938 lines
36 KiB
Text
938 lines
36 KiB
Text
/-
|
||
Copyright (c) 2016 Michael Shulman. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Michael Shulman, Floris van Doorn, Egbert Rijke, Stefano Piceghello, Yuri Sulyma
|
||
|
||
-/
|
||
|
||
import homotopy.LES_of_homotopy_groups ..algebra.splice ..algebra.seq_colim ..homotopy.EM ..homotopy.fwedge
|
||
..pointed_cubes
|
||
|
||
open eq nat int susp pointed sigma is_equiv equiv fiber algebra trunc trunc_index pi group
|
||
succ_str EM EM.ops function unit lift is_trunc sigma.ops
|
||
|
||
/---------------------
|
||
Basic definitions
|
||
---------------------/
|
||
|
||
/- The basic definitions of spectra and prespectra make sense for any successor-structure. -/
|
||
|
||
structure gen_prespectrum (N : succ_str) :=
|
||
(deloop : N → Type*)
|
||
(glue : Π(n:N), deloop n →* Ω (deloop (S n)))
|
||
|
||
attribute gen_prespectrum.deloop [coercion]
|
||
|
||
structure is_spectrum [class] {N : succ_str} (E : gen_prespectrum N) :=
|
||
(is_equiv_glue : Πn, is_equiv (gen_prespectrum.glue E n))
|
||
|
||
attribute is_spectrum.is_equiv_glue [instance]
|
||
|
||
structure gen_spectrum (N : succ_str) :=
|
||
(to_prespectrum : gen_prespectrum N)
|
||
(to_is_spectrum : is_spectrum to_prespectrum)
|
||
|
||
attribute gen_spectrum.to_prespectrum [coercion]
|
||
attribute gen_spectrum.to_is_spectrum [instance]
|
||
attribute gen_spectrum._trans_of_to_prespectrum [unfold 2]
|
||
|
||
-- Classically, spectra and prespectra use the successor structure +ℕ.
|
||
-- But we will use +ℤ instead, to reduce case analysis later on.
|
||
|
||
abbreviation prespectrum := gen_prespectrum +ℤ
|
||
definition prespectrum.mk (Y : ℤ → Type*) (e : Π(n : ℤ), Y n →* Ω (Y (n+1))) : prespectrum :=
|
||
gen_prespectrum.mk Y e
|
||
abbreviation spectrum := gen_spectrum +ℤ
|
||
abbreviation spectrum.mk (Y : prespectrum) (e : is_spectrum Y) : spectrum :=
|
||
gen_spectrum.mk Y e
|
||
|
||
namespace spectrum
|
||
|
||
definition glue [unfold 2] {{N : succ_str}} := @gen_prespectrum.glue N
|
||
--definition glue := (@gen_prespectrum.glue +ℤ)
|
||
definition equiv_glue {N : succ_str} (E : gen_prespectrum N) [H : is_spectrum E] (n:N) : (E n) ≃* (Ω (E (S n))) :=
|
||
pequiv_of_pmap (glue E n) (is_spectrum.is_equiv_glue E n)
|
||
|
||
definition equiv_glue2 (Y : spectrum) (n : ℤ) : Ω (Ω (Y (n+2))) ≃* Y n :=
|
||
begin
|
||
refine (!equiv_glue ⬝e* loop_pequiv_loop (!equiv_glue ⬝e* loop_pequiv_loop _))⁻¹ᵉ*,
|
||
refine pequiv_of_eq (ap Y _),
|
||
exact add.assoc n 1 1
|
||
end
|
||
|
||
definition gluen {N : succ_str} (X : gen_prespectrum N) (n : N) (k : ℕ)
|
||
: X n →* Ω[k] (X (n +' k)) :=
|
||
by induction k with k f; reflexivity; exact !loopn_succ_in⁻¹ᵉ* ∘* Ω→[k] (glue X (n +' k)) ∘* f
|
||
|
||
-- note: the forward map is (currently) not definitionally equal to gluen. Is that a problem?
|
||
definition equiv_gluen {N : succ_str} (X : gen_spectrum N) (n : N) (k : ℕ)
|
||
: X n ≃* Ω[k] (X (n +' k)) :=
|
||
by induction k with k f; reflexivity; exact f ⬝e* (loopn_pequiv_loopn k (equiv_glue X (n +' k))
|
||
⬝e* !loopn_succ_in⁻¹ᵉ*)
|
||
|
||
definition equiv_gluen_inv_succ {N : succ_str} (X : gen_spectrum N) (n : N) (k : ℕ) :
|
||
(equiv_gluen X n (k+1))⁻¹ᵉ* ~*
|
||
(equiv_gluen X n k)⁻¹ᵉ* ∘* Ω→[k] (equiv_glue X (n +' k))⁻¹ᵉ* ∘* !loopn_succ_in :=
|
||
begin
|
||
refine !trans_pinv ⬝* pwhisker_left _ _, refine !trans_pinv ⬝* _, refine pwhisker_left _ !pinv_pinv
|
||
end
|
||
|
||
definition succ_str_add_eq_int_add (n : ℤ) (m : ℕ) : @succ_str.add sint n m = n + m :=
|
||
begin
|
||
induction m with m IH,
|
||
{ symmetry, exact add_zero n },
|
||
{ exact ap int.succ IH ⬝ add.assoc n m 1 }
|
||
end
|
||
|
||
-- a square when we compose glue with transporting over a path in N
|
||
definition glue_ptransport {N : succ_str} (X : gen_prespectrum N) {n n' : N} (p : n = n') :
|
||
glue X n' ∘* ptransport X p ~* Ω→ (ptransport X (ap S p)) ∘* glue X n :=
|
||
by induction p; exact !pcompose_pid ⬝* !pid_pcompose⁻¹* ⬝* pwhisker_right _ !ap1_pid⁻¹*
|
||
|
||
-- Sometimes an ℕ-indexed version does arise naturally, however, so
|
||
-- we give a standard way to extend an ℕ-indexed (pre)spectrum to a
|
||
-- ℤ-indexed one.
|
||
|
||
definition psp_of_nat_indexed [constructor] (E : gen_prespectrum +ℕ) : gen_prespectrum +ℤ :=
|
||
gen_prespectrum.mk
|
||
(λ(n:ℤ), match n with
|
||
| of_nat k := E k
|
||
| neg_succ_of_nat k := Ω[succ k] (E 0)
|
||
end)
|
||
begin
|
||
intros n, cases n with n n: esimp,
|
||
{ exact (gen_prespectrum.glue E n) },
|
||
cases n with n,
|
||
{ exact (pid _) },
|
||
{ exact (pid _) }
|
||
end
|
||
|
||
definition is_spectrum_of_nat_indexed [instance] (E : gen_prespectrum +ℕ) [H : is_spectrum E] : is_spectrum (psp_of_nat_indexed E) :=
|
||
begin
|
||
apply is_spectrum.mk, intros n, cases n with n n: esimp,
|
||
{ apply is_spectrum.is_equiv_glue },
|
||
cases n with n: apply is_equiv_id
|
||
end
|
||
|
||
protected definition of_nat_indexed (E : gen_prespectrum +ℕ) [H : is_spectrum E] : spectrum
|
||
:= spectrum.mk (psp_of_nat_indexed E) (is_spectrum_of_nat_indexed E)
|
||
|
||
-- In fact, a (pre)spectrum indexed on any pointed successor structure
|
||
-- gives rise to one indexed on +ℕ, so in this sense +ℤ is a
|
||
-- "universal" successor structure for indexing spectra.
|
||
|
||
definition succ_str.of_nat {N : succ_str} (z : N) : ℕ → N
|
||
| succ_str.of_nat zero := z
|
||
| succ_str.of_nat (succ k) := S (succ_str.of_nat k)
|
||
|
||
definition psp_of_gen_indexed [constructor] {N : succ_str} (z : N) (E : gen_prespectrum N) : prespectrum :=
|
||
psp_of_nat_indexed (gen_prespectrum.mk (λn, E (succ_str.of_nat z n)) (λn, gen_prespectrum.glue E (succ_str.of_nat z n)))
|
||
|
||
definition is_spectrum_of_gen_indexed [instance] {N : succ_str} (z : N) (E : gen_prespectrum N) [H : is_spectrum E]
|
||
: is_spectrum (psp_of_gen_indexed z E) :=
|
||
begin
|
||
apply is_spectrum_of_nat_indexed, apply is_spectrum.mk, intros n, esimp, apply is_spectrum.is_equiv_glue
|
||
end
|
||
|
||
protected definition of_gen_indexed [constructor] {N : succ_str} (z : N) (E : gen_spectrum N) : spectrum :=
|
||
gen_spectrum.mk (psp_of_gen_indexed z E) (is_spectrum_of_gen_indexed z E)
|
||
|
||
-- Generally it's easiest to define a spectrum by giving 'equiv's
|
||
-- directly. This works for any indexing succ_str.
|
||
protected definition MK [constructor] {N : succ_str} (deloop : N → Type*)
|
||
(glue : Π(n:N), (deloop n) ≃* (Ω (deloop (S n)))) : gen_spectrum N :=
|
||
gen_spectrum.mk (gen_prespectrum.mk deloop (λ(n:N), glue n))
|
||
(begin
|
||
apply is_spectrum.mk, intros n, esimp,
|
||
apply pequiv.to_is_equiv -- Why doesn't typeclass inference find this?
|
||
end)
|
||
|
||
-- Finally, we combine them and give a way to produce a (ℤ-)spectrum from a ℕ-indexed family of 'equiv's.
|
||
protected definition Mk [constructor] (deloop : ℕ → Type*)
|
||
(glue : Π(n:ℕ), (deloop n) ≃* (Ω (deloop (nat.succ n)))) : spectrum :=
|
||
spectrum.of_nat_indexed (spectrum.MK deloop glue)
|
||
|
||
------------------------------
|
||
-- Maps and homotopies of (pre)spectra
|
||
------------------------------
|
||
|
||
-- These make sense for any succ_str.
|
||
|
||
structure smap {N : succ_str} (E F : gen_prespectrum N) :=
|
||
(to_fun : Π(n:N), E n →* F n)
|
||
(glue_square : Π(n:N), psquare
|
||
(to_fun n)
|
||
(Ω→ (to_fun (S n)))
|
||
(glue E n)
|
||
(glue F n)
|
||
)
|
||
|
||
definition smap_sigma {N : succ_str} (X Y : gen_prespectrum N) : Type :=
|
||
Σ (to_fun : Π(n:N), X n →* Y n),
|
||
Π(n:N), psquare
|
||
(to_fun n)
|
||
(Ω→ (to_fun (S n)))
|
||
(glue X n)
|
||
(glue Y n)
|
||
|
||
open smap
|
||
infix ` →ₛ `:30 := smap
|
||
|
||
attribute smap.to_fun [coercion]
|
||
|
||
definition smap_to_sigma [unfold 4] {N : succ_str} {X Y : gen_prespectrum N} (f : X →ₛ Y) : smap_sigma X Y :=
|
||
begin
|
||
exact sigma.mk (smap.to_fun f) (glue_square f),
|
||
end
|
||
|
||
definition smap_to_struc [unfold 4] {N : succ_str} {X Y : gen_prespectrum N} (f : smap_sigma X Y) : X →ₛ Y :=
|
||
begin
|
||
exact smap.mk f.1 f.2,
|
||
end
|
||
|
||
definition smap_to_sigma_isretr {N : succ_str} {X Y : gen_prespectrum N} (f : smap_sigma X Y) :
|
||
smap_to_sigma (smap_to_struc f) = f :=
|
||
begin
|
||
induction f, reflexivity
|
||
end
|
||
|
||
definition smap_to_sigma_issec {N : succ_str} {X Y : gen_prespectrum N} (f : X →ₛ Y) :
|
||
smap_to_struc (smap_to_sigma f) = f :=
|
||
begin
|
||
induction f, reflexivity
|
||
end
|
||
|
||
definition smap_sigma_equiv [constructor] {N : succ_str} (X Y : gen_prespectrum N) : (smap_sigma X Y) ≃ (X →ₛ Y) :=
|
||
begin
|
||
fapply equiv.mk,
|
||
exact smap_to_struc,
|
||
fapply adjointify,
|
||
exact smap_to_sigma,
|
||
exact smap_to_sigma_issec,
|
||
exact smap_to_sigma_isretr
|
||
end
|
||
|
||
-- A version of 'glue_square' in the spectrum case that uses 'equiv_glue'
|
||
definition sglue_square {N : succ_str} {E F : gen_spectrum N} (f : E →ₛ F) (n : N)
|
||
: psquare (f n) (Ω→ (f (S n))) (equiv_glue E n) (equiv_glue F n) :=
|
||
glue_square f n
|
||
|
||
definition sid [constructor] [refl] {N : succ_str} (E : gen_prespectrum N) : E →ₛ E :=
|
||
begin
|
||
apply smap.mk (λ n, pid (E n)),
|
||
intro n, exact phrfl ⬝vp* !ap1_pid
|
||
end
|
||
|
||
definition scompose [trans] {N : succ_str} {X Y Z : gen_prespectrum N}
|
||
(g : Y →ₛ Z) (f : X →ₛ Y) : X →ₛ Z :=
|
||
begin
|
||
apply smap.mk (λn, g n ∘* f n),
|
||
intro n, exact (glue_square f n ⬝h* glue_square g n) ⬝vp* !ap1_pcompose
|
||
end
|
||
|
||
infixr ` ∘ₛ `:60 := scompose
|
||
|
||
definition szero [constructor] {N : succ_str} (E F : gen_prespectrum N) : E →ₛ F :=
|
||
begin
|
||
apply smap.mk (λn, pconst (E n) (F n)),
|
||
intro n, exact !hpconst_square ⬝vp* !ap1_pconst
|
||
end
|
||
|
||
definition stransport [constructor] {N : succ_str} {A : Type} {a a' : A} (p : a = a')
|
||
(E : A → gen_prespectrum N) : E a →ₛ E a' :=
|
||
smap.mk (λn, ptransport (λa, E a n) p)
|
||
begin
|
||
intro n, induction p,
|
||
exact !pcompose_pid ⬝* !pid_pcompose⁻¹* ⬝* pwhisker_right _ !ap1_pid⁻¹*,
|
||
end
|
||
|
||
structure shomotopy {N : succ_str} {E F : gen_prespectrum N} (f g : E →ₛ F) :=
|
||
(to_phomotopy : Πn, f n ~* g n)
|
||
(glue_homotopy : Πn, ptube_v
|
||
(to_phomotopy n)
|
||
(Ω⇒ (to_phomotopy (S n)))
|
||
(glue_square f n)
|
||
(glue_square g n))
|
||
|
||
/- (glue_homotopy : Πn, phsquare
|
||
(pwhisker_left (glue F n) (to_phomotopy n))
|
||
(pwhisker_right (glue E n) (ap1_phomotopy (to_phomotopy (S n))))
|
||
(glue_square f n)
|
||
(glue_square g n))
|
||
-/
|
||
|
||
infix ` ~ₛ `:50 := shomotopy
|
||
attribute [coercion] shomotopy.to_phomotopy
|
||
|
||
definition shomotopy_compose {N : succ_str} {E F : gen_prespectrum N} {f g h : E →ₛ F} (p : g ~ₛ h) (q : f ~ₛ g) : f ~ₛ h :=
|
||
shomotopy.mk
|
||
(λn, (shomotopy.to_phomotopy q n) ⬝* (shomotopy.to_phomotopy p n))
|
||
begin
|
||
intro n, unfold [ptube_v],
|
||
rewrite (pwhisker_left_trans _),
|
||
rewrite ap1_phomotopy_trans,
|
||
rewrite (pwhisker_right_trans _),
|
||
exact phhconcat ((shomotopy.glue_homotopy q) n) ((shomotopy.glue_homotopy p) n)
|
||
end
|
||
|
||
definition shomotopy_inverse {N : succ_str} {E F : gen_prespectrum N} {f g : E →ₛ F} (p : f ~ₛ g) : g ~ₛ f :=
|
||
shomotopy.mk (λn, (shomotopy.to_phomotopy p n)⁻¹*) begin
|
||
intro n, unfold [ptube_v],
|
||
rewrite (pwhisker_left_symm _ _),
|
||
rewrite [-ap1_phomotopy_symm],
|
||
rewrite (pwhisker_right_symm _ _),
|
||
exact phhinverse ((shomotopy.glue_homotopy p) n)
|
||
end
|
||
|
||
|
||
/- Comparing the structure of shomotopy with a Σ-type -/
|
||
definition shomotopy_sigma {N : succ_str} {X Y : gen_prespectrum N} (f g : X →ₛ Y) : Type :=
|
||
Σ (phtpy : Π (n : N), f n ~* g n),
|
||
Πn, ptube_v
|
||
(phtpy n)
|
||
(ap1_phomotopy (phtpy (S n)))
|
||
(glue_square f n)
|
||
(glue_square g n)
|
||
|
||
definition shomotopy_to_sigma [unfold 6] {N : succ_str} {X Y : gen_prespectrum N} {f g : X →ₛ Y} (H : f ~ₛ g) : shomotopy_sigma f g :=
|
||
⟨H, shomotopy.glue_homotopy H⟩
|
||
|
||
definition shomotopy_to_struct [unfold 6] {N : succ_str} {X Y : gen_prespectrum N} {f g : X →ₛ Y} (H : shomotopy_sigma f g) : f ~ₛ g :=
|
||
begin
|
||
induction H with H Hsq,
|
||
exact shomotopy.mk H Hsq,
|
||
end
|
||
|
||
definition shomotopy_to_sigma_isretr {N : succ_str} {X Y : gen_prespectrum N} {f g : X →ₛ Y} (H : shomotopy_sigma f g) :
|
||
shomotopy_to_sigma (shomotopy_to_struct H) = H
|
||
:=
|
||
begin
|
||
induction H with H Hsq, reflexivity
|
||
end
|
||
|
||
definition shomotopy_to_sigma_issec {N : succ_str} {X Y : gen_prespectrum N} {f g : X →ₛ Y} (H : f ~ₛ g) :
|
||
shomotopy_to_struct (shomotopy_to_sigma H) = H
|
||
:=
|
||
begin
|
||
induction H, reflexivity
|
||
end
|
||
|
||
definition shomotopy_sigma_equiv [constructor] {N : succ_str} {X Y : gen_prespectrum N} (f g : X →ₛ Y) :
|
||
shomotopy_sigma f g ≃ (f ~ₛ g) :=
|
||
begin
|
||
fapply equiv.mk,
|
||
exact shomotopy_to_struct,
|
||
fapply adjointify,
|
||
exact shomotopy_to_sigma,
|
||
exact shomotopy_to_sigma_issec,
|
||
exact shomotopy_to_sigma_isretr,
|
||
end
|
||
|
||
/- equivalence of shomotopy and eq -/
|
||
/-
|
||
definition eq_of_shomotopy_pfun {N : succ_str} {X Y : gen_prespectrum N} {f g : X →ₛ Y} (H : f ~ₛ g) (n : N) : f n = g n :=
|
||
begin
|
||
fapply eq_of_fn_eq_fn (smap_sigma_equiv X Y),
|
||
repeat exact sorry
|
||
end-/
|
||
|
||
definition fam_phomotopy_of_eq
|
||
{N : Type} {X Y: N → Type*} (f g : Π n, X n →* Y n) : (f = g) ≃ (Π n, f n ~* g n) :=
|
||
(eq.eq_equiv_homotopy) ⬝e pi_equiv_pi_right (λ n, pmap_eq_equiv (f n) (g n))
|
||
|
||
/-
|
||
definition phomotopy_rec_on_eq [recursor]
|
||
{k' : ppi B x₀}
|
||
{Q : (k ~* k') → Type}
|
||
(p : k ~* k')
|
||
(H : Π(q : k = k'), Q (phomotopy_of_eq q))
|
||
: Q p :=
|
||
phomotopy_of_eq_of_phomotopy p ▸ H (eq_of_phomotopy p)
|
||
-/
|
||
definition fam_phomotopy_rec_on_eq {N : Type} {X Y : N → Type*} (f g : Π n, X n →* Y n)
|
||
{Q : (Π n, f n ~* g n) → Type}
|
||
(p : Π n, f n ~* g n)
|
||
(H : Π (q : f = g), Q (fam_phomotopy_of_eq f g q)) : Q p :=
|
||
begin
|
||
refine _ ▸ H ((fam_phomotopy_of_eq f g)⁻¹ᵉ p),
|
||
have q : to_fun (fam_phomotopy_of_eq f g) (to_fun (fam_phomotopy_of_eq f g)⁻¹ᵉ p) = p,
|
||
from right_inv (fam_phomotopy_of_eq f g) p,
|
||
krewrite q
|
||
end
|
||
|
||
/-
|
||
definition phomotopy_rec_idp [recursor]
|
||
{Q : Π {k' : ppi B x₀}, (k ~* k') → Type}
|
||
(q : Q (phomotopy.refl k)) {k' : ppi B x₀} (H : k ~* k') : Q H :=
|
||
begin
|
||
induction H using phomotopy_rec_on_eq with t,
|
||
induction t, exact eq_phomotopy_refl_phomotopy_of_eq_refl k ▸ q,
|
||
end
|
||
-/
|
||
|
||
--set_option pp.coercions true
|
||
|
||
definition fam_phomotopy_rec_idp {N : Type} {X Y : N → Type*} (f : Π n, X n →* Y n)
|
||
(Q : Π (g : Π n, X n →* Y n) (H : Π n, f n ~* g n), Type)
|
||
(q : Q f (λ n, phomotopy.rfl))
|
||
(g : Π n, X n →* Y n) (H : Π n, f n ~* g n) : Q g H :=
|
||
begin
|
||
fapply fam_phomotopy_rec_on_eq,
|
||
refine λ(p : f = g), _, --ugly trick
|
||
intro p, induction p,
|
||
exact q,
|
||
end
|
||
|
||
definition eq_of_shomotopy {N : succ_str} {X Y : gen_prespectrum N} {f g : X →ₛ Y} (H : f ~ₛ g) : f = g :=
|
||
begin
|
||
fapply eq_of_fn_eq_fn (smap_sigma_equiv X Y)⁻¹ᵉ,
|
||
induction f with f fsq,
|
||
induction g with g gsq,
|
||
induction H with H Hsq,
|
||
fapply sigma_eq,
|
||
fapply eq_of_homotopy,
|
||
intro n, fapply eq_of_phomotopy, exact H n,
|
||
fapply pi_pathover_constant,
|
||
intro n,
|
||
esimp at *,
|
||
revert g H gsq Hsq n,
|
||
refine fam_phomotopy_rec_idp f _ _,
|
||
intro gsq Hsq n,
|
||
refine change_path _ _,
|
||
-- have p : eq_of_homotopy (λ n, eq_of_phomotopy phomotopy.rfl) = refl f,
|
||
reflexivity,
|
||
refine (eq_of_homotopy_apd10 rfl)⁻¹ ⬝ _,
|
||
fapply ap (eq_of_homotopy), fapply eq_of_homotopy, intro n, refine (eq_of_phomotopy_refl _)⁻¹,
|
||
-- fapply eq_of_phomotopy,
|
||
fapply pathover_idp_of_eq,
|
||
note Hsq' := ptube_v_eq_bot phomotopy.rfl (ap1_phomotopy_refl _) (fsq n) (gsq n) (Hsq n),
|
||
unfold ptube_v at *,
|
||
unfold phsquare at *,
|
||
refine _ ⬝ Hsq'⁻¹ ⬝ _,
|
||
refine (trans_refl (fsq n))⁻¹ ⬝ _,
|
||
exact idp ◾** (pwhisker_right_refl _ _)⁻¹,
|
||
refine _ ⬝ (refl_trans (gsq n)),
|
||
refine _ ◾** idp,
|
||
exact pwhisker_left_refl _ _,
|
||
end
|
||
|
||
------------------------------
|
||
-- Equivalences of prespectra
|
||
------------------------------
|
||
|
||
definition spectrum_pequiv_of_pequiv_succ {E F : spectrum} (n : ℤ) (e : E (n + 1) ≃* F (n + 1)) :
|
||
E n ≃* F n :=
|
||
equiv_glue E n ⬝e* loop_pequiv_loop e ⬝e* (equiv_glue F n)⁻¹ᵉ*
|
||
|
||
definition spectrum_pequiv_of_nat {E F : spectrum} (e : Π(n : ℕ), E n ≃* F n) (n : ℤ) :
|
||
E n ≃* F n :=
|
||
begin
|
||
induction n with n n,
|
||
exact e n,
|
||
induction n with n IH,
|
||
{ exact spectrum_pequiv_of_pequiv_succ -[1+0] (e 0) },
|
||
{ exact spectrum_pequiv_of_pequiv_succ -[1+succ n] IH }
|
||
end
|
||
|
||
definition spectrum_pequiv_of_nat_add {E F : spectrum} (m : ℕ)
|
||
(e : Π(n : ℕ), E (n + m) ≃* F (n + m)) : Π(n : ℤ), E n ≃* F n :=
|
||
begin
|
||
apply spectrum_pequiv_of_nat,
|
||
refine nat.rec_down _ m e _,
|
||
intro n f k, cases k with k,
|
||
exact spectrum_pequiv_of_pequiv_succ _ (f 0),
|
||
exact pequiv_ap E (ap of_nat (succ_add k n)) ⬝e* f k ⬝e*
|
||
pequiv_ap F (ap of_nat (succ_add k n))⁻¹
|
||
end
|
||
|
||
definition is_contr_spectrum_of_nat {E : spectrum} (e : Π(n : ℕ), is_contr (E n)) (n : ℤ) :
|
||
is_contr (E n) :=
|
||
begin
|
||
have Πn, is_contr (E (n + 1)) → is_contr (E n),
|
||
from λn H, @(is_trunc_equiv_closed_rev -2 !equiv_glue) (is_contr_loop_of_is_contr H),
|
||
induction n with n n,
|
||
exact e n,
|
||
induction n with n IH,
|
||
{ exact this -[1+0] (e 0) },
|
||
{ exact this -[1+succ n] IH }
|
||
end
|
||
|
||
structure is_sequiv {N : succ_str} {E F : gen_prespectrum N} (f : E →ₛ F) : Type :=
|
||
(to_linv : F →ₛ E)
|
||
(is_retr : to_linv ∘ₛf ~ₛ sid E)
|
||
(to_rinv : F →ₛ E)
|
||
(is_sec : f ∘ₛ to_rinv ~ₛ sid F)
|
||
|
||
structure sequiv {N : succ_str} (E F : gen_prespectrum N) : Type :=
|
||
(to_fun : E →ₛ F)
|
||
(to_is_sequiv : is_sequiv to_fun)
|
||
|
||
infix ` ≃ₛ ` : 25 := sequiv
|
||
|
||
definition is_sequiv_smap {N : succ_str} {E F : gen_prespectrum N} (f : E →ₛ F) : Type := Π (n: N), is_equiv (f n)
|
||
|
||
definition is_sequiv_of_smap_pequiv {N : succ_str} {E F : gen_prespectrum N} (f : E →ₛ F) (H : is_sequiv_smap f) (n : N) : E n ≃* F n :=
|
||
begin
|
||
fapply pequiv_of_pmap,
|
||
exact f n,
|
||
fapply H,
|
||
end
|
||
|
||
definition is_sequiv_of_smap_inv {N : succ_str} {E F : gen_prespectrum N} (f : E →ₛ F) (H : is_sequiv_smap f) : F →ₛ E :=
|
||
begin
|
||
fapply smap.mk,
|
||
intro n,
|
||
exact (is_sequiv_of_smap_pequiv f H n)⁻¹ᵉ*,
|
||
intro n,
|
||
refine _ ⬝vp* (to_pinv_loopn_pequiv_loopn 1 (is_sequiv_of_smap_pequiv f H (S n)))⁻¹*,
|
||
fapply phinverse,
|
||
exact glue_square f n,
|
||
end
|
||
|
||
local postfix `⁻¹ˢ` : (max + 1) := is_sequiv_of_smap_inv
|
||
|
||
definition is_sequiv_of_smap_isretr {N : succ_str} {E F : gen_prespectrum N} (f : E →ₛ F) (H : is_sequiv_smap f) : is_sequiv_of_smap_inv f H ∘ₛ f ~ₛ sid E :=
|
||
begin
|
||
fapply shomotopy.mk,
|
||
intro n,
|
||
fapply pleft_inv,
|
||
intro n,
|
||
refine _ ⬝hp** _,
|
||
repeat exact sorry,
|
||
end
|
||
|
||
definition is_sequiv_of_smap_issec {N : succ_str} {E F : gen_prespectrum N} (f : E →ₛ F) (H : is_sequiv_smap f) : f ∘ₛ is_sequiv_of_smap_inv f H ~ₛ sid F :=
|
||
begin
|
||
repeat exact sorry
|
||
end
|
||
|
||
definition is_sequiv_of_smap {N : succ_str} {E F : gen_prespectrum N} (f : E →ₛ F) : is_sequiv_smap f → is_sequiv f :=
|
||
begin
|
||
intro H,
|
||
fapply is_sequiv.mk,
|
||
fapply is_sequiv_of_smap_inv f H,
|
||
fapply is_sequiv_of_smap_isretr f H,
|
||
fapply is_sequiv_of_smap_inv f H,
|
||
fapply is_sequiv_of_smap_issec f H,
|
||
end
|
||
|
||
/---------
|
||
Fibers
|
||
----------/
|
||
|
||
definition sfiber [constructor] {N : succ_str} {X Y : gen_spectrum N} (f : X →ₛ Y) :
|
||
gen_spectrum N :=
|
||
spectrum.MK (λn, pfiber (f n))
|
||
(λn, (loop_pfiber (f (S n)))⁻¹ᵉ* ∘*ᵉ pfiber_pequiv_of_square _ _ (sglue_square f n))
|
||
|
||
/- the map from the fiber to the domain -/
|
||
definition spoint {N : succ_str} {X Y : gen_spectrum N} (f : X →ₛ Y) : sfiber f →ₛ X :=
|
||
smap.mk (λn, ppoint (f n))
|
||
begin
|
||
intro n,
|
||
-- refine _ ⬝vp* !ppoint_loop_pfiber_inv,
|
||
refine _ ⬝* !passoc,
|
||
refine _ ⬝* pwhisker_right _ !ppoint_loop_pfiber_inv⁻¹*,
|
||
rexact (pfiber_pequiv_of_square_ppoint (equiv_glue X n) (equiv_glue Y n) (sglue_square f n))⁻¹*
|
||
end
|
||
|
||
definition scompose_spoint {N : succ_str} {X Y : gen_spectrum N} (f : X →ₛ Y)
|
||
: f ∘ₛ spoint f ~ₛ !szero :=
|
||
begin
|
||
fapply shomotopy.mk,
|
||
{ intro n, exact pcompose_ppoint (f n) },
|
||
{ intro n, esimp, exact sorry }
|
||
end
|
||
|
||
/---------------------
|
||
Homotopy groups
|
||
---------------------/
|
||
|
||
-- Here we start to reap the rewards of using ℤ-indexing: we can
|
||
-- read off the homotopy groups without any tedious case-analysis of
|
||
-- n. We increment by 2 in order to ensure that they are all
|
||
-- automatically abelian groups.
|
||
definition shomotopy_group (n : ℤ) (E : spectrum) : AbGroup := πag[2] (E (2 - n))
|
||
|
||
notation `πₛ[`:95 n:0 `]`:0 := shomotopy_group n
|
||
|
||
definition shomotopy_group_fun (n : ℤ) {E F : spectrum} (f : E →ₛ F) :
|
||
πₛ[n] E →g πₛ[n] F :=
|
||
proof π→g[2] (f (2 - n)) qed
|
||
|
||
definition shomotopy_group_isomorphism_of_pequiv (n : ℤ) {E F : spectrum} (f : Πn, E n ≃* F n) :
|
||
πₛ[n] E ≃g πₛ[n] F :=
|
||
proof homotopy_group_isomorphism_of_pequiv 1 (f (2 - n)) qed
|
||
|
||
definition shomotopy_group_isomorphism_of_pequiv_nat (n : ℕ) {E F : spectrum}
|
||
(f : Πn, E n ≃* F n) : πₛ[n] E ≃g πₛ[n] F :=
|
||
shomotopy_group_isomorphism_of_pequiv n (spectrum_pequiv_of_nat f)
|
||
|
||
notation `πₛ→[`:95 n:0 `]`:0 := shomotopy_group_fun n
|
||
|
||
/- properties about homotopy groups -/
|
||
definition equiv_glue_neg (X : spectrum) (n : ℤ) : X (2 - succ n) ≃* Ω (X (2 - n)) :=
|
||
have H : succ (2 - succ n) = 2 - n, from ap succ !sub_sub⁻¹ ⬝ sub_add_cancel (2-n) 1,
|
||
equiv_glue X (2 - succ n) ⬝e* loop_pequiv_loop (pequiv_of_eq (ap X H))
|
||
|
||
definition π_glue (X : spectrum) (n : ℤ) : π[2] (X (2 - succ n)) ≃* π[3] (X (2 - n)) :=
|
||
homotopy_group_pequiv 2 (equiv_glue_neg X n)
|
||
|
||
definition πg_glue (X : spectrum) (n : ℤ) : πg[2] (X (2 - succ n)) ≃g πg[3] (X (2 - n)) :=
|
||
begin
|
||
change πg[2] (X (2 - succ n)) ≃g πg[2] (Ω (X (2 - n))),
|
||
apply homotopy_group_isomorphism_of_pequiv,
|
||
exact equiv_glue_neg X n
|
||
end
|
||
|
||
definition πg_glue_homotopy_π_glue (X : spectrum) (n : ℤ) : πg_glue X n ~ π_glue X n :=
|
||
by reflexivity
|
||
|
||
definition π_glue_square {X Y : spectrum} (f : X →ₛ Y) (n : ℤ) :
|
||
π_glue Y n ∘* π→[2] (f (2 - succ n)) ~* π→[3] (f (2 - n)) ∘* π_glue X n :=
|
||
begin
|
||
change π→[2] (equiv_glue_neg Y n) ∘* π→[2] (f (2 - succ n)) ~*
|
||
π→[2] (Ω→ (f (2 - n))) ∘* π→[2] (equiv_glue_neg X n),
|
||
refine homotopy_group_functor_psquare 2 _,
|
||
refine !sglue_square ⬝v* ap1_psquare !pequiv_of_eq_commute
|
||
end
|
||
|
||
definition homotopy_group_spectrum_irrel_one {n m : ℤ} {k : ℕ} (E : spectrum) (p : n + 1 = m + k)
|
||
[Hk : is_succ k] : πg[k] (E n) ≃g π₁ (E m) :=
|
||
begin
|
||
induction Hk with k,
|
||
change π₁ (Ω[k] (E n)) ≃g π₁ (E m),
|
||
apply homotopy_group_isomorphism_of_pequiv 0,
|
||
symmetry,
|
||
have m + k = n, from (pred_succ (m + k))⁻¹ ⬝ ap pred (add.assoc m k 1 ⬝ p⁻¹) ⬝ pred_succ n,
|
||
induction (succ_str_add_eq_int_add m k ⬝ this),
|
||
exact equiv_gluen E m k
|
||
end
|
||
|
||
definition homotopy_group_spectrum_irrel {n m : ℤ} {l k : ℕ} (E : spectrum) (p : n + l = m + k)
|
||
[Hk : is_succ k] [Hl : is_succ l] : πg[k] (E n) ≃g πg[l] (E m) :=
|
||
proof
|
||
have Πa b c : ℤ, a + (b + c) = c + (b + a), from λa b c,
|
||
!add.assoc⁻¹ ⬝ add.comm (a + b) c ⬝ ap (λx, c + x) (add.comm a b),
|
||
have n + 1 = m + 1 - l + k, from
|
||
ap succ (add_sub_cancel n l)⁻¹ ⬝ !add.assoc ⬝ ap (λx, x + (-l + 1)) p ⬝ !add.assoc ⬝
|
||
ap (λx, m + x) (this k (-l) 1) ⬝ !add.assoc⁻¹ ⬝ !add.assoc⁻¹,
|
||
homotopy_group_spectrum_irrel_one E this ⬝g
|
||
(homotopy_group_spectrum_irrel_one E (sub_add_cancel (m+1) l)⁻¹)⁻¹ᵍ
|
||
qed
|
||
|
||
definition shomotopy_group_isomorphism_homotopy_group {n m : ℤ} {l : ℕ} (E : spectrum) (p : n + m = l)
|
||
[H : is_succ l] : πₛ[n] E ≃g πg[l] (E m) :=
|
||
have 2 - n + l = m + 2, from
|
||
ap (λx, 2 - n + x) p⁻¹ ⬝ !add.assoc⁻¹ ⬝ ap (λx, x + m) (sub_add_cancel 2 n) ⬝ add.comm 2 m,
|
||
homotopy_group_spectrum_irrel E this
|
||
|
||
definition shomotopy_group_pequiv_homotopy_group_ab {n m : ℤ} {l : ℕ} (E : spectrum) (p : n + m = l)
|
||
[H : is_at_least_two l] : πₛ[n] E ≃g πag[l] (E m) :=
|
||
begin
|
||
induction H with l,
|
||
exact shomotopy_group_isomorphism_homotopy_group E p
|
||
end
|
||
|
||
definition shomotopy_group_pequiv_homotopy_group {n m : ℤ} {l : ℕ} (E : spectrum) (p : n + m = l) :
|
||
πₛ[n] E ≃* π[l] (E m) :=
|
||
begin
|
||
cases l with l,
|
||
{ apply ptrunc_pequiv_ptrunc, symmetry,
|
||
change E m ≃* Ω (Ω (E (2 - n))),
|
||
refine !equiv_glue ⬝e* loop_pequiv_loop _,
|
||
refine !equiv_glue ⬝e* loop_pequiv_loop _,
|
||
apply pequiv_ap E,
|
||
have -n = m, from neg_eq_of_add_eq_zero p,
|
||
induction this,
|
||
rexact add.assoc (-n) 1 1 ⬝ add.comm (-n) 2 },
|
||
{ exact pequiv_of_isomorphism (shomotopy_group_isomorphism_homotopy_group E p) }
|
||
end
|
||
|
||
/- the long exact sequence of homotopy groups for spectra -/
|
||
section LES
|
||
open chain_complex prod fin group
|
||
|
||
universe variable u
|
||
parameters {X Y : spectrum.{u}} (f : X →ₛ Y)
|
||
|
||
definition LES_of_shomotopy_groups : chain_complex +3ℤ :=
|
||
splice (λ(n : ℤ), LES_of_homotopy_groups (f (2 - n))) (2, 0)
|
||
(π_glue Y) (π_glue X) (π_glue_square f)
|
||
|
||
-- This LES is definitionally what we want:
|
||
example (n : ℤ) : LES_of_shomotopy_groups (n, 0) = πₛ[n] Y := idp
|
||
example (n : ℤ) : LES_of_shomotopy_groups (n, 1) = πₛ[n] X := idp
|
||
example (n : ℤ) : LES_of_shomotopy_groups (n, 2) = πₛ[n] (sfiber f) := idp
|
||
example (n : ℤ) : cc_to_fn LES_of_shomotopy_groups (n, 0) = πₛ→[n] f := idp
|
||
example (n : ℤ) : cc_to_fn LES_of_shomotopy_groups (n, 1) = πₛ→[n] (spoint f) := idp
|
||
-- the maps are ugly for (n, 2)
|
||
|
||
definition ab_group_LES_of_shomotopy_groups : Π(v : +3ℤ), ab_group (LES_of_shomotopy_groups v)
|
||
| (n, fin.mk 0 H) := proof AbGroup.struct (πₛ[n] Y) qed
|
||
| (n, fin.mk 1 H) := proof AbGroup.struct (πₛ[n] X) qed
|
||
| (n, fin.mk 2 H) := proof AbGroup.struct (πₛ[n] (sfiber f)) qed
|
||
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
|
||
local attribute ab_group_LES_of_shomotopy_groups [instance]
|
||
|
||
definition is_mul_hom_LES_of_shomotopy_groups :
|
||
Π(v : +3ℤ), is_mul_hom (cc_to_fn LES_of_shomotopy_groups v)
|
||
| (n, fin.mk 0 H) := proof homomorphism.struct (πₛ→[n] f) qed
|
||
| (n, fin.mk 1 H) := proof homomorphism.struct (πₛ→[n] (spoint f)) qed
|
||
| (n, fin.mk 2 H) := proof homomorphism.struct
|
||
(homomorphism_LES_of_homotopy_groups_fun (f (2 - n)) (1, 2) ∘g πg_glue Y n) qed
|
||
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
|
||
|
||
definition is_exact_LES_of_shomotopy_groups : is_exact LES_of_shomotopy_groups :=
|
||
begin
|
||
apply is_exact_splice, intro n, apply is_exact_LES_of_homotopy_groups,
|
||
end
|
||
|
||
-- In the comments below is a start on an explicit description of the LES for spectra
|
||
-- Maybe it's slightly nicer to work with than the above version
|
||
|
||
definition shomotopy_groups [reducible] : +3ℤ → AbGroup
|
||
| (n, fin.mk 0 H) := πₛ[n] Y
|
||
| (n, fin.mk 1 H) := πₛ[n] X
|
||
| (n, fin.mk k H) := πₛ[n] (sfiber f)
|
||
|
||
definition shomotopy_groups_fun : Π(v : +3ℤ), shomotopy_groups (S v) →g shomotopy_groups v
|
||
| (n, fin.mk 0 H) := proof πₛ→[n] f qed
|
||
| (n, fin.mk 1 H) := proof πₛ→[n] (spoint f) qed
|
||
| (n, fin.mk 2 H) := proof homomorphism_LES_of_homotopy_groups_fun (f (2 - n)) (nat.succ nat.zero, 2) ∘g
|
||
πg_glue Y n ∘g (by reflexivity) qed
|
||
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
|
||
--(homomorphism_LES_of_homotopy_groups_fun (f (2 - n)) (1, 2) ∘g πg_glue Y n)
|
||
|
||
definition is_contr_shomotopy_group_sfiber {n : ℤ}
|
||
(H1 : is_embedding (πₛ→[n] f)) (H2 : is_surjective (πₛ→[n+1] f)) :
|
||
is_contr (πₛ[n] (sfiber f)) :=
|
||
begin
|
||
apply @is_contr_of_is_embedding_of_is_surjective +3ℤ LES_of_shomotopy_groups (n, 0),
|
||
exact is_exact_LES_of_shomotopy_groups (n, 1), exact H1, exact H2
|
||
end
|
||
|
||
definition is_contr_shomotopy_group_sfiber_of_is_equiv {n : ℤ}
|
||
(H1 : is_equiv (πₛ→[n] f)) (H2 : is_equiv (πₛ→[n+1] f)) :
|
||
is_contr (πₛ[n] (sfiber f)) :=
|
||
proof
|
||
is_contr_shomotopy_group_sfiber (is_embedding_of_is_equiv _) (is_surjective_of_is_equiv _)
|
||
qed
|
||
|
||
end LES
|
||
|
||
|
||
/- homotopy group of a prespectrum -/
|
||
|
||
definition pshomotopy_group_hom (n : ℤ) (E : prespectrum) (k : ℕ)
|
||
: πag[k + 2] (E (-n + 2 + k)) →g πag[k + 3] (E (-n + 2 + (k + 1))) :=
|
||
begin
|
||
refine _ ∘g π→g[k+2] (glue E _),
|
||
refine (ghomotopy_group_succ_in _ (k+1))⁻¹ᵍ ∘g _,
|
||
refine homotopy_group_isomorphism_of_pequiv (k+1)
|
||
(loop_pequiv_loop (pequiv_of_eq (ap E (add.assoc (-n + 2) k 1))))
|
||
end
|
||
|
||
definition pshomotopy_group (n : ℤ) (E : prespectrum) : AbGroup :=
|
||
group.seq_colim (λ(k : ℕ), πag[k+2] (E (-n + 2 + k))) (pshomotopy_group_hom n E)
|
||
|
||
notation `πₚₛ[`:95 n:0 `]`:0 := pshomotopy_group n
|
||
|
||
definition pshomotopy_group_fun (n : ℤ) {E F : prespectrum} (f : E →ₛ F) :
|
||
πₚₛ[n] E →g πₚₛ[n] F :=
|
||
proof
|
||
group.seq_colim_functor (λk, π→g[k+2] (f (-n + 2 +[ℤ] k)))
|
||
begin
|
||
intro k,
|
||
note sq1 := homotopy_group_homomorphism_psquare (k+2) (ptranspose (smap.glue_square f (-n + 2 +[ℤ] k))),
|
||
note sq2 := homotopy_group_functor_psquare (k+2) (ap1_psquare (ptransport_natural E F f (add.assoc (-n + 2) k 1))),
|
||
-- note sq3 := (homotopy_group_succ_in_natural (k+2) (f (-n + 2 +[ℤ] (k +[ℕ] 1))))⁻¹ʰᵗʸʰ,
|
||
-- note sq4 := hsquare_of_psquare sq2,
|
||
-- note rect := sq1 ⬝htyh sq4 ⬝htyh sq3,
|
||
exact sorry --sq1 ⬝htyh sq4 ⬝htyh sq3,
|
||
end
|
||
qed
|
||
|
||
notation `πₚₛ→[`:95 n:0 `]`:0 := pshomotopy_group_fun n
|
||
|
||
|
||
/- a chain complex of spectra (not yet used anywhere) -/
|
||
|
||
structure sp_chain_complex (N : succ_str) : Type :=
|
||
(car : N → spectrum)
|
||
(fn : Π(n : N), car (S n) →ₛ car n)
|
||
(is_chain_complex : Πn, fn n ∘ₛ fn (S n) ~ₛ szero _ _)
|
||
|
||
section
|
||
variables {N : succ_str} (X : sp_chain_complex N) (n : N)
|
||
|
||
definition scc_to_car [unfold 2] [coercion] := @sp_chain_complex.car
|
||
definition scc_to_fn [unfold 2] : X (S n) →ₛ X n := sp_chain_complex.fn X n
|
||
definition scc_is_chain_complex [unfold 2] : scc_to_fn X n ∘ₛ scc_to_fn X (S n) ~ₛ szero _ _
|
||
:= sp_chain_complex.is_chain_complex X n
|
||
end
|
||
|
||
|
||
------------------------------
|
||
-- Suspension prespectra
|
||
------------------------------
|
||
|
||
-- Suspension prespectra are one that's naturally indexed on the natural numbers
|
||
definition psp_susp (X : Type*) : gen_prespectrum +ℕ :=
|
||
gen_prespectrum.mk (λn, iterate_susp n X) (λn, loop_susp_unit (iterate_susp n X))
|
||
|
||
-- The sphere prespectrum
|
||
definition psp_sphere : gen_prespectrum +ℕ :=
|
||
psp_susp bool.pbool
|
||
|
||
|
||
/-------------------------------
|
||
Cotensor of spectra by types
|
||
-------------------------------/
|
||
|
||
-- Makes sense for any indexing succ_str. Could be done for
|
||
-- prespectra too, but as with truncation, why bother?
|
||
|
||
definition sp_cotensor [constructor] {N : succ_str} (A : Type*) (B : gen_spectrum N) :
|
||
gen_spectrum N :=
|
||
spectrum.MK (λn, ppmap A (B n))
|
||
(λn, (loop_ppmap_commute A (B (S n)))⁻¹ᵉ* ∘*ᵉ (pequiv_ppcompose_left (equiv_glue B n)))
|
||
|
||
/- unpointed cotensor -/
|
||
definition sp_ucotensor [constructor] {N : succ_str} (A : Type) (B : gen_spectrum N) :
|
||
gen_spectrum N :=
|
||
spectrum.MK (λn, A →ᵘ* B n)
|
||
(λn, pumap_pequiv_right A (equiv_glue B n) ⬝e* (loop_pumap A (B (S n)))⁻¹ᵉ*)
|
||
|
||
----------------------------------------
|
||
-- Sections of parametrized spectra
|
||
----------------------------------------
|
||
|
||
definition spi [constructor] {N : succ_str} (A : Type*) (E : A → gen_spectrum N) :
|
||
gen_spectrum N :=
|
||
spectrum.MK (λn, Π*a, E a n)
|
||
(λn, !loop_pppi_pequiv⁻¹ᵉ* ∘*ᵉ ppi_pequiv_right (λa, equiv_glue (E a) n))
|
||
|
||
definition spi_compose_left [constructor] {N : succ_str} {A : Type*} {E F : A -> gen_spectrum N}
|
||
(f : Πa, E a →ₛ F a) : spi A E →ₛ spi A F :=
|
||
smap.mk (λn, pppi_compose_left (λa, f a n))
|
||
begin
|
||
intro n,
|
||
exact psquare_pppi_compose_left (λa, (glue_square (f a) n)) ⬝v* !loop_pppi_pequiv_natural⁻¹ᵛ*
|
||
end
|
||
|
||
-- unpointed spi
|
||
definition supi [constructor] {N : succ_str} (A : Type) (E : A → gen_spectrum N) :
|
||
gen_spectrum N :=
|
||
spectrum.MK (λn, Πᵘ*a, E a n)
|
||
(λn, pupi_pequiv_right (λa, equiv_glue (E a) n) ⬝e* (loop_pupi (λa, E a (S n)))⁻¹ᵉ*)
|
||
|
||
/- Mapping spectra -/
|
||
-- note: see also cotensor above
|
||
|
||
/-
|
||
suspension of a spectrum
|
||
|
||
this is just a shift. We could call a shift in the other direction loopn,
|
||
though it might be more convenient to just take a negative suspension
|
||
-/
|
||
|
||
definition ssusp [constructor] {N : succ_str} (X : gen_spectrum N) : gen_spectrum N :=
|
||
spectrum.MK (λn, X (S n)) (λn, equiv_glue X (S n))
|
||
|
||
definition ssuspn [constructor] (k : ℤ) (X : spectrum) : spectrum :=
|
||
spectrum.MK (λn, X (n + k))
|
||
(λn, equiv_glue X (n + k) ⬝e* loop_pequiv_loop (pequiv_ap X !add.right_comm))
|
||
|
||
definition shomotopy_group_ssuspn (k : ℤ) (X : spectrum) (n : ℤ) :
|
||
πₛ[k] (ssuspn n X) ≃g πₛ[k - n] X :=
|
||
have k - n + (2 - k + n) = 2, from
|
||
!add.comm ⬝
|
||
ap (λx, x + (k - n)) (!add.assoc ⬝ ap (λx, 2 + x) (ap (λx, -k + x) !neg_neg⁻¹ ⬝ !neg_add⁻¹)) ⬝
|
||
sub_add_cancel 2 (k - n),
|
||
(shomotopy_group_isomorphism_homotopy_group X this)⁻¹ᵍ
|
||
|
||
/- Tensor by spaces -/
|
||
|
||
/- Cofibers and stability -/
|
||
|
||
------------------------------
|
||
-- Contractible spectrum
|
||
------------------------------
|
||
|
||
definition sunit.{u} [constructor] : spectrum.{u} :=
|
||
spectrum.MK (λn, plift punit) (λn, pequiv_of_is_contr _ _ _ _)
|
||
|
||
definition shomotopy_group_sunit.{u} (n : ℤ) : πₛ[n] sunit.{u} ≃g trivial_ab_group_lift.{u} :=
|
||
phomotopy_group_plift_punit 2
|
||
|
||
definition add_point_spectrum [constructor] {X : Type} (Y : X → spectrum) (x : X₊) : spectrum :=
|
||
spectrum.MK (λn, add_point_over (λx, Y x n) x)
|
||
begin
|
||
intro n, induction x with x,
|
||
apply pequiv_of_is_contr,
|
||
apply is_trunc_lift,
|
||
apply is_contr_loop_of_is_contr, apply is_trunc_lift,
|
||
exact equiv_glue (Y x) n
|
||
end
|
||
|
||
open option
|
||
definition shomotopy_group_add_point_spectrum {X : Type} (Y : X → spectrum) (n : ℤ) :
|
||
Π(x : X₊), πₛ[n] (add_point_spectrum Y x) ≃g add_point_AbGroup (λ (x : X), πₛ[n] (Y x)) x
|
||
| (some x) := by reflexivity
|
||
| none := proof phomotopy_group_plift_punit 2 qed
|
||
|
||
/- The Eilenberg-MacLane spectrum -/
|
||
|
||
definition EM_spectrum /-[constructor]-/ (G : AbGroup) : spectrum :=
|
||
spectrum.Mk (K G) (λn, (loop_EM G n)⁻¹ᵉ*)
|
||
|
||
definition EM_spectrum_pequiv {G H : AbGroup} (e : G ≃g H) (n : ℤ) :
|
||
EM_spectrum G n ≃* EM_spectrum H n :=
|
||
spectrum_pequiv_of_nat (λk, EM_pequiv_EM k e) n
|
||
|
||
definition EM_spectrum_trivial.{u} (n : ℤ) :
|
||
EM_spectrum trivial_ab_group_lift.{u} n ≃* trivial_ab_group_lift.{u} :=
|
||
pequiv_of_is_contr _ _
|
||
(is_contr_spectrum_of_nat (λk, is_contr_EM k !is_trunc_lift) n)
|
||
!is_trunc_lift
|
||
|
||
definition is_contr_EM_spectrum_neg (G : AbGroup) (n : ℕ) : is_contr (EM_spectrum G (-[1+n])) :=
|
||
begin
|
||
induction n with n IH,
|
||
{ apply is_contr_loop, exact is_trunc_EM G 0 },
|
||
{ apply is_contr_loop_of_is_contr, exact IH }
|
||
end
|
||
|
||
definition is_contr_EM_spectrum (G : AbGroup) (n : ℤ) (H : is_contr G) : is_contr (EM_spectrum G n) :=
|
||
begin
|
||
cases n with n n,
|
||
{ apply is_contr_EM n H },
|
||
{ apply is_contr_EM_spectrum_neg G n }
|
||
end
|
||
|
||
/- K(πₗ(Aₖ),l) ≃* K(πₙ(A),l) for l = n + k -/
|
||
definition EM_type_pequiv_EM (A : spectrum) {n k : ℤ} {l : ℕ} (p : n + k = l) :
|
||
EM_type (A k) l ≃* EM (πₛ[n] A) l :=
|
||
begin
|
||
symmetry,
|
||
cases l with l,
|
||
{ exact shomotopy_group_pequiv_homotopy_group A p },
|
||
{ cases l with l,
|
||
{ apply EM1_pequiv_EM1, exact shomotopy_group_isomorphism_homotopy_group A p },
|
||
{ apply EMadd1_pequiv_EMadd1 (l+1), exact shomotopy_group_isomorphism_homotopy_group A p }}
|
||
end
|
||
|
||
/- Wedge of prespectra -/
|
||
|
||
open fwedge
|
||
|
||
definition fwedge_prespectrum.{u v} {I : Type.{v}} (X : I -> prespectrum.{u}) : prespectrum.{max u v} :=
|
||
begin
|
||
fconstructor,
|
||
{ intro n, exact fwedge (λ i, X i n) },
|
||
{ intro n, fapply fwedge_pmap,
|
||
intro i, exact Ω→ !pinl ∘* !glue }
|
||
end
|
||
|
||
end spectrum
|