Spectral/homotopy/spherical_fibrations.hlean
Floris van Doorn da033c0f4c work on dependent smash and cup product on EM-spaces
also many small fixes
2018-09-20 02:08:45 +02:00

160 lines
5.1 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import homotopy.join homotopy.smash types.nat.hott
open eq equiv trunc function bool join sphere sphere.ops prod
open pointed sigma smash is_trunc nat
namespace spherical_fibrations
/- classifying type of spherical fibrations -/
definition BG (n : ) [is_succ n] : Type₁ :=
Σ(X : Type₀), ∥ X ≃ S (pred n) ∥
definition pointed_BG [instance] [constructor] (n : ) [is_succ n] : pointed (BG n) :=
pointed.mk ⟨ S (pred n) , tr erfl ⟩
definition pBG [constructor] (n : ) [is_succ n] : Type* := pointed.mk' (BG n)
definition G (n : ) [is_succ n] : Type₁ :=
pt = pt :> BG n
definition G_char (n : ) [is_succ n] : G n ≃ (S (pred n) ≃ S (pred n)) :=
calc
G n ≃ Σ(p : pType.carrier (S (pred n)) = pType.carrier (S (pred n))), _ : sigma_eq_equiv
... ≃ (pType.carrier (S (pred n)) = pType.carrier (S (pred n))) : sigma_equiv_of_is_contr_right _ _
... ≃ (S (pred n) ≃ S (pred n)) : eq_equiv_equiv
definition mirror (n : ) [is_succ n] : S (pred n) → G n :=
begin
intro v, apply to_inv (G_char n),
exact sorry
end
/-
Can we give a fibration P : S n → Type, P base = F n = Ω(BF n) = (S. n ≃* S. n)
and total space sigma P ≃ G (n+1) = Ω(BG (n+1)) = (S n.+1 ≃ S .n+1)
Yes, let eval : BG (n+1) → S n be the evaluation map
-/
definition is_succ_1 [instance] : is_succ 1 := is_succ.mk 0
definition S_of_BG (n : ) : Ω(pBG (n+1)) → S n :=
λ f, f..1 ▸ pt
definition BG_succ (n : ) [H : is_succ n] : BG n → BG (n+1) :=
begin
induction H with n,
intro X, cases X with X p,
refine sigma.mk (susp X) _, induction p with f, apply tr,
exact susp.equiv f
end
/- classifying type of pointed spherical fibrations -/
definition BF (n : ) : Type₁ :=
Σ(X : Type*), ∥ X ≃* S n ∥
definition pointed_BF [instance] [constructor] (n : ) : pointed (BF n) :=
pointed.mk ⟨ S n , tr pequiv.rfl ⟩
definition pBF [constructor] (n : ) : Type* := pointed.mk' (BF n)
definition BF_succ (n : ) : BF n → BF (n+1) :=
begin
intro X, cases X with X p,
apply sigma.mk (susp X), induction p with f, apply tr,
apply susp.susp_pequiv f
end
definition BF_of_BG {n : } [H : is_succ n] : BG n → BF n :=
begin
induction H with n,
intro X, cases X with X p,
apply sigma.mk (pointed.MK (susp X) susp.north),
induction p with f, apply tr,
apply pequiv_of_equiv (susp.equiv f),
reflexivity
end
definition BG_of_BF {n : } : BF n → BG (n + 1) :=
begin
intro X, cases X with X hX,
apply sigma.mk (carrier X), induction hX with fX,
apply tr, exact fX
end
definition BG_mul {n m : } [Hn : is_succ n] [Hm : is_succ m] (X : BG n) (Y : BG m) :
BG (n + m) :=
begin
induction Hn with n, induction Hm with m,
cases X with X pX, cases Y with Y pY,
apply sigma.mk (join X Y),
induction pX with fX, induction pY with fY,
apply tr, rewrite [succ_add],
exact join_equiv_join fX fY ⬝e join_sphere n m
end
definition BF_mul {n m : } (X : BF n) (Y : BF m) : BF (n + m) :=
begin
cases X with X hX, cases Y with Y hY,
apply sigma.mk (smash X Y),
induction hX with fX, induction hY with fY, apply tr,
exact sorry -- needs smash.spheres : psmash (S. n) (S. m) ≃ S. (n + m)
end
definition BF_of_BG_mul (n m : ) [is_succ n] [is_succ m] (X : BG n) (Y : BG m)
: BF_of_BG (BG_mul X Y) = BF_mul (BF_of_BG X) (BF_of_BG Y) :=
sorry
-- Thom spaces
namespace thom
variables {X : Type} {n : } (α : X → BF n)
-- the canonical section of an F-object
protected definition sec (x : X) : carrier (sigma.pr1 (α x)) :=
Point _
open pushout sigma
definition thom_space : Type :=
pushout (λx : X, ⟨x , thom.sec α x⟩) (const X unit.star)
end thom
/-
Things to do:
- Orientability and orientations
* Thom class u ∈ ~Hⁿ(Tξ)
* eventually prove Thom-Isomorphism (Rudyak IV.5.7)
- define BG∞ and BF∞ as colimits of BG n and BF n
- Ω(BF n) = ΩⁿSⁿ₁ + ΩⁿSⁿ₋₁ (self-maps of degree ±1)
- succ_BF n is (n - 2) connected (from Freudenthal)
- pfiber (BG_of_BF n) ≃* S. n
- π₁(BF n)=π₁(BG n)=/2
- double covers BSG and BSF
- O : BF n → BG 1 = Σ(A : Type), ∥ A = bool ∥
- BSG n = sigma O
- π₁(BSG n)=π₁(BSF n)=O
- BSO(n),
- find BF' n : Type₀ with BF' n ≃ BF n etc.
- canonical bundle γₙ : P(n) → P∞=BO(1) → Type₀
prove T(γₙ) = P(n+1)
- BG∞ = BF∞ (in fact = BGL₁(S), the group of units of the sphere spectrum)
- clutching construction:
any f : S n → SG(n) gives S n.+1 → BSG(n) (mut.mut. for O(n),SO(n),etc.)
- all bundles on S 3 are trivial, incl. tangent bundle
- Adams' result on vector fields on spheres:
there are maximally ρ(n)-1 indep.sections of the tangent bundle of S (n-1)
where ρ(n) is the n'th Radon-Hurwitz number.→
-/
-- tangent bundle on S 2:
namespace two_sphere
definition tau : S 2 → BG 2 :=
begin
intro v, induction v with x, do 2 exact pt,
exact sorry
end
end two_sphere
end spherical_fibrations