a578b1c42e
Start on applications of the LES. Also finish proofs in sec83 (I've also included them in the latest pull request for the Lean-HoTT library).
44 lines
1.4 KiB
Text
44 lines
1.4 KiB
Text
-- Section 8.3
|
||
|
||
import types.trunc types.pointed homotopy.connectedness homotopy.sphere homotopy.circle algebra.group algebra.homotopy_group
|
||
|
||
open eq is_trunc is_equiv nat equiv trunc function circle algebra pointed trunc_index homotopy
|
||
|
||
|
||
-- Lemma 8.3.1
|
||
|
||
theorem trivial_homotopy_group_of_is_trunc (A : Type*) (n k : ℕ) [is_trunc n A] (H : n ≤ k)
|
||
: is_contr (πg[k+1] A) :=
|
||
begin
|
||
apply is_trunc_trunc_of_is_trunc,
|
||
apply is_contr_loop_of_is_trunc,
|
||
apply @is_trunc_of_le A n _,
|
||
exact of_nat_le_of_nat H
|
||
end
|
||
|
||
-- Lemma 8.3.2
|
||
theorem trivial_homotopy_group_of_is_conn (A : Type*) {k n : ℕ} (H : k ≤ n) [is_conn n A]
|
||
: is_contr (π[k] A) :=
|
||
begin
|
||
have H2 : of_nat k ≤ of_nat n, from of_nat_le_of_nat H,
|
||
have H3 : is_contr (ptrunc k A),
|
||
begin
|
||
fapply is_contr_equiv_closed,
|
||
{ apply trunc_trunc_equiv_left _ k n H2}
|
||
end,
|
||
have H4 : is_contr (Ω[k](ptrunc k A)),
|
||
from !is_trunc_loop_of_is_trunc,
|
||
apply is_trunc_equiv_closed_rev,
|
||
{ apply equiv_of_pequiv (phomotopy_group_pequiv_loop_ptrunc k A)}
|
||
end
|
||
|
||
-- Corollary 8.3.3
|
||
open sphere.ops sphere_index
|
||
theorem homotopy_group_sphere_le (n k : ℕ) (H : k < n) : is_contr (π[k] (S. n)) :=
|
||
begin
|
||
cases n with n,
|
||
{ exfalso, apply not_lt_zero, exact H},
|
||
{ have H2 : k ≤ n, from le_of_lt_succ H,
|
||
apply @(trivial_homotopy_group_of_is_conn _ H2),
|
||
rewrite [-trunc_index.of_sphere_index_of_nat, -trunc_index.succ_sub_one], apply is_conn_sphere}
|
||
end
|