Spectral/algebra/arrow_group.hlean
2017-07-08 12:22:54 +01:00

300 lines
12 KiB
Text

/- various groups of maps. Most importantly we define a group structure on trunc 0 (A →* Ω B),
which is used in the definition of cohomology -/
--author: Floris van Doorn
import algebra.group_theory ..pointed ..pointed_pi eq2 homotopy.susp
open pi pointed algebra group eq equiv is_trunc trunc susp
namespace group
/- We first define the group structure on A →* Ω B (except for truncatedness).
Instead of Ω B, we could also choose any infinity group. However, we need various 2-coherences,
so it's easier to just do it for the loop space. -/
definition pmap_mul [constructor] {A B : Type*} (f g : A →* Ω B) : A →* Ω B :=
pmap.mk (λa, f a ⬝ g a) (respect_pt f ◾ respect_pt g ⬝ !idp_con)
definition pmap_inv [constructor] {A B : Type*} (f : A →* Ω B) : A →* Ω B :=
pmap.mk (λa, (f a)⁻¹ᵖ) (respect_pt f)⁻²
/- we prove some coherences of the multiplication. We don't need them for the group structure, but they
are used to show that cohomology satisfies the Eilenberg-Steenrod axioms -/
definition ap1_pmap_mul {X Y : Type*} (f g : X →* Ω Y) :
Ω→ (pmap_mul f g) ~* pmap_mul (Ω→ f) (Ω→ g) :=
begin
fapply phomotopy.mk,
{ intro p, esimp,
refine ap1_gen_con_left (respect_pt f) (respect_pt f)
(respect_pt g) (respect_pt g) p ⬝ _,
refine !whisker_right_idp ◾ !whisker_left_idp2, },
{ refine !con.assoc ⬝ _,
refine _ ◾ idp ⬝ _, rotate 1,
rexact ap1_gen_con_left_idp (respect_pt f) (respect_pt g), esimp,
refine !con.assoc ⬝ _,
apply whisker_left, apply inv_con_eq_idp,
refine !con2_con_con2 ⬝ ap011 concat2 _ _:
refine eq_of_square (!natural_square ⬝hp !ap_id) ⬝ !con_idp }
end
definition pmap_mul_pcompose {A B C : Type*} (g h : B →* Ω C) (f : A →* B) :
pmap_mul g h ∘* f ~* pmap_mul (g ∘* f) (h ∘* f) :=
begin
fapply phomotopy.mk,
{ intro p, reflexivity },
{ esimp, refine !idp_con ⬝ _, refine !con2_con_con2⁻¹ ⬝ whisker_right _ _,
refine !ap_eq_ap011⁻¹ }
end
definition pcompose_pmap_mul {A B C : Type*} (h : B →* C) (f g : A →* Ω B) :
Ω→ h ∘* pmap_mul f g ~* pmap_mul (Ω→ h ∘* f) (Ω→ h ∘* g) :=
begin
fapply phomotopy.mk,
{ intro p, exact ap1_con h (f p) (g p) },
{ refine whisker_left _ !con2_con_con2⁻¹ ⬝ _, refine !con.assoc⁻¹ ⬝ _,
refine whisker_right _ (eq_of_square !ap1_gen_con_natural) ⬝ _,
refine !con.assoc ⬝ whisker_left _ _, apply ap1_gen_con_idp }
end
definition loop_psusp_intro_pmap_mul {X Y : Type*} (f g : psusp X →* Ω Y) :
loop_psusp_intro (pmap_mul f g) ~* pmap_mul (loop_psusp_intro f) (loop_psusp_intro g) :=
pwhisker_right _ !ap1_pmap_mul ⬝* !pmap_mul_pcompose
definition inf_group_pmap [constructor] [instance] (A B : Type*) : inf_group (A →* Ω B) :=
begin
fapply inf_group.mk,
{ exact pmap_mul },
{ intro f g h, fapply pmap_eq,
{ intro a, exact con.assoc (f a) (g a) (h a) },
{ rexact eq_of_square (con2_assoc (respect_pt f) (respect_pt g) (respect_pt h)) }},
{ apply pconst },
{ intros f, fapply pmap_eq,
{ intro a, exact one_mul (f a) },
{ esimp, apply eq_of_square, refine _ ⬝vp !ap_id, apply natural_square_tr }},
{ intros f, fapply pmap_eq,
{ intro a, exact mul_one (f a) },
{ reflexivity }},
{ exact pmap_inv },
{ intro f, fapply pmap_eq,
{ intro a, exact con.left_inv (f a) },
{ exact !con_left_inv_idp⁻¹ }},
end
definition group_trunc_pmap [constructor] [instance] (A B : Type*) : group (trunc 0 (A →* Ω B)) :=
!trunc_group
definition Group_trunc_pmap [reducible] [constructor] (A B : Type*) : Group :=
Group.mk (trunc 0 (A →* Ω B)) _
definition Group_trunc_pmap_homomorphism [constructor] {A A' B : Type*} (f : A' →* A) :
Group_trunc_pmap A B →g Group_trunc_pmap A' B :=
begin
fapply homomorphism.mk,
{ apply trunc_functor, intro g, exact g ∘* f},
{ intro g h, induction g with g, induction h with h, apply ap tr,
fapply pmap_eq,
{ intro a, reflexivity },
{ refine _ ⬝ !idp_con⁻¹,
refine whisker_right _ !ap_con_fn ⬝ _, apply con2_con_con2 }}
end
definition Group_trunc_pmap_isomorphism [constructor] {A A' B : Type*} (f : A' ≃* A) :
Group_trunc_pmap A B ≃g Group_trunc_pmap A' B :=
begin
apply isomorphism.mk (Group_trunc_pmap_homomorphism f),
apply @is_equiv_trunc_functor,
exact to_is_equiv (pequiv_ppcompose_right f),
end
definition Group_trunc_pmap_isomorphism_refl (A B : Type*) (x : Group_trunc_pmap A B) :
Group_trunc_pmap_isomorphism (pequiv.refl A) x = x :=
begin
induction x, apply ap tr, apply eq_of_phomotopy, apply pcompose_pid
end
definition Group_trunc_pmap_pid [constructor] {A B : Type*} (f : Group_trunc_pmap A B) :
Group_trunc_pmap_homomorphism (pid A) f = f :=
begin
induction f with f, apply ap tr, apply eq_of_phomotopy, apply pcompose_pid
end
definition Group_trunc_pmap_pconst [constructor] {A A' B : Type*} (f : Group_trunc_pmap A B) :
Group_trunc_pmap_homomorphism (pconst A' A) f = 1 :=
begin
induction f with f, apply ap tr, apply eq_of_phomotopy, apply pcompose_pconst
end
definition Group_trunc_pmap_pcompose [constructor] {A A' A'' B : Type*} (f : A' →* A)
(f' : A'' →* A') (g : Group_trunc_pmap A B) : Group_trunc_pmap_homomorphism (f ∘* f') g =
Group_trunc_pmap_homomorphism f' (Group_trunc_pmap_homomorphism f g) :=
begin
induction g with g, apply ap tr, apply eq_of_phomotopy, exact !passoc⁻¹*
end
definition Group_trunc_pmap_phomotopy [constructor] {A A' B : Type*} {f f' : A' →* A}
(p : f ~* f') : @Group_trunc_pmap_homomorphism _ _ B f ~ Group_trunc_pmap_homomorphism f' :=
begin
intro g, induction g, exact ap tr (eq_of_phomotopy (pwhisker_left a p))
end
definition Group_trunc_pmap_phomotopy_refl {A A' B : Type*} (f : A' →* A)
(x : Group_trunc_pmap A B) : Group_trunc_pmap_phomotopy (phomotopy.refl f) x = idp :=
begin
induction x,
refine ap02 tr _,
refine ap eq_of_phomotopy _ ⬝ !eq_of_phomotopy_refl,
apply pwhisker_left_refl
end
definition ab_inf_group_pmap [constructor] [instance] (A B : Type*) :
ab_inf_group (A →* Ω (Ω B)) :=
⦃ab_inf_group, inf_group_pmap A (Ω B), mul_comm :=
begin
intro f g, fapply pmap_eq,
{ intro a, exact eckmann_hilton (f a) (g a) },
{ rexact eq_of_square (eckmann_hilton_con2 (respect_pt f) (respect_pt g)) }
end⦄
definition ab_group_trunc_pmap [constructor] [instance] (A B : Type*) :
ab_group (trunc 0 (A →* Ω (Ω B))) :=
!trunc_ab_group
definition AbGroup_trunc_pmap [reducible] [constructor] (A B : Type*) : AbGroup :=
AbGroup.mk (trunc 0 (A →* Ω (Ω B))) _
/- Group of dependent functions whose codomain is a group -/
definition group_pi [instance] [constructor] {A : Type} (P : A → Type) [Πa, group (P a)] :
group (Πa, P a) :=
begin
fapply group.mk,
{ apply is_trunc_pi },
{ intro f g a, exact f a * g a },
{ intros, apply eq_of_homotopy, intro a, apply mul.assoc },
{ intro a, exact 1 },
{ intros, apply eq_of_homotopy, intro a, apply one_mul },
{ intros, apply eq_of_homotopy, intro a, apply mul_one },
{ intro f a, exact (f a)⁻¹ },
{ intros, apply eq_of_homotopy, intro a, apply mul.left_inv }
end
definition Group_pi [constructor] {A : Type} (P : A → Group) : Group :=
Group.mk (Πa, P a) _
/- we use superscript in the following notation, because otherwise we can never write something
like `Πg h : G, _` anymore -/
notation `Πᵍ` binders `, ` r:(scoped P, Group_pi P) := r
definition Group_pi_intro [constructor] {A : Type} {G : Group} {P : A → Group} (f : Πa, G →g P a)
: G →g Πᵍ a, P a :=
begin
fconstructor,
{ intro g a, exact f a g },
{ intro g h, apply eq_of_homotopy, intro a, exact respect_mul (f a) g h }
end
/- Group of dependent functions into a loop space -/
definition ppi_mul [constructor] {A : Type*} {B : A → Type*} (f g : Π*a, Ω (B a)) : Π*a, Ω (B a) :=
proof ppi.mk (λa, f a ⬝ g a) (ppi_resp_pt f ◾ ppi_resp_pt g ⬝ !idp_con) qed
definition ppi_inv [constructor] {A : Type*} {B : A → Type*} (f : Π*a, Ω (B a)) : Π*a, Ω (B a) :=
proof ppi.mk (λa, (f a)⁻¹ᵖ) (ppi_resp_pt f)⁻² qed
definition inf_group_ppi [constructor] [instance] {A : Type*} (B : A → Type*) :
inf_group (Π*a, Ω (B a)) :=
begin
fapply inf_group.mk,
{ exact ppi_mul },
{ intro f g h, apply ppi_eq, fapply ppi_homotopy.mk,
{ intro a, exact con.assoc (f a) (g a) (h a) },
{ symmetry, rexact eq_of_square (con2_assoc (ppi_resp_pt f) (ppi_resp_pt g) (ppi_resp_pt h)) }},
{ apply ppi_const },
{ intros f, apply ppi_eq, fapply ppi_homotopy.mk,
{ intro a, exact one_mul (f a) },
{ symmetry, apply eq_of_square, refine _ ⬝vp !ap_id, apply natural_square_tr }},
{ intros f, apply ppi_eq, fapply ppi_homotopy.mk,
{ intro a, exact mul_one (f a) },
{ reflexivity }},
{ exact ppi_inv },
{ intro f, apply ppi_eq, fapply ppi_homotopy.mk,
{ intro a, exact con.left_inv (f a) },
{ exact !con_left_inv_idp }},
end
definition group_trunc_ppi [constructor] [instance] {A : Type*} (B : A → Type*) :
group (trunc 0 (Π*a, Ω (B a))) :=
!trunc_group
definition Group_trunc_ppi [reducible] [constructor] {A : Type*} (B : A → Type*) : Group :=
Group.mk (trunc 0 (Π*a, Ω (B a))) _
definition ab_inf_group_ppi [constructor] [instance] {A : Type*} (B : A → Type*) :
ab_inf_group (Π*a, Ω (Ω (B a))) :=
⦃ab_inf_group, inf_group_ppi (λa, Ω (B a)), mul_comm :=
begin
intro f g, apply ppi_eq, fapply ppi_homotopy.mk,
{ intro a, exact eckmann_hilton (f a) (g a) },
{ symmetry, rexact eq_of_square (eckmann_hilton_con2 (ppi_resp_pt f) (ppi_resp_pt g)) }
end⦄
definition ab_group_trunc_ppi [constructor] [instance] {A : Type*} (B : A → Type*) :
ab_group (trunc 0 (Π*a, Ω (Ω (B a)))) :=
!trunc_ab_group
definition AbGroup_trunc_ppi [reducible] [constructor] {A : Type*} (B : A → Type*) : AbGroup :=
AbGroup.mk (trunc 0 (Π*a, Ω (Ω (B a)))) _
definition trunc_ppi_isomorphic_pmap (A B : Type*)
: Group.mk (trunc 0 (Π*(a : A), Ω B)) !trunc_group
≃g Group.mk (trunc 0 (A →* Ω B)) !trunc_group :=
begin
apply trunc_isomorphism_of_equiv (ppi_equiv_pmap A (Ω B)),
intro h k, induction h with h h_pt, induction k with k k_pt, reflexivity
end
section
universe variables u v
variables {A : pType.{u}} {B : A → Type.{v}} {x₀ : B pt} {k l m : ppi_gen B x₀}
definition ppi_homotopy_of_eq_homomorphism (p : k = l) (q : l = m)
: ppi_homotopy_of_eq (p ⬝ q) = ppi_homotopy_of_eq p ⬝*' ppi_homotopy_of_eq q :=
begin
induction q, induction p, induction k with k q, induction q, reflexivity
end
protected definition ppi_mul_loop.lemma1 {X : Type} {x : X} (p q : x = x) (p_pt : idp = p) (q_pt : idp = q)
: refl (p ⬝ q) ⬝ whisker_left p q_pt⁻¹ ⬝ p_pt⁻¹ = p_pt⁻¹ ◾ q_pt⁻¹ :=
by induction p_pt; induction q_pt; reflexivity
protected definition ppi_mul_loop.lemma2 {X : Type} {x : X} (p q : x = x) (p_pt : p = idp) (q_pt : q = idp)
: refl (p ⬝ q) ⬝ whisker_left p q_pt ⬝ p_pt = p_pt ◾ q_pt :=
by rewrite [-(inv_inv p_pt),-(inv_inv q_pt)]; exact ppi_mul_loop.lemma1 p q p_pt⁻¹ q_pt⁻¹
definition ppi_mul_loop {h : Πa, B a} (f g : ppi_gen.mk h idp ~~* ppi_gen.mk h idp) : f ⬝*' g = ppi_mul f g :=
begin
apply ap (ppi_gen.mk (λa, f a ⬝ g a)),
apply ppi_gen.rec_on f, intros f' f_pt, apply ppi_gen.rec_on g, intros g' g_pt,
clear f g, esimp at *, exact ppi_mul_loop.lemma2 (f' pt) (g' pt) f_pt g_pt
end
variable (k)
definition trunc_ppi_loop_isomorphism_lemma
: isomorphism.{(max u v) (max u v)}
(Group.mk (trunc 0 (k = k)) (@trunc_group (k = k) !inf_group_loop))
(Group.mk (trunc 0 (Π*(a : A), Ω (pType.mk (B a) (k a)))) !trunc_group) :=
begin
apply @trunc_isomorphism_of_equiv _ _ !inf_group_loop !inf_group_ppi (ppi_loop_equiv k),
intro f g, induction k with k p, induction p,
apply trans (ppi_homotopy_of_eq_homomorphism f g),
exact ppi_mul_loop (ppi_homotopy_of_eq f) (ppi_homotopy_of_eq g)
end
end
definition trunc_ppi_loop_isomorphism {A : Type*} (B : A → Type*)
: Group.mk (trunc 0 (Ω (Π*(a : A), B a))) !trunc_group
≃g Group.mk (trunc 0 (Π*(a : A), Ω (B a))) !trunc_group :=
trunc_ppi_loop_isomorphism_lemma (ppi_const B)
end group