528 lines
21 KiB
Text
528 lines
21 KiB
Text
/-
|
||
Copyright (c) 2016 Floris van Doorn. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Floris van Doorn
|
||
|
||
-/
|
||
|
||
import types.int types.pointed2 types.trunc algebra.hott ..group_theory.basic .fin
|
||
|
||
open eq pointed int unit is_equiv equiv is_trunc trunc equiv.ops function algebra group sigma.ops
|
||
sum prod nat bool fin
|
||
namespace eq
|
||
definition transport_eq_Fl_idp_left {A B : Type} {a : A} {b : B} (f : A → B) (q : f a = b)
|
||
: transport_eq_Fl idp q = !idp_con⁻¹ :=
|
||
by induction q; reflexivity
|
||
|
||
definition whisker_left_idp_con_eq_assoc
|
||
{A : Type} {a₁ a₂ a₃ : A} (p : a₁ = a₂) (q : a₂ = a₃)
|
||
: whisker_left p (idp_con q)⁻¹ = con.assoc p idp q :=
|
||
by induction q; reflexivity
|
||
|
||
end eq open eq
|
||
|
||
structure succ_str : Type :=
|
||
(carrier : Type)
|
||
(succ : carrier → carrier)
|
||
|
||
attribute succ_str.carrier [coercion]
|
||
|
||
definition succ_str.S {X : succ_str} : X → X := succ_str.succ X
|
||
|
||
open succ_str
|
||
|
||
definition snat [reducible] [constructor] : succ_str := succ_str.mk ℕ nat.succ
|
||
definition snat' [reducible] [constructor] : succ_str := succ_str.mk ℕ nat.pred
|
||
definition sint [reducible] [constructor] : succ_str := succ_str.mk ℤ int.succ
|
||
definition sint' [reducible] [constructor] : succ_str := succ_str.mk ℤ int.pred
|
||
|
||
notation `+ℕ` := snat
|
||
notation `-ℕ` := snat'
|
||
notation `+ℤ` := sint
|
||
notation `-ℤ` := sint'
|
||
|
||
definition stratified_type [reducible] (N : succ_str) (n : ℕ) : Type₀ := N × fin (succ n)
|
||
|
||
-- definition stratified_succ' {N : succ_str} : Π{n : ℕ}, N → ifin n → stratified_type N n
|
||
-- | (succ k) n (fz k) := (S n, ifin.max k)
|
||
-- | (succ k) n (fs x) := (n, ifin.incl x)
|
||
|
||
-- definition stratified_succ {N : succ_str} {n : ℕ} (x : stratified_type N n) : stratified_type N n :=
|
||
-- stratified_succ' (pr1 x) (pr2 x)
|
||
|
||
definition stratified_succ {N : succ_str} {n : ℕ} (x : stratified_type N n)
|
||
: stratified_type N n :=
|
||
(if val (pr2 x) = n then S (pr1 x) else pr1 x, my_succ (pr2 x))
|
||
|
||
definition stratified [reducible] [constructor] (N : succ_str) (n : ℕ) : succ_str :=
|
||
succ_str.mk (stratified_type N n) stratified_succ
|
||
|
||
--example (n : ℕ) : flatten (n, (2 : ifin (nat.succ (nat.succ 4)))) = 6*n+2 := proof rfl qed
|
||
|
||
notation `+3ℕ` := stratified +ℕ 2
|
||
notation `-3ℕ` := stratified -ℕ 2
|
||
notation `+3ℤ` := stratified +ℤ 2
|
||
notation `-3ℤ` := stratified -ℤ 2
|
||
notation `+6ℕ` := stratified +ℕ 5
|
||
notation `-6ℕ` := stratified -ℕ 5
|
||
notation `+6ℤ` := stratified +ℤ 5
|
||
notation `-6ℤ` := stratified -ℤ 5
|
||
|
||
-- definition triple_type (N : succ_str) : Type₀ := N ⊎ N ⊎ N
|
||
-- definition triple_succ {N : succ_str} : triple_type N → triple_type N
|
||
-- | (inl n) := inr (inl n)
|
||
-- | (inr (inl n)) := inr (inr n)
|
||
-- | (inr (inr n)) := inl (S n)
|
||
|
||
-- definition triple [reducible] [constructor] (N : succ_str) : succ_str :=
|
||
-- succ_str.mk (triple_type N) triple_succ
|
||
|
||
-- notation `+3ℕ` := triple +ℕ
|
||
-- notation `-3ℕ` := triple -ℕ
|
||
-- notation `+3ℤ` := triple +ℤ
|
||
-- notation `-3ℤ` := triple -ℤ
|
||
|
||
namespace chain_complex
|
||
|
||
-- are chain complexes with the "set"-requirement removed interesting?
|
||
structure type_chain_complex (N : succ_str) : Type :=
|
||
(car : N → Type*)
|
||
(fn : Π(n : N), car (S n) →* car n)
|
||
(is_chain_complex : Π(n : N) (x : car (S (S n))), fn n (fn (S n) x) = pt)
|
||
|
||
section
|
||
variables {N : succ_str} (X : type_chain_complex N) (n : N)
|
||
|
||
definition tcc_to_car [unfold 2] [coercion] := @type_chain_complex.car
|
||
definition tcc_to_fn [unfold 2] : X (S n) →* X n := type_chain_complex.fn X n
|
||
definition tcc_is_chain_complex [unfold 2]
|
||
: Π(x : X (S (S n))), tcc_to_fn X n (tcc_to_fn X (S n) x) = pt :=
|
||
type_chain_complex.is_chain_complex X n
|
||
|
||
-- important: these notions are shifted by one! (this is to avoid transports)
|
||
definition is_exact_at_t [reducible] /- X n -/ : Type :=
|
||
Π(x : X (S n)), tcc_to_fn X n x = pt → fiber (tcc_to_fn X (S n)) x
|
||
|
||
definition is_exact_t [reducible] /- X -/ : Type :=
|
||
Π(n : N), is_exact_at_t X n
|
||
|
||
-- definition type_chain_complex_from_left (X : type_chain_complex) : type_chain_complex :=
|
||
-- type_chain_complex.mk (int.rec X (λn, punit))
|
||
-- begin
|
||
-- intro n, fconstructor,
|
||
-- { induction n with n n,
|
||
-- { exact @ltcc_to_fn X n},
|
||
-- { esimp, intro x, exact star}},
|
||
-- { induction n with n n,
|
||
-- { apply respect_pt},
|
||
-- { reflexivity}}
|
||
-- end
|
||
-- begin
|
||
-- intro n, induction n with n n,
|
||
-- { exact ltcc_is_chain_complex X},
|
||
-- { esimp, intro x, reflexivity}
|
||
-- end
|
||
|
||
-- definition is_exact_t_from_left {X : type_chain_complex} {n : ℕ} (H : is_exact_at_lt X n)
|
||
-- : is_exact_at_t (type_chain_complex_from_left X) n :=
|
||
-- H
|
||
|
||
definition transfer_type_chain_complex [constructor]
|
||
{Y : N → Type*} (g : Π{n : N}, Y (S n) →* Y n) (e : Π{n}, X n ≃* Y n)
|
||
(p : Π{n} (x : X (S n)), e (tcc_to_fn X n x) = g (e x)) : type_chain_complex N :=
|
||
type_chain_complex.mk Y @g
|
||
abstract begin
|
||
intro n, apply equiv_rect (equiv_of_pequiv e), intro x,
|
||
refine ap g (p x)⁻¹ ⬝ _,
|
||
refine (p _)⁻¹ ⬝ _,
|
||
refine ap e (tcc_is_chain_complex X n _) ⬝ _,
|
||
apply respect_pt
|
||
end end
|
||
|
||
theorem is_exact_at_t_transfer {X : type_chain_complex N} {Y : N → Type*}
|
||
{g : Π{n : N}, Y (S n) →* Y n} (e : Π{n}, X n ≃* Y n)
|
||
(p : Π{n} (x : X (S n)), e (tcc_to_fn X n x) = g (e x)) {n : N}
|
||
(H : is_exact_at_t X n) : is_exact_at_t (transfer_type_chain_complex X @g @e @p) n :=
|
||
begin
|
||
intro y q, esimp at *,
|
||
have H2 : tcc_to_fn X n (e⁻¹ᵉ* y) = pt,
|
||
begin
|
||
refine (inv_commute (λn, equiv_of_pequiv e) _ _ @p _)⁻¹ᵖ ⬝ _,
|
||
refine ap _ q ⬝ _,
|
||
exact respect_pt e⁻¹ᵉ*
|
||
end,
|
||
cases (H _ H2) with x r,
|
||
refine fiber.mk (e x) _,
|
||
refine (p x)⁻¹ ⬝ _,
|
||
refine ap e r ⬝ _,
|
||
apply right_inv
|
||
end
|
||
|
||
-- move to init.equiv. This is inv_commute for A ≡ unit
|
||
definition inv_commute1' {B C : Type} (f : B → C) [is_equiv f] (h : B → B) (h' : C → C)
|
||
(p : Π(b : B), f (h b) = h' (f b)) (c : C) : f⁻¹ (h' c) = h (f⁻¹ c) :=
|
||
eq_of_fn_eq_fn' f (right_inv f (h' c) ⬝ ap h' (right_inv f c)⁻¹ ⬝ (p (f⁻¹ c))⁻¹)
|
||
|
||
definition inv_commute1 {B C : Type} (f : B ≃ C) (h : B → B) (h' : C → C)
|
||
(p : Π(b : B), f (h b) = h' (f b)) (c : C) : f⁻¹ (h' c) = h (f⁻¹ c) :=
|
||
inv_commute1' (to_fun f) h h' p c
|
||
|
||
definition fn_cast_eq_cast_fn {A : Type} {P Q : A → Type} {x y : A} (p : x = y)
|
||
(f : Πx, P x → Q x) (z : P x) : f y (cast (ap P p) z) = cast (ap Q p) (f x z) :=
|
||
by induction p; reflexivity
|
||
|
||
definition cast_cast_inv {A : Type} {P : A → Type} {x y : A} (p : x = y) (z : P y) :
|
||
cast (ap P p) (cast (ap P p⁻¹) z) = z :=
|
||
by induction p; reflexivity
|
||
|
||
definition cast_inv_cast {A : Type} {P : A → Type} {x y : A} (p : x = y) (z : P x) :
|
||
cast (ap P p⁻¹) (cast (ap P p) z) = z :=
|
||
by induction p; reflexivity
|
||
|
||
-- more general transfer, where the base type can also change by an equivalence.
|
||
definition transfer_type_chain_complex2 [constructor] {M : succ_str} {Y : M → Type*}
|
||
(f : M ≃ N) (c : Π(m : M), S (f m) = f (S m))
|
||
(g : Π{m : M}, Y (S m) →* Y m) (e : Π{m}, X (f m) ≃* Y m)
|
||
(p : Π{m} (x : X (S (f m))), e (tcc_to_fn X (f m) x) = g (e (cast (ap (λx, X x) (c m)) x)))
|
||
: type_chain_complex M :=
|
||
type_chain_complex.mk Y @g
|
||
begin
|
||
intro m,
|
||
apply equiv_rect (equiv_of_pequiv e),
|
||
apply equiv_rect (equiv_of_eq (ap (λx, X x) (c (S m)))), esimp,
|
||
apply equiv_rect (equiv_of_eq (ap (λx, X (S x)) (c m))), esimp,
|
||
intro x, refine ap g (p _)⁻¹ ⬝ _,
|
||
refine ap g (ap e (fn_cast_eq_cast_fn (c m) (tcc_to_fn X) x)) ⬝ _,
|
||
refine (p _)⁻¹ ⬝ _,
|
||
refine ap e (tcc_is_chain_complex X (f m) _) ⬝ _,
|
||
apply respect_pt
|
||
end
|
||
|
||
definition is_exact_at_transfer2 {X : type_chain_complex N} {M : succ_str} {Y : M → Type*}
|
||
(f : M ≃ N) (c : Π(m : M), S (f m) = f (S m))
|
||
(g : Π{m : M}, Y (S m) →* Y m) (e : Π{m}, X (f m) ≃* Y m)
|
||
(p : Π{m} (x : X (S (f m))), e (tcc_to_fn X (f m) x) = g (e (cast (ap (λx, X x) (c m)) x)))
|
||
{m : M} (H : is_exact_at_t X (f m))
|
||
: is_exact_at_t (transfer_type_chain_complex2 X f c @g @e @p) m :=
|
||
begin
|
||
intro y q, esimp at *,
|
||
assert H2 : tcc_to_fn X (f m) ((equiv_of_eq (ap (λx, X x) (c m)))⁻¹ᵉ (e⁻¹ y)) = pt,
|
||
{ refine _ ⬝ ap e⁻¹ᵉ* q ⬝ (respect_pt (e⁻¹ᵉ*)), apply eq_inv_of_eq, clear q, revert y,
|
||
refine inv_homotopy_of_homotopy (pequiv.to_equiv e) _,
|
||
apply inv_homotopy_of_homotopy, apply p},
|
||
induction (H _ H2) with x r,
|
||
refine fiber.mk (e (cast (ap (λx, X x) (c (S m))) (cast (ap (λx, X (S x)) (c m)) x))) _,
|
||
refine (p _)⁻¹ ⬝ _,
|
||
refine ap e (fn_cast_eq_cast_fn (c m) (tcc_to_fn X) x) ⬝ _,
|
||
refine ap (λx, e (cast _ x)) r ⬝ _,
|
||
esimp [equiv.symm], rewrite [-ap_inv],
|
||
refine ap e !cast_cast_inv ⬝ _,
|
||
apply right_inv
|
||
end
|
||
|
||
-- definition trunc_type_chain_complex [constructor] (X : type_chain_complex N)
|
||
-- (k : trunc_index) : type_chain_complex N :=
|
||
-- type_chain_complex.mk
|
||
-- (λn, ptrunc k (X n))
|
||
-- (λn, ptrunc_functor k (tcc_to_fn X n))
|
||
-- begin
|
||
-- intro n x, esimp at *,
|
||
-- refine trunc.rec _ x, -- why doesn't induction work here?
|
||
-- clear x, intro x, esimp,
|
||
-- exact ap tr (tcc_is_chain_complex X n x)
|
||
-- end
|
||
end
|
||
|
||
/- actual (set) chain complexes -/
|
||
structure chain_complex (N : succ_str) : Type :=
|
||
(car : N → Set*)
|
||
(fn : Π(n : N), car (S n) →* car n)
|
||
(is_chain_complex : Π(n : N) (x : car (S (S n))), fn n (fn (S n) x) = pt)
|
||
|
||
section
|
||
variables {N : succ_str} (X : chain_complex N) (n : N)
|
||
|
||
definition cc_to_car [unfold 2] [coercion] := @chain_complex.car
|
||
definition cc_to_fn [unfold 2] : X (S n) →* X n := @chain_complex.fn N X n
|
||
definition cc_is_chain_complex [unfold 2]
|
||
: Π(x : X (S (S n))), cc_to_fn X n (cc_to_fn X (S n) x) = pt :=
|
||
@chain_complex.is_chain_complex N X n
|
||
|
||
-- important: these notions are shifted by one! (this is to avoid transports)
|
||
definition is_exact_at [reducible] /- X n -/ : Type :=
|
||
Π(x : X (S n)), cc_to_fn X n x = pt → image (cc_to_fn X (S n)) x
|
||
|
||
definition is_exact [reducible] /- X -/ : Type := Π(n : N), is_exact_at X n
|
||
|
||
-- definition chain_complex_from_left (X : chain_complex) : chain_complex :=
|
||
-- chain_complex.mk (int.rec X (λn, punit))
|
||
-- begin
|
||
-- intro n, fconstructor,
|
||
-- { induction n with n n,
|
||
-- { exact @lcc_to_fn X n},
|
||
-- { esimp, intro x, exact star}},
|
||
-- { induction n with n n,
|
||
-- { apply respect_pt},
|
||
-- { reflexivity}}
|
||
-- end
|
||
-- begin
|
||
-- intro n, induction n with n n,
|
||
-- { exact lcc_is_chain_complex X},
|
||
-- { esimp, intro x, reflexivity}
|
||
-- end
|
||
|
||
-- definition is_exact_from_left {X : chain_complex} {n : ℕ} (H : is_exact_at_l X n)
|
||
-- : is_exact_at (chain_complex_from_left X) n :=
|
||
-- H
|
||
|
||
definition transfer_chain_complex [constructor] {Y : N → Set*}
|
||
(g : Π{n : N}, Y (S n) →* Y n) (e : Π{n}, X n ≃* Y n)
|
||
(p : Π{n} (x : X (S n)), e (cc_to_fn X n x) = g (e x)) : chain_complex N :=
|
||
chain_complex.mk Y @g
|
||
abstract begin
|
||
intro n, apply equiv_rect (equiv_of_pequiv e), intro x,
|
||
refine ap g (p x)⁻¹ ⬝ _,
|
||
refine (p _)⁻¹ ⬝ _,
|
||
refine ap e (cc_is_chain_complex X n _) ⬝ _,
|
||
apply respect_pt
|
||
end end
|
||
|
||
theorem is_exact_at_transfer {X : chain_complex N} {Y : N → Set*}
|
||
(g : Π{n : N}, Y (S n) →* Y n) (e : Π{n}, X n ≃* Y n)
|
||
(p : Π{n} (x : X (S n)), e (cc_to_fn X n x) = g (e x))
|
||
{n : N} (H : is_exact_at X n) : is_exact_at (transfer_chain_complex X @g @e @p) n :=
|
||
begin
|
||
intro y q, esimp at *,
|
||
assert H2 : cc_to_fn X n (e⁻¹ᵉ* y) = pt,
|
||
{ refine (inv_commute (λn, equiv_of_pequiv e) _ _ @p _)⁻¹ᵖ ⬝ _,
|
||
refine ap _ q ⬝ _,
|
||
exact respect_pt e⁻¹ᵉ*},
|
||
induction (H _ H2) with x,
|
||
induction x with x r,
|
||
refine image.mk (e x) _,
|
||
refine (p x)⁻¹ ⬝ _,
|
||
refine ap e r ⬝ _,
|
||
apply right_inv
|
||
end
|
||
|
||
definition trunc_chain_complex [constructor] (X : type_chain_complex N)
|
||
: chain_complex N :=
|
||
chain_complex.mk
|
||
(λn, ptrunc 0 (X n))
|
||
(λn, ptrunc_functor 0 (tcc_to_fn X n))
|
||
begin
|
||
intro n x, esimp at *,
|
||
refine @trunc.rec _ _ _ (λH, !is_trunc_eq) _ x,
|
||
clear x, intro x, esimp,
|
||
exact ap tr (tcc_is_chain_complex X n x)
|
||
end
|
||
|
||
definition is_exact_at_trunc (X : type_chain_complex N) {n : N}
|
||
(H : is_exact_at_t X n) : is_exact_at (trunc_chain_complex X) n :=
|
||
begin
|
||
intro x p, esimp at *,
|
||
induction x with x, esimp at *,
|
||
note q := !tr_eq_tr_equiv p,
|
||
induction q with q,
|
||
induction H x q with y r,
|
||
refine image.mk (tr y) _,
|
||
esimp, exact ap tr r
|
||
end
|
||
|
||
definition transfer_chain_complex2' [constructor] {M : succ_str} {Y : M → Set*}
|
||
(f : N ≃ M) (c : Π(n : N), f (S n) = S (f n))
|
||
(g : Π{m : M}, Y (S m) →* Y m) (e : Π{n}, X n ≃* Y (f n))
|
||
(p : Π{n} (x : X (S n)), e (cc_to_fn X n x) = g (c n ▸ e x)) : chain_complex M :=
|
||
chain_complex.mk Y @g
|
||
begin
|
||
refine equiv_rect f _ _, intro n,
|
||
assert H : Π (x : Y (f (S (S n)))), g (c n ▸ g (c (S n) ▸ x)) = pt,
|
||
{ apply equiv_rect (equiv_of_pequiv e), intro x,
|
||
refine ap (λx, g (c n ▸ x)) (@p (S n) x)⁻¹ᵖ ⬝ _,
|
||
refine (p _)⁻¹ ⬝ _,
|
||
refine ap e (cc_is_chain_complex X n _) ⬝ _,
|
||
apply respect_pt},
|
||
refine pi.pi_functor _ _ H,
|
||
{ intro x, exact (c (S n))⁻¹ ▸ (c n)⁻¹ ▸ x}, -- with implicit arguments, this is:
|
||
-- transport (λx, Y x) (c (S n))⁻¹ (transport (λx, Y (S x)) (c n)⁻¹ x)
|
||
{ intro x, intro p, refine _ ⬝ p, rewrite [tr_inv_tr, fn_tr_eq_tr_fn (c n)⁻¹ @g, tr_inv_tr]}
|
||
end
|
||
|
||
definition is_exact_at_transfer2' {X : chain_complex N} {M : succ_str} {Y : M → Set*}
|
||
(f : N ≃ M) (c : Π(n : N), f (S n) = S (f n))
|
||
(g : Π{m : M}, Y (S m) →* Y m) (e : Π{n}, X n ≃* Y (f n))
|
||
(p : Π{n} (x : X (S n)), e (cc_to_fn X n x) = g (c n ▸ e x))
|
||
{n : N} (H : is_exact_at X n) : is_exact_at (transfer_chain_complex2' X f c @g @e @p) (f n) :=
|
||
begin
|
||
intro y q, esimp at *,
|
||
assert H2 : cc_to_fn X n (e⁻¹ᵉ* ((c n)⁻¹ ▸ y)) = pt,
|
||
{ refine (inv_commute (λn, equiv_of_pequiv e) _ _ @p _)⁻¹ᵖ ⬝ _,
|
||
rewrite [tr_inv_tr, q],
|
||
exact respect_pt e⁻¹ᵉ*},
|
||
induction (H _ H2) with x,
|
||
induction x with x r,
|
||
refine image.mk (c n ▸ c (S n) ▸ e x) _,
|
||
rewrite [fn_tr_eq_tr_fn (c n) @g],
|
||
refine ap (λx, c n ▸ x) (p x)⁻¹ ⬝ _,
|
||
refine ap (λx, c n ▸ e x) r ⬝ _,
|
||
refine ap (λx, c n ▸ x) !right_inv ⬝ _,
|
||
apply tr_inv_tr,
|
||
end
|
||
|
||
-- structure group_chain_complex : Type :=
|
||
-- (car : N → Group)
|
||
-- (fn : Π(n : N), car (S n) →g car n)
|
||
-- (is_chain_complex : Π{n : N} (x : car ((S n) + 1)), fn n (fn (S n) x) = 1)
|
||
|
||
-- structure group_chain_complex : Type := -- chain complex on the naturals with maps going down
|
||
-- (car : N → Group)
|
||
-- (fn : Π(n : N), car (S n) →g car n)
|
||
-- (is_chain_complex : Π{n : N} (x : car ((S n) + 1)), fn n (fn (S n) x) = 1)
|
||
|
||
-- structure right_group_chain_complex : Type := -- chain complex on the naturals with maps going up
|
||
-- (car : N → Group)
|
||
-- (fn : Π(n : N), car n →g car (S n))
|
||
-- (is_chain_complex : Π{n : N} (x : car n), fn (S n) (fn n x) = 1)
|
||
|
||
-- definition gcc_to_car [unfold 1] [coercion] := @group_chain_complex.car
|
||
-- definition gcc_to_fn [unfold 1] := @group_chain_complex.fn
|
||
-- definition gcc_is_chain_complex [unfold 1] := @group_chain_complex.is_chain_complex
|
||
-- definition lgcc_to_car [unfold 1] [coercion] := @left_group_chain_complex.car
|
||
-- definition lgcc_to_fn [unfold 1] := @left_group_chain_complex.fn
|
||
-- definition lgcc_is_chain_complex [unfold 1] := @left_group_chain_complex.is_chain_complex
|
||
-- definition rgcc_to_car [unfold 1] [coercion] := @right_group_chain_complex.car
|
||
-- definition rgcc_to_fn [unfold 1] := @right_group_chain_complex.fn
|
||
-- definition rgcc_is_chain_complex [unfold 1] := @right_group_chain_complex.is_chain_complex
|
||
|
||
-- -- important: these notions are shifted by one! (this is to avoid transports)
|
||
-- definition is_exact_at_g [reducible] (X : group_chain_complex) (n : N) : Type :=
|
||
-- Π(x : X (S n)), gcc_to_fn X n x = 1 → image (gcc_to_fn X (S n)) x
|
||
-- definition is_exact_at_lg [reducible] (X : left_group_chain_complex) (n : N) : Type :=
|
||
-- Π(x : X (S n)), lgcc_to_fn X n x = 1 → image (lgcc_to_fn X (S n)) x
|
||
-- definition is_exact_at_rg [reducible] (X : right_group_chain_complex) (n : N) : Type :=
|
||
-- Π(x : X (S n)), rgcc_to_fn X (S n) x = 1 → image (rgcc_to_fn X n) x
|
||
|
||
-- definition is_exact_g [reducible] (X : group_chain_complex) : Type :=
|
||
-- Π(n : N), is_exact_at_g X n
|
||
-- definition is_exact_lg [reducible] (X : left_group_chain_complex) : Type :=
|
||
-- Π(n : N), is_exact_at_lg X n
|
||
-- definition is_exact_rg [reducible] (X : right_group_chain_complex) : Type :=
|
||
-- Π(n : N), is_exact_at_rg X n
|
||
|
||
-- definition group_chain_complex_from_left (X : left_group_chain_complex) : group_chain_complex :=
|
||
-- group_chain_complex.mk (int.rec X (λn, G0))
|
||
-- begin
|
||
-- intro n, fconstructor,
|
||
-- { induction n with n n,
|
||
-- { exact @lgcc_to_fn X n},
|
||
-- { esimp, intro x, exact star}},
|
||
-- { induction n with n n,
|
||
-- { apply respect_mul},
|
||
-- { intro g h, reflexivity}}
|
||
-- end
|
||
-- begin
|
||
-- intro n, induction n with n n,
|
||
-- { exact lgcc_is_chain_complex X},
|
||
-- { esimp, intro x, reflexivity}
|
||
-- end
|
||
|
||
-- definition is_exact_g_from_left {X : left_group_chain_complex} {n : N} (H : is_exact_at_lg X n)
|
||
-- : is_exact_at_g (group_chain_complex_from_left X) n :=
|
||
-- H
|
||
|
||
-- definition transfer_left_group_chain_complex [constructor] (X : left_group_chain_complex)
|
||
-- {Y : N → Group} (g : Π{n : N}, Y (S n) →g Y n) (e : Π{n}, X n ≃* Y n)
|
||
-- (p : Π{n} (x : X (S n)), e (lgcc_to_fn X n x) = g (e x)) : left_group_chain_complex :=
|
||
-- left_group_chain_complex.mk Y @g
|
||
-- begin
|
||
-- intro n, apply equiv_rect (pequiv_of_equiv e), intro x,
|
||
-- refine ap g (p x)⁻¹ ⬝ _,
|
||
-- refine (p _)⁻¹ ⬝ _,
|
||
-- refine ap e (lgcc_is_chain_complex X _) ⬝ _,
|
||
-- exact respect_pt
|
||
-- end
|
||
|
||
-- definition is_exact_at_t_transfer {X : left_group_chain_complex} {Y : N → Type*}
|
||
-- {g : Π{n : N}, Y (S n) →* Y n} (e : Π{n}, X n ≃* Y n)
|
||
-- (p : Π{n} (x : X (S n)), e (lgcc_to_fn X n x) = g (e x)) {n : N}
|
||
-- (H : is_exact_at_lg X n) : is_exact_at_lg (transfer_left_group_chain_complex X @g @e @p) n :=
|
||
-- begin
|
||
-- intro y q, esimp at *,
|
||
-- assert H2 : lgcc_to_fn X n (e⁻¹ᵉ* y) = pt,
|
||
-- { refine (inv_commute (λn, equiv_of_pequiv e) _ _ @p _)⁻¹ᵖ ⬝ _,
|
||
-- refine ap _ q ⬝ _,
|
||
-- exact respect_pt e⁻¹ᵉ*},
|
||
-- cases (H _ H2) with x r,
|
||
-- refine image.mk (e x) _,
|
||
-- refine (p x)⁻¹ ⬝ _,
|
||
-- refine ap e r ⬝ _,
|
||
-- apply right_inv
|
||
-- end
|
||
|
||
-- TODO: move
|
||
definition is_trunc_ptrunctype [instance] {n : trunc_index} (X : ptrunctype n)
|
||
: is_trunc n (ptrunctype.to_pType X) :=
|
||
trunctype.struct X
|
||
|
||
/- a group where the point in the pointed corresponds with 1 in the group -/
|
||
structure pgroup [class] (X : Type*) extends semigroup X, has_inv X :=
|
||
(pt_mul : Πa, mul pt a = a)
|
||
(mul_pt : Πa, mul a pt = a)
|
||
(mul_left_inv_pt : Πa, mul (inv a) a = pt)
|
||
|
||
definition group_of_pgroup [reducible] [instance] (X : Type*) [H : pgroup X]
|
||
: group X :=
|
||
⦃group, H,
|
||
one := pt,
|
||
one_mul := pgroup.pt_mul ,
|
||
mul_one := pgroup.mul_pt,
|
||
mul_left_inv := pgroup.mul_left_inv_pt⦄
|
||
|
||
definition pgroup_of_group (X : Type*) [H : group X] (p : one = pt :> X) : pgroup X :=
|
||
begin
|
||
cases X with X x, esimp at *, induction p,
|
||
exact ⦃pgroup, H,
|
||
pt_mul := one_mul,
|
||
mul_pt := mul_one,
|
||
mul_left_inv_pt := mul.left_inv⦄
|
||
|
||
end
|
||
|
||
-- the following theorems would also be true of the replace "is_contr" by "is_prop"
|
||
definition is_embedding_of_trivial (X : chain_complex N) {n : N}
|
||
(H : is_exact_at X n) [HX : is_contr (X (S (S n)))]
|
||
[pgroup (X n)] [pgroup (X (S n))] [is_homomorphism (cc_to_fn X n)]
|
||
: is_embedding (cc_to_fn X n) :=
|
||
begin
|
||
apply is_embedding_homomorphism,
|
||
intro g p,
|
||
induction H g p with v,
|
||
induction v with x q,
|
||
have r : pt = x, from !is_prop.elim,
|
||
induction r,
|
||
refine q⁻¹ ⬝ _,
|
||
apply respect_pt
|
||
end
|
||
|
||
definition is_surjective_of_trivial (X : chain_complex N) {n : N}
|
||
(H : is_exact_at X n) [HX : is_contr (X n)] : is_surjective (cc_to_fn X (S n)) :=
|
||
begin
|
||
intro g,
|
||
refine trunc.elim _ (H g !is_prop.elim),
|
||
apply tr
|
||
end
|
||
|
||
definition is_equiv_of_trivial (X : chain_complex N) {n : N}
|
||
(H1 : is_exact_at X n) (H2 : is_exact_at X (S n))
|
||
[HX1 : is_contr (X n)] [HX2 : is_contr (X (S (S (S n))))]
|
||
[pgroup (X (S n))] [pgroup (X (S (S n)))] [is_homomorphism (cc_to_fn X (S n))]
|
||
: is_equiv (cc_to_fn X (S n)) :=
|
||
begin
|
||
apply is_equiv_of_is_surjective_of_is_embedding,
|
||
{ apply is_embedding_of_trivial X, apply H2},
|
||
{ apply is_surjective_of_trivial X, apply H1},
|
||
end
|
||
|
||
end
|
||
|
||
end chain_complex
|