12a9345df1
This is still work in progress. Spectral sequences should be more usable, and probably the degrees of graded maps should be group homomorphisms so that we can reindex spectral sequences.
902 lines
34 KiB
Text
902 lines
34 KiB
Text
-- definitions, theorems and attributes which should be moved to files in the HoTT library
|
||
|
||
import homotopy.sphere2 homotopy.cofiber homotopy.wedge hit.prop_trunc hit.set_quotient eq2 types.pointed2
|
||
|
||
open eq nat int susp pointed sigma is_equiv equiv fiber algebra trunc pi group
|
||
is_trunc function unit prod bool
|
||
|
||
attribute pType.sigma_char sigma_pi_equiv_pi_sigma sigma.coind_unc [constructor]
|
||
attribute ap1_gen [unfold 8 9 10]
|
||
attribute ap010 [unfold 7]
|
||
-- TODO: homotopy_of_eq and apd10 should be the same
|
||
-- TODO: there is also apd10_eq_of_homotopy in both pi and eq(?)
|
||
|
||
namespace algebra
|
||
|
||
variables {A : Type} [add_ab_inf_group A]
|
||
definition add_sub_cancel_middle (a b : A) : a + (b - a) = b :=
|
||
!add.comm ⬝ !sub_add_cancel
|
||
|
||
end algebra
|
||
|
||
namespace eq
|
||
|
||
definition apd10_prepostcompose_nondep {A B C D : Type} (h : C → D) {g g' : B → C} (p : g = g')
|
||
(f : A → B) (a : A) : apd10 (ap (λg a, h (g (f a))) p) a = ap h (apd10 p (f a)) :=
|
||
begin induction p, reflexivity end
|
||
|
||
definition apd10_prepostcompose {A B : Type} {C : B → Type} {D : A → Type}
|
||
(f : A → B) (h : Πa, C (f a) → D a) {g g' : Πb, C b}
|
||
(p : g = g') (a : A) :
|
||
apd10 (ap (λg a, h a (g (f a))) p) a = ap (h a) (apd10 p (f a)) :=
|
||
begin induction p, reflexivity end
|
||
|
||
definition eq.rec_to {A : Type} {a₀ : A} {P : Π⦃a₁⦄, a₀ = a₁ → Type}
|
||
{a₁ : A} (p₀ : a₀ = a₁) (H : P p₀) ⦃a₂ : A⦄ (p : a₀ = a₂) : P p :=
|
||
begin
|
||
induction p₀, induction p, exact H
|
||
end
|
||
|
||
definition eq.rec_to2 {A : Type} {P : Π⦃a₀ a₁⦄, a₀ = a₁ → Type}
|
||
{a₀ a₀' a₁' : A} (p' : a₀' = a₁') (p₀ : a₀ = a₀') (H : P p') ⦃a₁ : A⦄ (p : a₀ = a₁) : P p :=
|
||
begin
|
||
induction p₀, induction p', induction p, exact H
|
||
end
|
||
|
||
definition eq.rec_right_inv {A : Type} (f : A ≃ A) {P : Π⦃a₀ a₁⦄, f a₀ = a₁ → Type}
|
||
(H : Πa, P (right_inv f a)) ⦃a₀ a₁ : A⦄ (p : f a₀ = a₁) : P p :=
|
||
begin
|
||
revert a₀ p, refine equiv_rect f⁻¹ᵉ _ _,
|
||
intro a₀ p, exact eq.rec_to (right_inv f a₀) (H a₀) p,
|
||
end
|
||
|
||
definition eq.rec_equiv {A B : Type} {a₀ : A} (f : A ≃ B) {P : Π{a₁}, f a₀ = f a₁ → Type}
|
||
(H : P (idpath (f a₀))) ⦃a₁ : A⦄ (p : f a₀ = f a₁) : P p :=
|
||
begin
|
||
assert qr : Σ(q : a₀ = a₁), ap f q = p,
|
||
{ exact ⟨eq_of_fn_eq_fn f p, ap_eq_of_fn_eq_fn' f p⟩ },
|
||
cases qr with q r, apply transport P r, induction q, exact H
|
||
end
|
||
|
||
definition eq.rec_equiv_symm {A B : Type} {a₁ : A} (f : A ≃ B) {P : Π{a₀}, f a₀ = f a₁ → Type}
|
||
(H : P (idpath (f a₁))) ⦃a₀ : A⦄ (p : f a₀ = f a₁) : P p :=
|
||
begin
|
||
assert qr : Σ(q : a₀ = a₁), ap f q = p,
|
||
{ exact ⟨eq_of_fn_eq_fn f p, ap_eq_of_fn_eq_fn' f p⟩ },
|
||
cases qr with q r, apply transport P r, induction q, exact H
|
||
end
|
||
|
||
definition eq.rec_equiv_to_same {A B : Type} {a₀ : A} (f : A ≃ B) {P : Π{a₁}, f a₀ = f a₁ → Type}
|
||
⦃a₁' : A⦄ (p' : f a₀ = f a₁') (H : P p') ⦃a₁ : A⦄ (p : f a₀ = f a₁) : P p :=
|
||
begin
|
||
revert a₁' p' H a₁ p,
|
||
refine eq.rec_equiv f _,
|
||
exact eq.rec_equiv f
|
||
end
|
||
|
||
definition eq.rec_equiv_to {A A' B : Type} {a₀ : A} (f : A ≃ B) (g : A' ≃ B)
|
||
{P : Π{a₁}, f a₀ = g a₁ → Type}
|
||
⦃a₁' : A'⦄ (p' : f a₀ = g a₁') (H : P p') ⦃a₁ : A'⦄ (p : f a₀ = g a₁) : P p :=
|
||
begin
|
||
assert qr : Σ(q : g⁻¹ (f a₀) = a₁), (right_inv g (f a₀))⁻¹ ⬝ ap g q = p,
|
||
{ exact ⟨eq_of_fn_eq_fn g (right_inv g (f a₀) ⬝ p),
|
||
whisker_left _ (ap_eq_of_fn_eq_fn' g _) ⬝ !inv_con_cancel_left⟩ },
|
||
assert q'r' : Σ(q' : g⁻¹ (f a₀) = a₁'), (right_inv g (f a₀))⁻¹ ⬝ ap g q' = p',
|
||
{ exact ⟨eq_of_fn_eq_fn g (right_inv g (f a₀) ⬝ p'),
|
||
whisker_left _ (ap_eq_of_fn_eq_fn' g _) ⬝ !inv_con_cancel_left⟩ },
|
||
induction qr with q r, induction q'r' with q' r',
|
||
induction q, induction q',
|
||
induction r, induction r',
|
||
exact H
|
||
end
|
||
|
||
definition eq.rec_grading {A A' B : Type} {a : A} (f : A ≃ B) (g : A' ≃ B)
|
||
{P : Π{b}, f a = b → Type}
|
||
{a' : A'} (p' : f a = g a') (H : P p') ⦃b : B⦄ (p : f a = b) : P p :=
|
||
begin
|
||
revert b p, refine equiv_rect g _ _,
|
||
exact eq.rec_equiv_to f g p' H
|
||
end
|
||
|
||
definition eq.rec_grading_unbased {A B B' C : Type} (f : A ≃ B) (g : B ≃ C) (h : B' ≃ C)
|
||
{P : Π{b c}, g b = c → Type}
|
||
{a' : A} {b' : B'} (p' : g (f a') = h b') (H : P p') ⦃b : B⦄ ⦃c : C⦄ (q : f a' = b)
|
||
(p : g b = c) : P p :=
|
||
begin
|
||
induction q, exact eq.rec_grading (f ⬝e g) h p' H p
|
||
end
|
||
|
||
-- definition homotopy_group_homomorphism_pinv (n : ℕ) {A B : Type*} (f : A ≃* B) :
|
||
-- π→g[n+1] f⁻¹ᵉ* ~ (homotopy_group_isomorphism_of_pequiv n f)⁻¹ᵍ :=
|
||
-- begin
|
||
-- -- refine ptrunc_functor_phomotopy 0 !apn_pinv ⬝hty _,
|
||
-- -- intro x, esimp,
|
||
-- end
|
||
|
||
-- definition natural_square_tr_eq {A B : Type} {a a' : A} {f g : A → B}
|
||
-- (p : f ~ g) (q : a = a') : natural_square p q = square_of_pathover (apd p q) :=
|
||
-- idp
|
||
|
||
lemma homotopy_group_isomorphism_of_ptrunc_pequiv {A B : Type*}
|
||
(n k : ℕ) (H : n+1 ≤[ℕ] k) (f : ptrunc k A ≃* ptrunc k B) : πg[n+1] A ≃g πg[n+1] B :=
|
||
(ghomotopy_group_ptrunc_of_le H A)⁻¹ᵍ ⬝g
|
||
homotopy_group_isomorphism_of_pequiv n f ⬝g
|
||
ghomotopy_group_ptrunc_of_le H B
|
||
|
||
section hsquare
|
||
variables {A₀₀ A₂₀ A₄₀ A₀₂ A₂₂ A₄₂ A₀₄ A₂₄ A₄₄ : Type}
|
||
{f₁₀ : A₀₀ → A₂₀} {f₃₀ : A₂₀ → A₄₀}
|
||
{f₀₁ : A₀₀ → A₀₂} {f₂₁ : A₂₀ → A₂₂} {f₄₁ : A₄₀ → A₄₂}
|
||
{f₁₂ : A₀₂ → A₂₂} {f₃₂ : A₂₂ → A₄₂}
|
||
{f₀₃ : A₀₂ → A₀₄} {f₂₃ : A₂₂ → A₂₄} {f₄₃ : A₄₂ → A₄₄}
|
||
{f₁₄ : A₀₄ → A₂₄} {f₃₄ : A₂₄ → A₄₄}
|
||
|
||
definition trunc_functor_hsquare (n : ℕ₋₂) (h : hsquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||
hsquare (trunc_functor n f₁₀) (trunc_functor n f₁₂)
|
||
(trunc_functor n f₀₁) (trunc_functor n f₂₁) :=
|
||
λa, !trunc_functor_compose⁻¹ ⬝ trunc_functor_homotopy n h a ⬝ !trunc_functor_compose
|
||
|
||
attribute hhconcat hvconcat [unfold_full]
|
||
|
||
definition rfl_hhconcat (q : hsquare f₃₀ f₃₂ f₂₁ f₄₁) : homotopy.rfl ⬝htyh q ~ q :=
|
||
homotopy.rfl
|
||
|
||
definition hhconcat_rfl (q : hsquare f₃₀ f₃₂ f₂₁ f₄₁) : q ⬝htyh homotopy.rfl ~ q :=
|
||
λx, !idp_con ⬝ ap_id (q x)
|
||
|
||
definition rfl_hvconcat (q : hsquare f₃₀ f₃₂ f₂₁ f₄₁) : homotopy.rfl ⬝htyv q ~ q :=
|
||
λx, !idp_con
|
||
|
||
definition hvconcat_rfl (q : hsquare f₃₀ f₃₂ f₂₁ f₄₁) : q ⬝htyv homotopy.rfl ~ q :=
|
||
λx, !ap_id
|
||
|
||
end hsquare
|
||
definition homotopy_group_succ_in_natural (n : ℕ) {A B : Type*} (f : A →* B) :
|
||
hsquare (homotopy_group_succ_in A n) (homotopy_group_succ_in B n) (π→[n+1] f) (π→[n] (Ω→ f)) :=
|
||
trunc_functor_hsquare _ (loopn_succ_in_natural n f)⁻¹*
|
||
|
||
definition homotopy2.refl {A} {B : A → Type} {C : Π⦃a⦄, B a → Type} (f : Πa (b : B a), C b) :
|
||
f ~2 f :=
|
||
λa b, idp
|
||
|
||
definition homotopy2.rfl [refl] {A} {B : A → Type} {C : Π⦃a⦄, B a → Type}
|
||
{f : Πa (b : B a), C b} : f ~2 f :=
|
||
λa b, idp
|
||
|
||
definition homotopy3.refl {A} {B : A → Type} {C : Πa, B a → Type}
|
||
{D : Π⦃a⦄ ⦃b : B a⦄, C a b → Type} (f : Πa b (c : C a b), D c) : f ~3 f :=
|
||
λa b c, idp
|
||
|
||
definition homotopy3.rfl {A} {B : A → Type} {C : Πa, B a → Type}
|
||
{D : Π⦃a⦄ ⦃b : B a⦄, C a b → Type} {f : Πa b (c : C a b), D c} : f ~3 f :=
|
||
λa b c, idp
|
||
|
||
definition eq_tr_of_pathover_con_tr_eq_of_pathover {A : Type} {B : A → Type}
|
||
{a₁ a₂ : A} (p : a₁ = a₂) {b₁ : B a₁} {b₂ : B a₂} (q : b₁ =[p] b₂) :
|
||
eq_tr_of_pathover q ⬝ tr_eq_of_pathover q⁻¹ᵒ = idp :=
|
||
by induction q; reflexivity
|
||
|
||
end eq open eq
|
||
|
||
namespace nat
|
||
|
||
protected definition rec_down (P : ℕ → Type) (s : ℕ) (H0 : P s) (Hs : Πn, P (n+1) → P n) : P 0 :=
|
||
begin
|
||
induction s with s IH,
|
||
{ exact H0 },
|
||
{ exact IH (Hs s H0) }
|
||
end
|
||
/- have Hp : Πn, P n → P (pred n),
|
||
begin
|
||
intro n p, cases n with n,
|
||
{ exact p },
|
||
{ exact Hs n p }
|
||
end,
|
||
have H : Πn, P (s - n),
|
||
begin
|
||
intro n, induction n with n p,
|
||
{ exact H0 },
|
||
{ exact Hp (s - n) p }
|
||
end,
|
||
transport P (nat.sub_self s) (H s)-/
|
||
|
||
/- this generalizes iterate_commute -/
|
||
definition iterate_hsquare {A B : Type} {f : A → A} {g : B → B}
|
||
(h : A → B) (p : hsquare f g h h) (n : ℕ) : hsquare (f^[n]) (g^[n]) h h :=
|
||
begin
|
||
induction n with n q,
|
||
exact homotopy.rfl,
|
||
exact q ⬝htyh p
|
||
end
|
||
|
||
end nat
|
||
|
||
|
||
namespace trunc_index
|
||
open is_conn nat trunc is_trunc
|
||
lemma minus_two_add_plus_two (n : ℕ₋₂) : -2+2+n = n :=
|
||
by induction n with n p; reflexivity; exact ap succ p
|
||
|
||
protected definition of_nat_monotone {n k : ℕ} : n ≤ k → of_nat n ≤ of_nat k :=
|
||
begin
|
||
intro H, induction H with k H K,
|
||
{ apply le.tr_refl },
|
||
{ apply le.step K }
|
||
end
|
||
|
||
lemma add_plus_two_comm (n k : ℕ₋₂) : n +2+ k = k +2+ n :=
|
||
begin
|
||
induction n with n IH,
|
||
{ exact minus_two_add_plus_two k },
|
||
{ exact !succ_add_plus_two ⬝ ap succ IH}
|
||
end
|
||
|
||
end trunc_index
|
||
|
||
namespace int
|
||
|
||
private definition maxm2_le.lemma₁ {n k : ℕ} : n+(1:int) + -[1+ k] ≤ n :=
|
||
le.intro (
|
||
calc n + 1 + -[1+ k] + k
|
||
= n + 1 + (-(k + 1)) + k : by reflexivity
|
||
... = n + 1 + (- 1 - k) + k : by krewrite (neg_add_rev k 1)
|
||
... = n + 1 + (- 1 - k + k) : add.assoc
|
||
... = n + 1 + (- 1 + -k + k) : by reflexivity
|
||
... = n + 1 + (- 1 + (-k + k)) : add.assoc
|
||
... = n + 1 + (- 1 + 0) : add.left_inv
|
||
... = n + (1 + (- 1 + 0)) : add.assoc
|
||
... = n : int.add_zero)
|
||
|
||
private definition maxm2_le.lemma₂ {n : ℕ} {k : ℤ} : -[1+ n] + 1 + k ≤ k :=
|
||
le.intro (
|
||
calc -[1+ n] + 1 + k + n
|
||
= - (n + 1) + 1 + k + n : by reflexivity
|
||
... = -n - 1 + 1 + k + n : by rewrite (neg_add n 1)
|
||
... = -n + (- 1 + 1) + k + n : by krewrite (int.add_assoc (-n) (- 1) 1)
|
||
... = -n + 0 + k + n : add.left_inv 1
|
||
... = -n + k + n : int.add_zero
|
||
... = k + -n + n : int.add_comm
|
||
... = k + (-n + n) : int.add_assoc
|
||
... = k + 0 : add.left_inv n
|
||
... = k : int.add_zero)
|
||
|
||
open trunc_index
|
||
/-
|
||
The function from integers to truncation indices which sends
|
||
positive numbers to themselves, and negative numbers to negative
|
||
2. In particular -1 is sent to -2, but since we only work with
|
||
pointed types, that doesn't matter for us -/
|
||
definition maxm2 [unfold 1] : ℤ → ℕ₋₂ :=
|
||
λ n, int.cases_on n trunc_index.of_nat (λk, -2)
|
||
|
||
-- we also need the max -1 - function
|
||
definition maxm1 [unfold 1] : ℤ → ℕ₋₂ :=
|
||
λ n, int.cases_on n trunc_index.of_nat (λk, -1)
|
||
|
||
definition maxm2_le_maxm1 (n : ℤ) : maxm2 n ≤ maxm1 n :=
|
||
begin
|
||
induction n with n n,
|
||
{ exact le.tr_refl n },
|
||
{ exact minus_two_le -1 }
|
||
end
|
||
|
||
-- the is maxm1 minus 1
|
||
definition maxm1m1 [unfold 1] : ℤ → ℕ₋₂ :=
|
||
λ n, int.cases_on n (λ k, k.-1) (λ k, -2)
|
||
|
||
definition maxm1_eq_succ (n : ℤ) : maxm1 n = (maxm1m1 n).+1 :=
|
||
begin
|
||
induction n with n n,
|
||
{ reflexivity },
|
||
{ reflexivity }
|
||
end
|
||
|
||
definition maxm2_le_maxm0 (n : ℤ) : maxm2 n ≤ max0 n :=
|
||
begin
|
||
induction n with n n,
|
||
{ exact le.tr_refl n },
|
||
{ exact minus_two_le 0 }
|
||
end
|
||
|
||
definition max0_le_of_le {n : ℤ} {m : ℕ} (H : n ≤ of_nat m)
|
||
: nat.le (max0 n) m :=
|
||
begin
|
||
induction n with n n,
|
||
{ exact le_of_of_nat_le_of_nat H },
|
||
{ exact nat.zero_le m }
|
||
end
|
||
|
||
definition not_neg_succ_le_of_nat {n m : ℕ} : ¬m ≤ -[1+n] :=
|
||
by cases m: exact id
|
||
|
||
definition maxm2_monotone {n m : ℤ} (H : n ≤ m) : maxm2 n ≤ maxm2 m :=
|
||
begin
|
||
induction n with n n,
|
||
{ induction m with m m,
|
||
{ apply of_nat_le_of_nat, exact le_of_of_nat_le_of_nat H },
|
||
{ exfalso, exact not_neg_succ_le_of_nat H }},
|
||
{ apply minus_two_le }
|
||
end
|
||
|
||
definition sub_nat_le (n : ℤ) (m : ℕ) : n - m ≤ n :=
|
||
le.intro !sub_add_cancel
|
||
|
||
definition sub_nat_lt (n : ℤ) (m : ℕ) : n - m < n + 1 :=
|
||
add_le_add_right (sub_nat_le n m) 1
|
||
|
||
definition sub_one_le (n : ℤ) : n - 1 ≤ n :=
|
||
sub_nat_le n 1
|
||
|
||
definition le_add_nat (n : ℤ) (m : ℕ) : n ≤ n + m :=
|
||
le.intro rfl
|
||
|
||
definition le_add_one (n : ℤ) : n ≤ n + 1:=
|
||
le_add_nat n 1
|
||
|
||
open trunc_index
|
||
|
||
definition maxm2_le (n k : ℤ) : maxm2 (n+1+k) ≤ (maxm1m1 n).+1+2+(maxm1m1 k) :=
|
||
begin
|
||
rewrite [-(maxm1_eq_succ n)],
|
||
induction n with n n,
|
||
{ induction k with k k,
|
||
{ induction k with k IH,
|
||
{ apply le.tr_refl },
|
||
{ exact succ_le_succ IH } },
|
||
{ exact trunc_index.le_trans (maxm2_monotone maxm2_le.lemma₁)
|
||
(maxm2_le_maxm1 n) } },
|
||
{ krewrite (add_plus_two_comm -1 (maxm1m1 k)),
|
||
rewrite [-(maxm1_eq_succ k)],
|
||
exact trunc_index.le_trans (maxm2_monotone maxm2_le.lemma₂)
|
||
(maxm2_le_maxm1 k) }
|
||
end
|
||
|
||
end int open int
|
||
|
||
namespace pmap
|
||
|
||
/- rename: pmap_eta in namespace pointed -/
|
||
definition eta {A B : Type*} (f : A →* B) : pmap.mk f (respect_pt f) = f :=
|
||
begin induction f, reflexivity end
|
||
|
||
end pmap
|
||
|
||
namespace lift
|
||
|
||
definition is_trunc_plift [instance] [priority 1450] (A : Type*) (n : ℕ₋₂)
|
||
[H : is_trunc n A] : is_trunc n (plift A) :=
|
||
is_trunc_lift A n
|
||
|
||
end lift
|
||
|
||
namespace trunc
|
||
open trunc_index
|
||
definition trunc_index_equiv_nat [constructor] : ℕ₋₂ ≃ ℕ :=
|
||
equiv.MK add_two sub_two add_two_sub_two sub_two_add_two
|
||
|
||
definition is_set_trunc_index [instance] : is_set ℕ₋₂ :=
|
||
is_trunc_equiv_closed_rev 0 trunc_index_equiv_nat
|
||
|
||
definition is_contr_ptrunc_minus_one (A : Type*) : is_contr (ptrunc -1 A) :=
|
||
is_contr_of_inhabited_prop pt
|
||
|
||
-- TODO: redefine loopn_ptrunc_pequiv
|
||
definition apn_ptrunc_functor (n : ℕ₋₂) (k : ℕ) {A B : Type*} (f : A →* B) :
|
||
Ω→[k] (ptrunc_functor (n+k) f) ∘* (loopn_ptrunc_pequiv n k A)⁻¹ᵉ* ~*
|
||
(loopn_ptrunc_pequiv n k B)⁻¹ᵉ* ∘* ptrunc_functor n (Ω→[k] f) :=
|
||
begin
|
||
revert n, induction k with k IH: intro n,
|
||
{ reflexivity },
|
||
{ exact sorry }
|
||
end
|
||
|
||
definition ptrunc_pequiv_natural [constructor] (n : ℕ₋₂) {A B : Type*} (f : A →* B) [is_trunc n A]
|
||
[is_trunc n B] : f ∘* ptrunc_pequiv n A ~* ptrunc_pequiv n B ∘* ptrunc_functor n f :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro a, induction a with a, reflexivity },
|
||
{ refine !idp_con ⬝ _ ⬝ !idp_con⁻¹, refine !ap_compose'⁻¹ ⬝ _, apply ap_id }
|
||
end
|
||
|
||
definition ptr_natural [constructor] (n : ℕ₋₂) {A B : Type*} (f : A →* B) :
|
||
ptrunc_functor n f ∘* ptr n A ~* ptr n B ∘* f :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro a, reflexivity },
|
||
{ reflexivity }
|
||
end
|
||
|
||
definition ptrunc_elim_pcompose (n : ℕ₋₂) {A B C : Type*} (g : B →* C) (f : A →* B) [is_trunc n B]
|
||
[is_trunc n C] : ptrunc.elim n (g ∘* f) ~* g ∘* ptrunc.elim n f :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro a, induction a with a, reflexivity },
|
||
{ apply idp_con }
|
||
end
|
||
|
||
definition ptrunc_elim_ptr_phomotopy_pid (n : ℕ₋₂) (A : Type*):
|
||
ptrunc.elim n (ptr n A) ~* pid (ptrunc n A) :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro a, induction a with a, reflexivity },
|
||
{ apply idp_con }
|
||
end
|
||
|
||
definition is_trunc_ptrunc_of_is_trunc [instance] [priority 500] (A : Type*)
|
||
(n m : ℕ₋₂) [H : is_trunc n A] : is_trunc n (ptrunc m A) :=
|
||
is_trunc_trunc_of_is_trunc A n m
|
||
|
||
definition ptrunc_pequiv_ptrunc_of_is_trunc {n m k : ℕ₋₂} {A : Type*}
|
||
(H1 : n ≤ m) (H2 : n ≤ k) (H : is_trunc n A) : ptrunc m A ≃* ptrunc k A :=
|
||
have is_trunc m A, from is_trunc_of_le A H1,
|
||
have is_trunc k A, from is_trunc_of_le A H2,
|
||
pequiv.MK (ptrunc.elim _ (ptr k A)) (ptrunc.elim _ (ptr m A))
|
||
abstract begin
|
||
refine !ptrunc_elim_pcompose⁻¹* ⬝* _,
|
||
exact ptrunc_elim_phomotopy _ !ptrunc_elim_ptr ⬝* !ptrunc_elim_ptr_phomotopy_pid,
|
||
end end
|
||
abstract begin
|
||
refine !ptrunc_elim_pcompose⁻¹* ⬝* _,
|
||
exact ptrunc_elim_phomotopy _ !ptrunc_elim_ptr ⬝* !ptrunc_elim_ptr_phomotopy_pid,
|
||
end end
|
||
|
||
definition ptrunc_change_index {k l : ℕ₋₂} (p : k = l) (X : Type*)
|
||
: ptrunc k X ≃* ptrunc l X :=
|
||
pequiv_ap (λ n, ptrunc n X) p
|
||
|
||
definition ptrunc_functor_le {k l : ℕ₋₂} (p : l ≤ k) (X : Type*)
|
||
: ptrunc k X →* ptrunc l X :=
|
||
have is_trunc k (ptrunc l X), from is_trunc_of_le _ p,
|
||
ptrunc.elim _ (ptr l X)
|
||
|
||
definition trunc_index.pred [unfold 1] (n : ℕ₋₂) : ℕ₋₂ :=
|
||
begin cases n with n, exact -2, exact n end
|
||
|
||
/- A more general version of ptrunc_elim_phomotopy, where the proofs of truncatedness might be different -/
|
||
definition ptrunc_elim_phomotopy2 [constructor] (k : ℕ₋₂) {A B : Type*} {f g : A →* B} (H₁ : is_trunc k B)
|
||
(H₂ : is_trunc k B) (p : f ~* g) : @ptrunc.elim k A B H₁ f ~* @ptrunc.elim k A B H₂ g :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro x, induction x with a, exact p a },
|
||
{ exact to_homotopy_pt p }
|
||
end
|
||
|
||
end trunc
|
||
|
||
namespace is_trunc
|
||
|
||
open trunc_index is_conn
|
||
|
||
definition is_trunc_of_eq {n m : ℕ₋₂} (p : n = m) {A : Type} (H : is_trunc n A) : is_trunc m A :=
|
||
transport (λk, is_trunc k A) p H
|
||
|
||
definition is_trunc_succ_succ_of_is_trunc_loop (n : ℕ₋₂) (A : Type*) (H : is_trunc (n.+1) (Ω A))
|
||
(H2 : is_conn 0 A) : is_trunc (n.+2) A :=
|
||
begin
|
||
apply is_trunc_succ_of_is_trunc_loop, apply minus_one_le_succ,
|
||
refine is_conn.elim -1 _ _, exact H
|
||
end
|
||
|
||
lemma is_trunc_of_is_trunc_loopn (m n : ℕ) (A : Type*) (H : is_trunc n (Ω[m] A))
|
||
(H2 : is_conn m A) : is_trunc (m + n) A :=
|
||
begin
|
||
revert A H H2; induction m with m IH: intro A H H2,
|
||
{ rewrite [nat.zero_add], exact H },
|
||
rewrite [succ_add],
|
||
apply is_trunc_succ_succ_of_is_trunc_loop,
|
||
{ apply IH,
|
||
{ apply is_trunc_equiv_closed _ !loopn_succ_in },
|
||
apply is_conn_loop },
|
||
exact is_conn_of_le _ (zero_le_of_nat (succ m))
|
||
end
|
||
|
||
lemma is_trunc_of_is_set_loopn (m : ℕ) (A : Type*) (H : is_set (Ω[m] A))
|
||
(H2 : is_conn m A) : is_trunc m A :=
|
||
is_trunc_of_is_trunc_loopn m 0 A H H2
|
||
|
||
end is_trunc
|
||
namespace sigma
|
||
open sigma.ops
|
||
|
||
definition sigma_eq_equiv_of_is_prop_right [constructor] {A : Type} {B : A → Type} (u v : Σa, B a)
|
||
[H : Π a, is_prop (B a)] : u = v ≃ u.1 = v.1 :=
|
||
!sigma_eq_equiv ⬝e !sigma_equiv_of_is_contr_right
|
||
|
||
definition ap_sigma_pr1 {A B : Type} {C : B → Type} {a₁ a₂ : A} (f : A → B) (g : Πa, C (f a))
|
||
(p : a₁ = a₂) : (ap (λa, ⟨f a, g a⟩) p)..1 = ap f p :=
|
||
by induction p; reflexivity
|
||
|
||
definition ap_sigma_pr2 {A B : Type} {C : B → Type} {a₁ a₂ : A} (f : A → B) (g : Πa, C (f a))
|
||
(p : a₁ = a₂) : (ap (λa, ⟨f a, g a⟩) p)..2 =
|
||
change_path (ap_sigma_pr1 f g p)⁻¹ (pathover_ap C f (apd g p)) :=
|
||
by induction p; reflexivity
|
||
|
||
-- open sigma.ops
|
||
-- definition eq.rec_sigma {A : Type} {B : A → Type} {a₀ : A} {b₀ : B a₀}
|
||
-- {P : Π(a : A) (b : B a), ⟨a₀, b₀⟩ = ⟨a, b⟩ → Type} (H : P a₀ b₀ idp) {a : A} {b : B a}
|
||
-- (p : ⟨a₀, b₀⟩ = ⟨a, b⟩) : P a b p :=
|
||
-- sorry
|
||
|
||
-- definition sigma_pathover_equiv_of_is_prop {A : Type} {B : A → Type} {C : Πa, B a → Type}
|
||
-- {a a' : A} {p : a = a'} {b : B a} {b' : B a'} {c : C a b} {c' : C a' b'}
|
||
-- [Πa b, is_prop (C a b)] : ⟨b, c⟩ =[p] ⟨b', c'⟩ ≃ b =[p] b' :=
|
||
-- begin
|
||
-- fapply equiv.MK,
|
||
-- { exact pathover_pr1 },
|
||
-- { intro q, induction q, apply pathover_idp_of_eq, exact sigma_eq idp !is_prop.elimo },
|
||
-- { intro q, induction q,
|
||
-- have c = c', from !is_prop.elim, induction this,
|
||
-- rewrite [▸*, is_prop_elimo_self (C a) c] },
|
||
-- { esimp, generalize ⟨b, c⟩, intro x q, }
|
||
-- end
|
||
--rexact @(ap pathover_pr1) _ idpo _,
|
||
|
||
end sigma open sigma
|
||
|
||
namespace group
|
||
-- definition is_equiv_isomorphism
|
||
|
||
|
||
-- some extra instances for type class inference
|
||
-- definition is_mul_hom_comm_homomorphism [instance] {G G' : AbGroup} (φ : G →g G')
|
||
-- : @is_mul_hom G G' (@ab_group.to_group _ (AbGroup.struct G))
|
||
-- (@ab_group.to_group _ (AbGroup.struct G')) φ :=
|
||
-- homomorphism.struct φ
|
||
|
||
-- definition is_mul_hom_comm_homomorphism1 [instance] {G G' : AbGroup} (φ : G →g G')
|
||
-- : @is_mul_hom G G' _
|
||
-- (@ab_group.to_group _ (AbGroup.struct G')) φ :=
|
||
-- homomorphism.struct φ
|
||
|
||
-- definition is_mul_hom_comm_homomorphism2 [instance] {G G' : AbGroup} (φ : G →g G')
|
||
-- : @is_mul_hom G G' (@ab_group.to_group _ (AbGroup.struct G)) _ φ :=
|
||
-- homomorphism.struct φ
|
||
|
||
definition pgroup_of_Group (X : Group) : pgroup X :=
|
||
pgroup_of_group _ idp
|
||
|
||
definition isomorphism_ap {A : Type} (F : A → Group) {a b : A} (p : a = b) : F a ≃g F b :=
|
||
isomorphism_of_eq (ap F p)
|
||
|
||
definition interchange (G : AbGroup) (a b c d : G) : (a * b) * (c * d) = (a * c) * (b * d) :=
|
||
calc (a * b) * (c * d) = a * (b * (c * d)) : by exact mul.assoc a b (c * d)
|
||
... = a * ((b * c) * d) : by exact ap (λ bcd, a * bcd) (mul.assoc b c d)⁻¹
|
||
... = a * ((c * b) * d) : by exact ap (λ bc, a * (bc * d)) (mul.comm b c)
|
||
... = a * (c * (b * d)) : by exact ap (λ bcd, a * bcd) (mul.assoc c b d)
|
||
... = (a * c) * (b * d) : by exact (mul.assoc a c (b * d))⁻¹
|
||
|
||
definition homomorphism_comp_compute {G H K : Group} (g : H →g K) (f : G →g H) (x : G) : (g ∘g f) x = g (f x) :=
|
||
begin
|
||
reflexivity
|
||
end
|
||
|
||
open option
|
||
definition add_point_AbGroup [unfold 3] {X : Type} (G : X → AbGroup) : X₊ → AbGroup
|
||
| (some x) := G x
|
||
| none := trivial_ab_group_lift
|
||
|
||
definition isomorphism_of_is_contr {G H : Group} (hG : is_contr G) (hH : is_contr H) : G ≃g H :=
|
||
trivial_group_of_is_contr G ⬝g (trivial_group_of_is_contr H)⁻¹ᵍ
|
||
|
||
definition trunc_isomorphism_of_equiv {A B : Type} [inf_group A] [inf_group B] (f : A ≃ B)
|
||
(h : is_mul_hom f) : Group.mk (trunc 0 A) (trunc_group A) ≃g Group.mk (trunc 0 B) (trunc_group B) :=
|
||
begin
|
||
apply isomorphism_of_equiv (equiv.mk (trunc_functor 0 f) (is_equiv_trunc_functor 0 f)), intros x x',
|
||
induction x with a, induction x' with a', apply ap tr, exact h a a'
|
||
end
|
||
|
||
end group open group
|
||
|
||
namespace fiber
|
||
|
||
definition is_contr_pfiber_pid (A : Type*) : is_contr (pfiber (pid A)) :=
|
||
is_contr.mk pt begin intro x, induction x with a p, esimp at p, cases p, reflexivity end
|
||
|
||
end fiber
|
||
|
||
namespace function
|
||
variables {A B : Type} {f f' : A → B}
|
||
open is_conn sigma.ops
|
||
|
||
definition is_contr_of_is_surjective (f : A → B) (H : is_surjective f) (HA : is_contr A)
|
||
(HB : is_set B) : is_contr B :=
|
||
is_contr.mk (f !center) begin intro b, induction H b, exact ap f !is_prop.elim ⬝ p end
|
||
|
||
definition is_contr_of_is_embedding (f : A → B) (H : is_embedding f) (HB : is_prop B)
|
||
(a₀ : A) : is_contr A :=
|
||
is_contr.mk a₀ (λa, is_injective_of_is_embedding (is_prop.elim (f a₀) (f a)))
|
||
|
||
definition merely_constant {A B : Type} (f : A → B) : Type :=
|
||
Σb, Πa, merely (f a = b)
|
||
|
||
definition merely_constant_pmap {A B : Type*} {f : A →* B} (H : merely_constant f) (a : A) :
|
||
merely (f a = pt) :=
|
||
tconcat (tconcat (H.2 a) (tinverse (H.2 pt))) (tr (respect_pt f))
|
||
|
||
definition merely_constant_of_is_conn {A B : Type*} (f : A →* B) [is_conn 0 A] : merely_constant f :=
|
||
⟨pt, is_conn.elim -1 _ (tr (respect_pt f))⟩
|
||
|
||
definition homotopy_group_isomorphism_of_is_embedding (n : ℕ) [H : is_succ n] {A B : Type*}
|
||
(f : A →* B) [H2 : is_embedding f] : πg[n] A ≃g πg[n] B :=
|
||
begin
|
||
apply isomorphism.mk (homotopy_group_homomorphism n f),
|
||
induction H with n,
|
||
apply is_equiv_of_equiv_of_homotopy
|
||
(ptrunc_pequiv_ptrunc 0 (loopn_pequiv_loopn_of_is_embedding (n+1) f)),
|
||
exact sorry
|
||
end
|
||
|
||
end function open function
|
||
|
||
namespace is_conn
|
||
|
||
open unit trunc_index nat is_trunc pointed.ops
|
||
|
||
definition is_conn_zero {A : Type} (a₀ : trunc 0 A) (p : Πa a' : A, ∥ a = a' ∥) : is_conn 0 A :=
|
||
is_conn_succ_intro a₀ (λa a', is_conn_minus_one _ (p a a'))
|
||
|
||
definition is_conn_zero_pointed {A : Type*} (p : Πa a' : A, ∥ a = a' ∥) : is_conn 0 A :=
|
||
is_conn_zero (tr pt) p
|
||
|
||
definition is_conn_fiber (n : ℕ₋₂) {A B : Type} (f : A → B) (b : B) [is_conn n A] [is_conn (n.+1) B] :
|
||
is_conn n (fiber f b) :=
|
||
is_conn_equiv_closed_rev _ !fiber.sigma_char _
|
||
|
||
definition is_conn_fun_compose {n : ℕ₋₂} {A B C : Type} (g : B → C) (f : A → B)
|
||
(H : is_conn_fun n g) (K : is_conn_fun n f) : is_conn_fun n (g ∘ f) :=
|
||
sorry
|
||
|
||
end is_conn
|
||
|
||
namespace misc
|
||
open is_conn
|
||
|
||
open sigma.ops pointed trunc_index
|
||
|
||
definition component [constructor] (A : Type*) : Type* :=
|
||
pType.mk (Σ(a : A), merely (pt = a)) ⟨pt, tr idp⟩
|
||
|
||
lemma is_conn_component [instance] (A : Type*) : is_conn 0 (component A) :=
|
||
is_contr.mk (tr pt)
|
||
begin
|
||
intro x, induction x with x, induction x with a p, induction p with p, induction p, reflexivity
|
||
end
|
||
|
||
definition component_incl [constructor] (A : Type*) : component A →* A :=
|
||
pmap.mk pr1 idp
|
||
|
||
definition is_embedding_component_incl [instance] (A : Type*) : is_embedding (component_incl A) :=
|
||
is_embedding_pr1 _
|
||
|
||
definition component_intro [constructor] {A B : Type*} (f : A →* B) (H : merely_constant f) :
|
||
A →* component B :=
|
||
begin
|
||
fapply pmap.mk,
|
||
{ intro a, refine ⟨f a, _⟩, exact tinverse (merely_constant_pmap H a) },
|
||
exact subtype_eq !respect_pt
|
||
end
|
||
|
||
definition component_functor [constructor] {A B : Type*} (f : A →* B) : component A →* component B :=
|
||
component_intro (f ∘* component_incl A) !merely_constant_of_is_conn
|
||
|
||
-- definition component_elim [constructor] {A B : Type*} (f : A →* B) (H : merely_constant f) :
|
||
-- A →* component B :=
|
||
-- begin
|
||
-- fapply pmap.mk,
|
||
-- { intro a, refine ⟨f a, _⟩, exact tinverse (merely_constant_pmap H a) },
|
||
-- exact subtype_eq !respect_pt
|
||
-- end
|
||
|
||
definition loop_component (A : Type*) : Ω (component A) ≃* Ω A :=
|
||
loop_pequiv_loop_of_is_embedding (component_incl A)
|
||
|
||
lemma loopn_component (n : ℕ) (A : Type*) : Ω[n+1] (component A) ≃* Ω[n+1] A :=
|
||
!loopn_succ_in ⬝e* loopn_pequiv_loopn n (loop_component A) ⬝e* !loopn_succ_in⁻¹ᵉ*
|
||
|
||
-- lemma fundamental_group_component (A : Type*) : π₁ (component A) ≃g π₁ A :=
|
||
-- isomorphism_of_equiv (trunc_equiv_trunc 0 (loop_component A)) _
|
||
|
||
lemma homotopy_group_component (n : ℕ) (A : Type*) : πg[n+1] (component A) ≃g πg[n+1] A :=
|
||
homotopy_group_isomorphism_of_is_embedding (n+1) (component_incl A)
|
||
|
||
definition is_trunc_component [instance] (n : ℕ₋₂) (A : Type*) [is_trunc n A] :
|
||
is_trunc n (component A) :=
|
||
begin
|
||
apply @is_trunc_sigma, intro a, cases n with n,
|
||
{ apply is_contr_of_inhabited_prop, exact tr !is_prop.elim },
|
||
{ apply is_trunc_succ_of_is_prop },
|
||
end
|
||
|
||
definition ptrunc_component' (n : ℕ₋₂) (A : Type*) :
|
||
ptrunc (n.+2) (component A) ≃* component (ptrunc (n.+2) A) :=
|
||
begin
|
||
fapply pequiv.MK',
|
||
{ exact ptrunc.elim (n.+2) (component_functor !ptr) },
|
||
{ intro x, cases x with x p, induction x with a,
|
||
refine tr ⟨a, _⟩,
|
||
note q := trunc_functor -1 !tr_eq_tr_equiv p,
|
||
exact trunc_trunc_equiv_left _ !minus_one_le_succ q },
|
||
{ exact sorry },
|
||
{ exact sorry }
|
||
end
|
||
|
||
definition ptrunc_component (n : ℕ₋₂) (A : Type*) :
|
||
ptrunc n (component A) ≃* component (ptrunc n A) :=
|
||
begin
|
||
cases n with n, exact sorry,
|
||
cases n with n, exact sorry,
|
||
exact ptrunc_component' n A
|
||
end
|
||
|
||
definition break_into_components (A : Type) : A ≃ Σ(x : trunc 0 A), Σ(a : A), ∥ tr a = x ∥ :=
|
||
calc
|
||
A ≃ Σ(a : A) (x : trunc 0 A), tr a = x :
|
||
by exact (@sigma_equiv_of_is_contr_right _ _ (λa, !is_contr_sigma_eq))⁻¹ᵉ
|
||
... ≃ Σ(x : trunc 0 A) (a : A), tr a = x :
|
||
by apply sigma_comm_equiv
|
||
... ≃ Σ(x : trunc 0 A), Σ(a : A), ∥ tr a = x ∥ :
|
||
by exact sigma_equiv_sigma_right (λx, sigma_equiv_sigma_right (λa, !trunc_equiv⁻¹ᵉ))
|
||
|
||
definition pfiber_pequiv_component_of_is_contr [constructor] {A B : Type*} (f : A →* B) [is_contr B]
|
||
/- extra condition, something like trunc_functor 0 f is an embedding -/ : pfiber f ≃* component A :=
|
||
sorry
|
||
|
||
end misc
|
||
|
||
namespace sphere
|
||
|
||
-- definition constant_sphere_map_sphere {n m : ℕ} (H : n < m) (f : S n →* S m) :
|
||
-- f ~* pconst (S n) (S m) :=
|
||
-- begin
|
||
-- assert H : is_contr (Ω[n] (S m)),
|
||
-- { apply homotopy_group_sphere_le, },
|
||
-- apply phomotopy_of_eq,
|
||
-- apply eq_of_fn_eq_fn !sphere_pmap_pequiv,
|
||
-- apply @is_prop.elim
|
||
-- end
|
||
|
||
end sphere
|
||
|
||
section injective_surjective
|
||
open trunc fiber image
|
||
|
||
/- do we want to prove this without funext before we move it? -/
|
||
variables {A B C : Type} (f : A → B)
|
||
definition is_embedding_factor [is_set A] [is_set B] (g : B → C) (h : A → C) (H : g ∘ f ~ h) :
|
||
is_embedding h → is_embedding f :=
|
||
begin
|
||
induction H using homotopy.rec_on_idp,
|
||
intro E,
|
||
fapply is_embedding_of_is_injective,
|
||
intro x y p,
|
||
fapply @is_injective_of_is_embedding _ _ _ E _ _ (ap g p)
|
||
end
|
||
|
||
definition is_surjective_factor (g : B → C) (h : A → C) (H : g ∘ f ~ h) :
|
||
is_surjective h → is_surjective g :=
|
||
begin
|
||
induction H using homotopy.rec_on_idp,
|
||
intro S,
|
||
intro c,
|
||
note p := S c,
|
||
induction p,
|
||
apply tr,
|
||
fapply fiber.mk,
|
||
exact f a,
|
||
exact p
|
||
end
|
||
|
||
end injective_surjective
|
||
|
||
-- Yuri Sulyma's code from HoTT MRC
|
||
|
||
notation `⅀→`:(max+5) := susp_functor
|
||
notation `⅀⇒`:(max+5) := susp_functor_phomotopy
|
||
notation `Ω⇒`:(max+5) := ap1_phomotopy
|
||
|
||
definition ap1_phomotopy_symm {A B : Type*} {f g : A →* B} (p : f ~* g) : (Ω⇒ p)⁻¹* = Ω⇒ (p⁻¹*) :=
|
||
begin
|
||
induction p using phomotopy_rec_idp,
|
||
rewrite ap1_phomotopy_refl,
|
||
xrewrite [+refl_symm],
|
||
rewrite ap1_phomotopy_refl
|
||
end
|
||
|
||
definition ap1_phomotopy_trans {A B : Type*} {f g h : A →* B} (q : g ~* h) (p : f ~* g) : Ω⇒ (p ⬝* q) = Ω⇒ p ⬝* Ω⇒ q :=
|
||
begin
|
||
induction p using phomotopy_rec_idp,
|
||
induction q using phomotopy_rec_idp,
|
||
rewrite trans_refl,
|
||
rewrite [+ap1_phomotopy_refl],
|
||
rewrite trans_refl
|
||
end
|
||
|
||
|
||
namespace pointed
|
||
|
||
definition pbool_pequiv_add_point_unit [constructor] : pbool ≃* unit₊ :=
|
||
pequiv_of_equiv (bool_equiv_option_unit) idp
|
||
|
||
definition to_homotopy_pt_mk {A B : Type*} {f g : A →* B} (h : f ~ g)
|
||
(p : h pt ⬝ respect_pt g = respect_pt f) : to_homotopy_pt (phomotopy.mk h p) = p :=
|
||
to_right_inv !eq_con_inv_equiv_con_eq p
|
||
|
||
|
||
variables {A₀₀ A₂₀ A₀₂ A₂₂ : Type*}
|
||
{f₁₀ : A₀₀ →* A₂₀} {f₁₂ : A₀₂ →* A₂₂}
|
||
{f₀₁ : A₀₀ →* A₀₂} {f₂₁ : A₂₀ →* A₂₂}
|
||
definition psquare_transpose (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : psquare f₀₁ f₂₁ f₁₀ f₁₂ := p⁻¹*
|
||
|
||
end pointed
|
||
|
||
namespace pi
|
||
definition pi_bool_left_nat {A B : bool → Type} (g : Πx, A x -> B x) :
|
||
hsquare (pi_bool_left A) (pi_bool_left B) (pi_functor_right g) (prod_functor (g ff) (g tt)) :=
|
||
begin intro h, esimp end
|
||
|
||
definition pi_bool_left_inv_nat {A B : bool → Type} (g : Πx, A x -> B x) :
|
||
hsquare (pi_bool_left A)⁻¹ᵉ (pi_bool_left B)⁻¹ᵉ (prod_functor (g ff) (g tt)) (pi_functor_right g) := hhinverse (pi_bool_left_nat g)
|
||
|
||
end pi
|
||
|
||
namespace sum
|
||
|
||
infix ` +→ `:62 := sum_functor
|
||
|
||
variables {A₀₀ A₂₀ A₀₂ A₂₂ B₀₀ B₂₀ B₀₂ B₂₂ A A' B B' C C' : Type}
|
||
{f₁₀ : A₀₀ → A₂₀} {f₁₂ : A₀₂ → A₂₂} {f₀₁ : A₀₀ → A₀₂} {f₂₁ : A₂₀ → A₂₂}
|
||
{g₁₀ : B₀₀ → B₂₀} {g₁₂ : B₀₂ → B₂₂} {g₀₁ : B₀₀ → B₀₂} {g₂₁ : B₂₀ → B₂₂}
|
||
{h₀₁ : B₀₀ → A₀₂} {h₂₁ : B₂₀ → A₂₂}
|
||
definition sum_rec_hsquare [unfold 16] (h : hsquare f₁₀ f₁₂ f₀₁ f₂₁)
|
||
(k : hsquare g₁₀ f₁₂ h₀₁ h₂₁) : hsquare (f₁₀ +→ g₁₀) f₁₂ (sum.rec f₀₁ h₀₁) (sum.rec f₂₁ h₂₁) :=
|
||
begin intro x, induction x with a b, exact h a, exact k b end
|
||
|
||
definition sum_functor_hsquare [unfold 19] (h : hsquare f₁₀ f₁₂ f₀₁ f₂₁)
|
||
(k : hsquare g₁₀ g₁₂ g₀₁ g₂₁) : hsquare (f₁₀ +→ g₁₀) (f₁₂ +→ g₁₂) (f₀₁ +→ g₀₁) (f₂₁ +→ g₂₁) :=
|
||
sum_rec_hsquare (λa, ap inl (h a)) (λb, ap inr (k b))
|
||
|
||
definition sum_functor_compose (g : B → C) (f : A → B) (g' : B' → C') (f' : A' → B') :
|
||
(g ∘ f) +→ (g' ∘ f') ~ g +→ g' ∘ f +→ f' :=
|
||
begin intro x, induction x with a a': reflexivity end
|
||
|
||
definition sum_rec_sum_functor (g : B → C) (g' : B' → C) (f : A → B) (f' : A' → B') :
|
||
sum.rec g g' ∘ sum_functor f f' ~ sum.rec (g ∘ f) (g' ∘ f') :=
|
||
begin intro x, induction x with a a': reflexivity end
|
||
|
||
definition sum_rec_same_compose (g : B → C) (f : A → B) :
|
||
sum.rec (g ∘ f) (g ∘ f) ~ g ∘ sum.rec f f :=
|
||
begin intro x, induction x with a a': reflexivity end
|
||
|
||
definition sum_rec_same (f : A → B) :
|
||
sum.rec f f ~ f ∘ sum.rec id id :=
|
||
sum_rec_same_compose f id
|
||
|
||
end sum
|
||
|
||
namespace prod
|
||
|
||
infix ` ×→ `:63 := prod_functor
|
||
infix ` ×≃ `:63 := prod_equiv_prod
|
||
|
||
end prod
|
||
|
||
namespace equiv
|
||
|
||
definition rec_eq_of_equiv {A : Type} {P : A → A → Type} (e : Πa a', a = a' ≃ P a a')
|
||
{a a' : A} (Q : P a a' → Type) (H : Π(q : a = a'), Q (e a a' q)) :
|
||
Π(p : P a a'), Q p :=
|
||
equiv_rect (e a a') Q H
|
||
|
||
definition rec_idp_of_equiv {A : Type} {P : A → A → Type} (e : Πa a', a = a' ≃ P a a') {a : A}
|
||
(r : P a a) (s : e a a idp = r) (Q : Πa', P a a' → Type) (H : Q a r) ⦃a' : A⦄ (p : P a a') :
|
||
Q a' p :=
|
||
rec_eq_of_equiv e _ begin intro q, induction q, induction s, exact H end p
|
||
|
||
definition rec_idp_of_equiv_idp {A : Type} {P : A → A → Type} (e : Πa a', a = a' ≃ P a a') {a : A}
|
||
(r : P a a) (s : e a a idp = r) (Q : Πa', P a a' → Type) (H : Q a r) :
|
||
rec_idp_of_equiv e r s Q H r = H :=
|
||
begin
|
||
induction s, refine !is_equiv_rect_comp ⬝ _, reflexivity
|
||
end
|
||
|
||
end equiv
|