group_inclusion [constructor] [reducible] (x : X) : dfree_group X :=
rsingleton (inl x)
definition rsingleton_inr [constructor] (x : X) :
rsingleton (inr x) = (dfree_group_inclusion x)⁻¹ :> dfree_group X :=
by reflexivity
local attribute [instance] is_prop_is_reduced
definition dfree_group.rec {P : dfree_group X → Type}
(P1 : P 1) (Pcons : Πv g, P g → P (rsingleton v * g)) : Π(g : dfree_group X), P g :=
rlist.rec P1 Pcons
definition dfree_group.rec_rev {P : dfree_group X → Type}
(P1 : P 1) (Pcons : Πg v, P g → P (g * rsingleton v)) : Π(g : dfree_group X), P g :=
rlist.rec_rev P1 Pcons
-- definition dfree_group.rec2 [constructor] {P : dfree_group X → Type}
-- (P1 : P 1) (Pcons : Πg x, P g → P (dfree_group_inclusion x * g))
-- (Pinv : Πg, P g → P g⁻¹) : Π(g : dfree_group X), P g :=
-- begin
-- refine dfree_group.rec _ _, exact P1,
-- intro g v p, induction v with x x, exact Pcons g x p,
-- end
definition dfgh_helper [unfold 6] (f : X → G) (g : G) (x : X ⊎ X) : G :=
g * sum.rec (λx, f x) (λx, (f x)⁻¹) x
theorem dfgh_helper_mul (f : X → G) (l : list (X ⊎ X))
: Π(g : G), foldl (dfgh_helper f) g l = g * foldl (dfgh_helper f) 1 l :=
begin
induction l with s l IH: intro g,
{ unfold [foldl], exact !mul_one⁻¹},
{ rewrite [+foldl_cons, IH], refine _ ⬝ (ap (λx, g * x) !IH⁻¹),
rewrite [-mul.assoc, ↑dfgh_helper, one_mul] }
end
definition dfgh_helper_rcons (f : X → G) (g : G) (x : X ⊎ X) {l : list (X ⊎ X)} :
foldl (dfgh_helper f) g (rcons' x l) = foldl (dfgh_helper f) g (x :: l) :=
begin
cases l with x' l, reflexivity,
apply dite (sum.flip x = x'): intro q,
{ have is_set (X ⊎ X), from !is_trunc_sum,
rewrite [↑rcons', dite_true q _, foldl_cons, foldl_cons, -q],
induction x with x, rewrite [↑dfgh_helper,mul_inv_cancel_right],
rewrite [↑dfgh_helper,inv_mul_cancel_right] },
{ rewrite [↑rcons', dite_false q] }
end
definition dfgh_helper_rappend (f : X → G) (g : G) (l l' : rlist X) :
foldl (dfgh_helper f) g (rappend l l').1 = foldl (dfgh_helper f) g (l.1 ++ l'.1) :=
begin
revert g, induction l with l lH, unfold rappend, clear lH,
induction l with v l IH: intro g, reflexivity,
rewrite [rappend_cons', ↑rcons, dfgh_helper_rcons, foldl_cons, IH]
end
local attribute [coercion] InfGroup_of_Group
definition dfree_group_inf_hom [constructor] (G : InfGroup) (f : X → G) : dfree_group X →∞g G :=
inf_homomorphism.mk (λx, foldl (dfgh_helper f) 1 x.1)
(λl₁ l₂, !dfgh_helper_rappend ⬝ !foldl_append ⬝ !dfgh_helper_mul)
definition dfree_group_inf_hom_eq [constructor] {G : InfGroup} {φ ψ : dfree_group X →∞g G}
(H : Πx, φ (dfree_group_inclusion x) = ψ (dfree_group_inclusion x)) : φ ~ ψ :=
begin
assert H2 : Πv, φ (rsingleton v) = ψ (rsingleton v),
{ intro v, induction v with x x, exact H x,
exact to_respect_inv_inf φ _ ⬝ ap inv (H x) ⬝ (to_respect_inv_inf ψ _)⁻¹ },
refine dfree_group.rec _ _,
{ exact !to_respect_one_inf ⬝ !to_respect_one_inf⁻¹ },
{ intro v g p, exact !to_respect_mul_inf ⬝ ap011 mul (H2 v) p ⬝ !to_respect_mul_inf⁻¹ }
end
theorem dfree_group_inf_hom_inclusion [constructor] (G : InfGroup) (f : X → G) (x : X) :
dfree_group_inf_hom G f (dfree_group_inclusion x) = f x :=
by rewrite [▸*, foldl_cons, foldl_nil, ↑dfgh_helper, one_mul]
definition dfree_group_hom [constructor] {G : Group} (f : X → G) : dfree_group X →g G :=
homomorphism_of_inf_homomorphism (dfree_group_inf_hom G f)
-- todo: use the inf-version
definition dfree_group_hom_eq [constructor] {G : Group} {φ ψ : dfree_group X →g G}
(H : Πx, φ (dfree_group_inclusion x) = ψ (dfree_group_inclusion x)) : φ ~ ψ :=
begin
assert H2 : Πv, φ (rsingleton v) = ψ (rsingleton v),
{ intro v, induction v with x x, exact H x,
exact to_respect_inv φ _ ⬝ ap inv (H x) ⬝ (to_respect_inv ψ _)⁻¹ },
refine dfree_group.rec _ _,
{ exact !to_respect_one ⬝ !to_respect_one⁻¹ },
{ intro v g p, exact !to_respect_mul ⬝ ap011 mul (H2 v) p ⬝ !to_respect_mul⁻¹ }
end
definition is_mul_hom_dfree_group_fun {G : InfGroup} {f : dfree_group X → G}
(H1 : f 1 = 1) (H2 : Πv g, f (rsingleton v * g) = f (rsingleton v) * f g) : is_mul_hom f :=
begin
refine dfree_group.rec _ _,
{ intro g, exact ap f (one_mul g) ⬝ (ap (λx, x * _) H1 ⬝ one_mul (f g))⁻¹ },
{ intro g v p h,
exact ap f !mul.assoc ⬝ !H2 ⬝ ap (mul _) !p ⬝ (ap (λx, x * _) !H2 ⬝ !mul.assoc)⁻¹ }
end
definition dfree_group_hom_of_fun [constructor] {G : InfGroup} (f : dfree_group X → G)
(H1 : f 1 = 1) (H2 : Πv g, f (rsingleton v * g) = f (rsingleton v) * f g) :
dfree_group X →∞g G :=
inf_homomorphism.mk f (is_mul_hom_dfree_group_fun H1 H2)
variable (X)
open option
definition free_group_of_dfree_group [constructor] : dfree_group X →g free_group X₊ :=
dfree_group_hom (free_group_inclusion ∘ some)
definition dfree_group_of_free_group [constructor] : free_group X₊ →g dfree_group X :=
free_group_hom (ppi.mk (option.rec 1 dfree_group_inclusion) idp)
definition dfree_group_isomorphism : dfree_group X ≃g free_group X₊ :=
begin
apply isomorphism.MK (free_group_of_dfree_group X) (dfree_group_of_free_group X),
{ apply free_group_hom_eq, intro x, induction x with x,
{ symmetry, apply eq_of_rel, apply tr, exact free_group.free_group_rel.cancelpt1 X₊ },
{ reflexivity } },
{ apply dfree_group_hom_eq, intro x, reflexivity }
end
end group