Spectral/move_to_lib.hlean
Floris van Doorn 63ec1b8d37 progress on atiyah-hirzebruch and serre spectral sequences
Note: the Serre spectral sequence only works for unreduced cohomology, so we need some results for that
For reduced homology we might get a similar result if we replace the sigma in the RHS by a dependent version of the smash product
2017-07-02 01:14:18 +01:00

834 lines
31 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- definitions, theorems and attributes which should be moved to files in the HoTT library
import homotopy.sphere2 homotopy.cofiber homotopy.wedge hit.prop_trunc hit.set_quotient eq2 types.pointed2
.homotopy.susp
open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc pi group
is_trunc function sphere unit prod bool
namespace eq
definition eq.rec_to {A : Type} {a₀ : A} {P : Π⦃a₁⦄, a₀ = a₁ → Type}
{a₁ : A} (p₀ : a₀ = a₁) (H : P p₀) ⦃a₂ : A⦄ (p : a₀ = a₂) : P p :=
begin
induction p₀, induction p, exact H
end
definition eq.rec_to2 {A : Type} {P : Π⦃a₀ a₁⦄, a₀ = a₁ → Type}
{a₀ a₀' a₁' : A} (p' : a₀' = a₁') (p₀ : a₀ = a₀') (H : P p') ⦃a₁ : A⦄ (p : a₀ = a₁) : P p :=
begin
induction p₀, induction p', induction p, exact H
end
definition eq.rec_right_inv {A : Type} (f : A ≃ A) {P : Π⦃a₀ a₁⦄, f a₀ = a₁ → Type}
(H : Πa, P (right_inv f a)) ⦃a₀ a₁ : A⦄ (p : f a₀ = a₁) : P p :=
begin
revert a₀ p, refine equiv_rect f⁻¹ᵉ _ _,
intro a₀ p, exact eq.rec_to (right_inv f a₀) (H a₀) p,
end
definition eq.rec_equiv {A B : Type} {a₀ : A} (f : A ≃ B) {P : Π{a₁}, f a₀ = f a₁ → Type}
(H : P (idpath (f a₀))) ⦃a₁ : A⦄ (p : f a₀ = f a₁) : P p :=
begin
assert qr : Σ(q : a₀ = a₁), ap f q = p,
{ exact ⟨eq_of_fn_eq_fn f p, ap_eq_of_fn_eq_fn' f p⟩ },
cases qr with q r, apply transport P r, induction q, exact H
end
definition eq.rec_equiv_symm {A B : Type} {a₁ : A} (f : A ≃ B) {P : Π{a₀}, f a₀ = f a₁ → Type}
(H : P (idpath (f a₁))) ⦃a₀ : A⦄ (p : f a₀ = f a₁) : P p :=
begin
assert qr : Σ(q : a₀ = a₁), ap f q = p,
{ exact ⟨eq_of_fn_eq_fn f p, ap_eq_of_fn_eq_fn' f p⟩ },
cases qr with q r, apply transport P r, induction q, exact H
end
definition eq.rec_equiv_to_same {A B : Type} {a₀ : A} (f : A ≃ B) {P : Π{a₁}, f a₀ = f a₁ → Type}
⦃a₁' : A⦄ (p' : f a₀ = f a₁') (H : P p') ⦃a₁ : A⦄ (p : f a₀ = f a₁) : P p :=
begin
revert a₁' p' H a₁ p,
refine eq.rec_equiv f _,
exact eq.rec_equiv f
end
definition eq.rec_equiv_to {A A' B : Type} {a₀ : A} (f : A ≃ B) (g : A' ≃ B)
{P : Π{a₁}, f a₀ = g a₁ → Type}
⦃a₁' : A'⦄ (p' : f a₀ = g a₁') (H : P p') ⦃a₁ : A'⦄ (p : f a₀ = g a₁) : P p :=
begin
assert qr : Σ(q : g⁻¹ (f a₀) = a₁), (right_inv g (f a₀))⁻¹ ⬝ ap g q = p,
{ exact ⟨eq_of_fn_eq_fn g (right_inv g (f a₀) ⬝ p),
whisker_left _ (ap_eq_of_fn_eq_fn' g _) ⬝ !inv_con_cancel_left⟩ },
assert q'r' : Σ(q' : g⁻¹ (f a₀) = a₁'), (right_inv g (f a₀))⁻¹ ⬝ ap g q' = p',
{ exact ⟨eq_of_fn_eq_fn g (right_inv g (f a₀) ⬝ p'),
whisker_left _ (ap_eq_of_fn_eq_fn' g _) ⬝ !inv_con_cancel_left⟩ },
induction qr with q r, induction q'r' with q' r',
induction q, induction q',
induction r, induction r',
exact H
end
definition eq.rec_grading {A A' B : Type} {a : A} (f : A ≃ B) (g : A' ≃ B)
{P : Π{b}, f a = b → Type}
{a' : A'} (p' : f a = g a') (H : P p') ⦃b : B⦄ (p : f a = b) : P p :=
begin
revert b p, refine equiv_rect g _ _,
exact eq.rec_equiv_to f g p' H
end
definition eq.rec_grading_unbased {A B B' C : Type} (f : A ≃ B) (g : B ≃ C) (h : B' ≃ C)
{P : Π{b c}, g b = c → Type}
{a' : A} {b' : B'} (p' : g (f a') = h b') (H : P p') ⦃b : B⦄ ⦃c : C⦄ (q : f a' = b)
(p : g b = c) : P p :=
begin
induction q, exact eq.rec_grading (f ⬝e g) h p' H p
end
-- definition homotopy_group_homomorphism_pinv (n : ) {A B : Type*} (f : A ≃* B) :
-- π→g[n+1] f⁻¹ᵉ* ~ (homotopy_group_isomorphism_of_pequiv n f)⁻¹ᵍ :=
-- begin
-- -- refine ptrunc_functor_phomotopy 0 !apn_pinv ⬝hty _,
-- -- intro x, esimp,
-- end
-- definition natural_square_tr_eq {A B : Type} {a a' : A} {f g : A → B}
-- (p : f ~ g) (q : a = a') : natural_square p q = square_of_pathover (apd p q) :=
-- idp
lemma homotopy_group_isomorphism_of_ptrunc_pequiv {A B : Type*}
(n k : ) (H : n+1 ≤[] k) (f : ptrunc k A ≃* ptrunc k B) : πg[n+1] A ≃g πg[n+1] B :=
(ghomotopy_group_ptrunc_of_le H A)⁻¹ᵍ ⬝g
homotopy_group_isomorphism_of_pequiv n f ⬝g
ghomotopy_group_ptrunc_of_le H B
section hsquare
variables {A₀₀ A₂₀ A₄₀ A₀₂ A₂₂ A₄₂ A₀₄ A₂₄ A₄₄ : Type}
{f₁₀ : A₀₀ → A₂₀} {f₃₀ : A₂₀ → A₄₀}
{f₀₁ : A₀₀ → A₀₂} {f₂₁ : A₂₀ → A₂₂} {f₄₁ : A₄₀ → A₄₂}
{f₁₂ : A₀₂ → A₂₂} {f₃₂ : A₂₂ → A₄₂}
{f₀₃ : A₀₂ → A₀₄} {f₂₃ : A₂₂ → A₂₄} {f₄₃ : A₄₂ → A₄₄}
{f₁₄ : A₀₄ → A₂₄} {f₃₄ : A₂₄ → A₄₄}
definition trunc_functor_hsquare (n : ℕ₋₂) (h : hsquare f₁₀ f₁₂ f₀₁ f₂₁) :
hsquare (trunc_functor n f₁₀) (trunc_functor n f₁₂)
(trunc_functor n f₀₁) (trunc_functor n f₂₁) :=
λa, !trunc_functor_compose⁻¹ ⬝ trunc_functor_homotopy n h a ⬝ !trunc_functor_compose
end hsquare
definition homotopy_group_succ_in_natural (n : ) {A B : Type*} (f : A →* B) :
hsquare (homotopy_group_succ_in A n) (homotopy_group_succ_in B n) (π→[n+1] f) (π→[n] (Ω→ f)) :=
trunc_functor_hsquare _ (loopn_succ_in_natural n f)⁻¹*
end eq open eq
namespace nat
protected definition rec_down (P : → Type) (s : ) (H0 : P s) (Hs : Πn, P (n+1) → P n) : P 0 :=
have Hp : Πn, P n → P (pred n),
begin
intro n p, cases n with n,
{ exact p },
{ exact Hs n p }
end,
have H : Πn, P (s - n),
begin
intro n, induction n with n p,
{ exact H0 },
{ exact Hp (s - n) p }
end,
transport P (nat.sub_self s) (H s)
end nat
namespace trunc_index
open is_conn nat trunc is_trunc
lemma minus_two_add_plus_two (n : ℕ₋₂) : -2+2+n = n :=
by induction n with n p; reflexivity; exact ap succ p
protected definition of_nat_monotone {n k : } : n ≤ k → of_nat n ≤ of_nat k :=
begin
intro H, induction H with k H K,
{ apply le.tr_refl },
{ apply le.step K }
end
lemma add_plus_two_comm (n k : ℕ₋₂) : n +2+ k = k +2+ n :=
begin
induction n with n IH,
{ exact minus_two_add_plus_two k },
{ exact !succ_add_plus_two ⬝ ap succ IH}
end
end trunc_index
namespace int
open trunc_index
/-
The function from integers to truncation indices which sends
positive numbers to themselves, and negative numbers to negative
2. In particular -1 is sent to -2, but since we only work with
pointed types, that doesn't matter for us -/
definition maxm2 [unfold 1] : → ℕ₋₂ :=
λ n, int.cases_on n trunc_index.of_nat (λk, -2)
-- we also need the max -1 - function
definition maxm1 [unfold 1] : → ℕ₋₂ :=
λ n, int.cases_on n trunc_index.of_nat (λk, -1)
definition maxm2_le_maxm1 (n : ) : maxm2 n ≤ maxm1 n :=
begin
induction n with n n,
{ exact le.tr_refl n },
{ exact minus_two_le -1 }
end
-- the is maxm1 minus 1
definition maxm1m1 [unfold 1] : → ℕ₋₂ :=
λ n, int.cases_on n (λ k, k.-1) (λ k, -2)
definition maxm1_eq_succ (n : ) : maxm1 n = (maxm1m1 n).+1 :=
begin
induction n with n n,
{ reflexivity },
{ reflexivity }
end
definition maxm2_le_maxm0 (n : ) : maxm2 n ≤ max0 n :=
begin
induction n with n n,
{ exact le.tr_refl n },
{ exact minus_two_le 0 }
end
definition max0_le_of_le {n : } {m : } (H : n ≤ of_nat m)
: nat.le (max0 n) m :=
begin
induction n with n n,
{ exact le_of_of_nat_le_of_nat H },
{ exact nat.zero_le m }
end
definition not_neg_succ_le_of_nat {n m : } : ¬m ≤ -[1+n] :=
by cases m: exact id
definition maxm2_monotone {n m : } (H : n ≤ m) : maxm2 n ≤ maxm2 m :=
begin
induction n with n n,
{ induction m with m m,
{ apply of_nat_le_of_nat, exact le_of_of_nat_le_of_nat H },
{ exfalso, exact not_neg_succ_le_of_nat H }},
{ apply minus_two_le }
end
definition sub_nat_le (n : ) (m : ) : n - m ≤ n :=
le.intro !sub_add_cancel
definition sub_one_le (n : ) : n - 1 ≤ n :=
sub_nat_le n 1
definition le_add_nat (n : ) (m : ) : n ≤ n + m :=
le.intro rfl
definition le_add_one (n : ) : n ≤ n + 1:=
le_add_nat n 1
end int
namespace pmap
definition eta {A B : Type*} (f : A →* B) : pmap.mk f (respect_pt f) = f :=
begin induction f, reflexivity end
end pmap
namespace lift
definition is_trunc_plift [instance] [priority 1450] (A : Type*) (n : ℕ₋₂)
[H : is_trunc n A] : is_trunc n (plift A) :=
is_trunc_lift A n
end lift
namespace trunc
-- TODO: redefine loopn_ptrunc_pequiv
definition apn_ptrunc_functor (n : ℕ₋₂) (k : ) {A B : Type*} (f : A →* B) :
Ω→[k] (ptrunc_functor (n+k) f) ∘* (loopn_ptrunc_pequiv n k A)⁻¹ᵉ* ~*
(loopn_ptrunc_pequiv n k B)⁻¹ᵉ* ∘* ptrunc_functor n (Ω→[k] f) :=
begin
revert n, induction k with k IH: intro n,
{ reflexivity },
{ exact sorry }
end
definition ptrunc_pequiv_natural [constructor] (n : ℕ₋₂) {A B : Type*} (f : A →* B) [is_trunc n A]
[is_trunc n B] : f ∘* ptrunc_pequiv n A ~* ptrunc_pequiv n B ∘* ptrunc_functor n f :=
begin
fapply phomotopy.mk,
{ intro a, induction a with a, reflexivity },
{ refine !idp_con ⬝ _ ⬝ !idp_con⁻¹, refine !ap_compose'⁻¹ ⬝ _, apply ap_id }
end
definition ptr_natural [constructor] (n : ℕ₋₂) {A B : Type*} (f : A →* B) :
ptrunc_functor n f ∘* ptr n A ~* ptr n B ∘* f :=
begin
fapply phomotopy.mk,
{ intro a, reflexivity },
{ reflexivity }
end
definition ptrunc_elim_pcompose (n : ℕ₋₂) {A B C : Type*} (g : B →* C) (f : A →* B) [is_trunc n B]
[is_trunc n C] : ptrunc.elim n (g ∘* f) ~* g ∘* ptrunc.elim n f :=
begin
fapply phomotopy.mk,
{ intro a, induction a with a, reflexivity },
{ apply idp_con }
end
definition ptrunc_elim_ptr_phomotopy_pid (n : ℕ₋₂) (A : Type*):
ptrunc.elim n (ptr n A) ~* pid (ptrunc n A) :=
begin
fapply phomotopy.mk,
{ intro a, induction a with a, reflexivity },
{ apply idp_con }
end
definition is_trunc_of_eq {n m : ℕ₋₂} (p : n = m) {A : Type} (H : is_trunc n A) : is_trunc m A :=
transport (λk, is_trunc k A) p H
definition is_trunc_ptrunc_of_is_trunc [instance] [priority 500] (A : Type*)
(n m : ℕ₋₂) [H : is_trunc n A] : is_trunc n (ptrunc m A) :=
is_trunc_trunc_of_is_trunc A n m
definition ptrunc_pequiv_ptrunc_of_is_trunc {n m k : ℕ₋₂} {A : Type*}
(H1 : n ≤ m) (H2 : n ≤ k) (H : is_trunc n A) : ptrunc m A ≃* ptrunc k A :=
have is_trunc m A, from is_trunc_of_le A H1,
have is_trunc k A, from is_trunc_of_le A H2,
pequiv.MK (ptrunc.elim _ (ptr k A)) (ptrunc.elim _ (ptr m A))
abstract begin
refine !ptrunc_elim_pcompose⁻¹* ⬝* _,
exact ptrunc_elim_phomotopy _ !ptrunc_elim_ptr ⬝* !ptrunc_elim_ptr_phomotopy_pid,
end end
abstract begin
refine !ptrunc_elim_pcompose⁻¹* ⬝* _,
exact ptrunc_elim_phomotopy _ !ptrunc_elim_ptr ⬝* !ptrunc_elim_ptr_phomotopy_pid,
end end
definition ptrunc_change_index {k l : ℕ₋₂} (p : k = l) (X : Type*)
: ptrunc k X ≃* ptrunc l X :=
pequiv_ap (λ n, ptrunc n X) p
definition ptrunc_functor_le {k l : ℕ₋₂} (p : l ≤ k) (X : Type*)
: ptrunc k X →* ptrunc l X :=
have is_trunc k (ptrunc l X), from is_trunc_of_le _ p,
ptrunc.elim _ (ptr l X)
end trunc
namespace sigma
-- definition sigma_pathover_equiv_of_is_prop {A : Type} {B : A → Type} {C : Πa, B a → Type}
-- {a a' : A} {p : a = a'} {b : B a} {b' : B a'} {c : C a b} {c' : C a' b'}
-- [Πa b, is_prop (C a b)] : ⟨b, c⟩ =[p] ⟨b', c'⟩ ≃ b =[p] b' :=
-- begin
-- fapply equiv.MK,
-- { exact pathover_pr1 },
-- { intro q, induction q, apply pathover_idp_of_eq, exact sigma_eq idp !is_prop.elimo },
-- { intro q, induction q,
-- have c = c', from !is_prop.elim, induction this,
-- rewrite [▸*, is_prop_elimo_self (C a) c] },
-- { esimp, generalize ⟨b, c⟩, intro x q, }
-- end
--rexact @(ap pathover_pr1) _ idpo _,
end sigma open sigma
namespace group
-- definition is_equiv_isomorphism
-- some extra instances for type class inference
-- definition is_mul_hom_comm_homomorphism [instance] {G G' : AbGroup} (φ : G →g G')
-- : @is_mul_hom G G' (@ab_group.to_group _ (AbGroup.struct G))
-- (@ab_group.to_group _ (AbGroup.struct G')) φ :=
-- homomorphism.struct φ
-- definition is_mul_hom_comm_homomorphism1 [instance] {G G' : AbGroup} (φ : G →g G')
-- : @is_mul_hom G G' _
-- (@ab_group.to_group _ (AbGroup.struct G')) φ :=
-- homomorphism.struct φ
-- definition is_mul_hom_comm_homomorphism2 [instance] {G G' : AbGroup} (φ : G →g G')
-- : @is_mul_hom G G' (@ab_group.to_group _ (AbGroup.struct G)) _ φ :=
-- homomorphism.struct φ
definition pgroup_of_Group (X : Group) : pgroup X :=
pgroup_of_group _ idp
definition isomorphism_ap {A : Type} (F : A → Group) {a b : A} (p : a = b) : F a ≃g F b :=
isomorphism_of_eq (ap F p)
definition interchange (G : AbGroup) (a b c d : G) : (a * b) * (c * d) = (a * c) * (b * d) :=
calc (a * b) * (c * d) = a * (b * (c * d)) : by exact mul.assoc a b (c * d)
... = a * ((b * c) * d) : by exact ap (λ bcd, a * bcd) (mul.assoc b c d)⁻¹
... = a * ((c * b) * d) : by exact ap (λ bc, a * (bc * d)) (mul.comm b c)
... = a * (c * (b * d)) : by exact ap (λ bcd, a * bcd) (mul.assoc c b d)
... = (a * c) * (b * d) : by exact (mul.assoc a c (b * d))⁻¹
definition homomorphism_comp_compute {G H K : Group} (g : H →g K) (f : G →g H) (x : G) : (g ∘g f) x = g (f x) :=
begin
reflexivity
end
end group open group
namespace function
variables {A B : Type} {f f' : A → B}
open is_conn sigma.ops
definition merely_constant {A B : Type} (f : A → B) : Type :=
Σb, Πa, merely (f a = b)
definition merely_constant_pmap {A B : Type*} {f : A →* B} (H : merely_constant f) (a : A) :
merely (f a = pt) :=
tconcat (tconcat (H.2 a) (tinverse (H.2 pt))) (tr (respect_pt f))
definition merely_constant_of_is_conn {A B : Type*} (f : A →* B) [is_conn 0 A] : merely_constant f :=
⟨pt, is_conn.elim -1 _ (tr (respect_pt f))⟩
definition homotopy_group_isomorphism_of_is_embedding (n : ) [H : is_succ n] {A B : Type*}
(f : A →* B) [H2 : is_embedding f] : πg[n] A ≃g πg[n] B :=
begin
apply isomorphism.mk (homotopy_group_homomorphism n f),
induction H with n,
apply is_equiv_of_equiv_of_homotopy
(ptrunc_pequiv_ptrunc 0 (loopn_pequiv_loopn_of_is_embedding (n+1) f)),
exact sorry
end
end function open function
namespace is_conn
open unit trunc_index nat is_trunc pointed.ops
definition is_conn_fun_compose {n : ℕ₋₂} {A B C : Type} (g : B → C) (f : A → B)
(H : is_conn_fun n g) (K : is_conn_fun n f) : is_conn_fun n (g ∘ f) :=
sorry
end is_conn
namespace is_trunc
open trunc_index is_conn
definition is_trunc_succ_succ_of_is_trunc_loop (n : ℕ₋₂) (A : Type*) (H : is_trunc (n.+1) (Ω A))
(H2 : is_conn 0 A) : is_trunc (n.+2) A :=
begin
apply is_trunc_succ_of_is_trunc_loop, apply minus_one_le_succ,
refine is_conn.elim -1 _ _, exact H
end
lemma is_trunc_of_is_trunc_loopn (m n : ) (A : Type*) (H : is_trunc n (Ω[m] A))
(H2 : is_conn m A) : is_trunc (m +[] n) A :=
begin
revert A H H2; induction m with m IH: intro A H H2,
{ rewrite [nat.zero_add], exact H },
rewrite [succ_add],
apply is_trunc_succ_succ_of_is_trunc_loop,
{ apply IH,
{ apply is_trunc_equiv_closed _ !loopn_succ_in },
apply is_conn_loop },
exact is_conn_of_le _ (zero_le_of_nat (succ m))
end
lemma is_trunc_of_is_set_loopn (m : ) (A : Type*) (H : is_set (Ω[m] A))
(H2 : is_conn m A) : is_trunc m A :=
is_trunc_of_is_trunc_loopn m 0 A H H2
end is_trunc
namespace misc
open is_conn
open sigma.ops pointed trunc_index
definition component [constructor] (A : Type*) : Type* :=
pType.mk (Σ(a : A), merely (pt = a)) ⟨pt, tr idp⟩
lemma is_conn_component [instance] (A : Type*) : is_conn 0 (component A) :=
is_contr.mk (tr pt)
begin
intro x, induction x with x, induction x with a p, induction p with p, induction p, reflexivity
end
definition component_incl [constructor] (A : Type*) : component A →* A :=
pmap.mk pr1 idp
definition is_embedding_component_incl [instance] (A : Type*) : is_embedding (component_incl A) :=
is_embedding_pr1 _
definition component_intro [constructor] {A B : Type*} (f : A →* B) (H : merely_constant f) :
A →* component B :=
begin
fapply pmap.mk,
{ intro a, refine ⟨f a, _⟩, exact tinverse (merely_constant_pmap H a) },
exact subtype_eq !respect_pt
end
definition component_functor [constructor] {A B : Type*} (f : A →* B) : component A →* component B :=
component_intro (f ∘* component_incl A) !merely_constant_of_is_conn
-- definition component_elim [constructor] {A B : Type*} (f : A →* B) (H : merely_constant f) :
-- A →* component B :=
-- begin
-- fapply pmap.mk,
-- { intro a, refine ⟨f a, _⟩, exact tinverse (merely_constant_pmap H a) },
-- exact subtype_eq !respect_pt
-- end
definition loop_component (A : Type*) : Ω (component A) ≃* Ω A :=
loop_pequiv_loop_of_is_embedding (component_incl A)
lemma loopn_component (n : ) (A : Type*) : Ω[n+1] (component A) ≃* Ω[n+1] A :=
!loopn_succ_in ⬝e* loopn_pequiv_loopn n (loop_component A) ⬝e* !loopn_succ_in⁻¹ᵉ*
-- lemma fundamental_group_component (A : Type*) : π₁ (component A) ≃g π₁ A :=
-- isomorphism_of_equiv (trunc_equiv_trunc 0 (loop_component A)) _
lemma homotopy_group_component (n : ) (A : Type*) : πg[n+1] (component A) ≃g πg[n+1] A :=
homotopy_group_isomorphism_of_is_embedding (n+1) (component_incl A)
definition is_trunc_component [instance] (n : ℕ₋₂) (A : Type*) [is_trunc n A] :
is_trunc n (component A) :=
begin
apply @is_trunc_sigma, intro a, cases n with n,
{ apply is_contr_of_inhabited_prop, exact tr !is_prop.elim },
{ apply is_trunc_succ_of_is_prop },
end
definition ptrunc_component' (n : ℕ₋₂) (A : Type*) :
ptrunc (n.+2) (component A) ≃* component (ptrunc (n.+2) A) :=
begin
fapply pequiv.MK',
{ exact ptrunc.elim (n.+2) (component_functor !ptr) },
{ intro x, cases x with x p, induction x with a,
refine tr ⟨a, _⟩,
note q := trunc_functor -1 !tr_eq_tr_equiv p,
exact trunc_trunc_equiv_left _ !minus_one_le_succ q },
{ exact sorry },
{ exact sorry }
end
definition ptrunc_component (n : ℕ₋₂) (A : Type*) :
ptrunc n (component A) ≃* component (ptrunc n A) :=
begin
cases n with n, exact sorry,
cases n with n, exact sorry,
exact ptrunc_component' n A
end
definition pfiber_pequiv_component_of_is_contr [constructor] {A B : Type*} (f : A →* B) [is_contr B]
/- extra condition, something like trunc_functor 0 f is an embedding -/ : pfiber f ≃* component A :=
sorry
end misc
namespace category
definition precategory_Group.{u} [instance] [constructor] : precategory.{u+1 u} Group :=
begin
fapply precategory.mk,
{ exact λG H, G →g H },
{ exact _ },
{ exact λG H K ψ φ, ψ ∘g φ },
{ exact λG, gid G },
{ intros, apply homomorphism_eq, esimp },
{ intros, apply homomorphism_eq, esimp },
{ intros, apply homomorphism_eq, esimp }
end
definition precategory_AbGroup.{u} [instance] [constructor] : precategory.{u+1 u} AbGroup :=
begin
fapply precategory.mk,
{ exact λG H, G →g H },
{ exact _ },
{ exact λG H K ψ φ, ψ ∘g φ },
{ exact λG, gid G },
{ intros, apply homomorphism_eq, esimp },
{ intros, apply homomorphism_eq, esimp },
{ intros, apply homomorphism_eq, esimp }
end
open iso
definition Group_is_iso_of_is_equiv {G H : Group} (φ : G →g H) (H : is_equiv (group_fun φ)) :
is_iso φ :=
begin
fconstructor,
{ exact (isomorphism.mk φ H)⁻¹ᵍ },
{ apply homomorphism_eq, rexact left_inv φ },
{ apply homomorphism_eq, rexact right_inv φ }
end
definition Group_is_equiv_of_is_iso {G H : Group} (φ : G ⟶ H) (Hφ : is_iso φ) :
is_equiv (group_fun φ) :=
begin
fapply adjointify,
{ exact group_fun φ⁻¹ʰ },
{ note p := right_inverse φ, exact ap010 group_fun p },
{ note p := left_inverse φ, exact ap010 group_fun p }
end
definition Group_iso_equiv (G H : Group) : (G ≅ H) ≃ (G ≃g H) :=
begin
fapply equiv.MK,
{ intro φ, induction φ with φ φi, constructor, exact Group_is_equiv_of_is_iso φ _ },
{ intro v, induction v with φ φe, constructor, exact Group_is_iso_of_is_equiv φ _ },
{ intro v, induction v with φ φe, apply isomorphism_eq, reflexivity },
{ intro φ, induction φ with φ φi, apply iso_eq, reflexivity }
end
definition Group_props.{u} {A : Type.{u}} (v : (A → A → A) × (A → A) × A) : Prop.{u} :=
begin
induction v with m v, induction v with i o,
fapply trunctype.mk,
{ exact is_set A × (Πa, m a o = a) × (Πa, m o a = a) × (Πa b c, m (m a b) c = m a (m b c)) ×
(Πa, m (i a) a = o) },
{ apply is_trunc_of_imp_is_trunc, intro v, induction v with H v,
have is_prop (Πa, m a o = a), from _,
have is_prop (Πa, m o a = a), from _,
have is_prop (Πa b c, m (m a b) c = m a (m b c)), from _,
have is_prop (Πa, m (i a) a = o), from _,
apply is_trunc_prod }
end
definition Group.sigma_char2.{u} : Group.{u} ≃
Σ(A : Type.{u}) (v : (A → A → A) × (A → A) × A), Group_props v :=
begin
fapply equiv.MK,
{ intro G, refine ⟨G, _⟩, induction G with G g, induction g with m s ma o om mo i mi,
repeat (fconstructor; do 2 try assumption), },
{ intro v, induction v with x v, induction v with y v, repeat induction y with x y,
repeat induction v with x v, constructor, fconstructor, repeat assumption },
{ intro v, induction v with x v, induction v with y v, repeat induction y with x y,
repeat induction v with x v, reflexivity },
{ intro v, repeat induction v with x v, reflexivity },
end
open is_trunc
section
local attribute group.to_has_mul group.to_has_inv [coercion]
theorem inv_eq_of_mul_eq {A : Type} (G H : group A) (p : @mul A G ~2 @mul A H) :
@inv A G ~ @inv A H :=
begin
have foo : Π(g : A), @inv A G g = (@inv A G g * g) * @inv A H g,
from λg, !mul_inv_cancel_right⁻¹,
cases G with Gs Gm Gh1 G1 Gh2 Gh3 Gi Gh4,
cases H with Hs Hm Hh1 H1 Hh2 Hh3 Hi Hh4,
change Gi ~ Hi, intro g, have p' : Gm ~2 Hm, from p,
calc
Gi g = Hm (Hm (Gi g) g) (Hi g) : foo
... = Hm (Gm (Gi g) g) (Hi g) : by rewrite p'
... = Hm G1 (Hi g) : by rewrite Gh4
... = Gm G1 (Hi g) : by rewrite p'
... = Hi g : Gh2
end
theorem one_eq_of_mul_eq {A : Type} (G H : group A)
(p : @mul A (group.to_has_mul G) ~2 @mul A (group.to_has_mul H)) :
@one A (group.to_has_one G) = @one A (group.to_has_one H) :=
begin
cases G with Gm Gs Gh1 G1 Gh2 Gh3 Gi Gh4,
cases H with Hm Hs Hh1 H1 Hh2 Hh3 Hi Hh4,
exact (Hh2 G1)⁻¹ ⬝ (p H1 G1)⁻¹ ⬝ Gh3 H1,
end
end
open prod.ops
definition group_of_Group_props.{u} {A : Type.{u}} {m : A → A → A} {i : A → A} {o : A}
(H : Group_props (m, (i, o))) : group A :=
⦃group, mul := m, inv := i, one := o, is_set_carrier := H.1,
mul_one := H.2.1, one_mul := H.2.2.1, mul_assoc := H.2.2.2.1, mul_left_inv := H.2.2.2.2⦄
theorem Group_eq_equiv_lemma2 {A : Type} {m m' : A → A → A} {i i' : A → A} {o o' : A}
(H : Group_props (m, (i, o))) (H' : Group_props (m', (i', o'))) :
(m, (i, o)) = (m', (i', o')) ≃ (m ~2 m') :=
begin
have is_set A, from pr1 H,
apply equiv_of_is_prop,
{ intro p, exact apd100 (eq_pr1 p)},
{ intro p, apply prod_eq (eq_of_homotopy2 p),
apply prod_eq: esimp [Group_props] at *; esimp,
{ apply eq_of_homotopy,
exact inv_eq_of_mul_eq (group_of_Group_props H) (group_of_Group_props H') p },
{ exact one_eq_of_mul_eq (group_of_Group_props H) (group_of_Group_props H') p }}
end
open sigma.ops
theorem Group_eq_equiv_lemma {G H : Group}
(p : (Group.sigma_char2 G).1 = (Group.sigma_char2 H).1) :
((Group.sigma_char2 G).2 =[p] (Group.sigma_char2 H).2) ≃
(is_mul_hom (equiv_of_eq (proof p qed : Group.carrier G = Group.carrier H))) :=
begin
refine !sigma_pathover_equiv_of_is_prop ⬝e _,
induction G with G g, induction H with H h,
esimp [Group.sigma_char2] at p, induction p,
refine !pathover_idp ⬝e _,
induction g with s m ma o om mo i mi, induction h with σ μ μa ε εμ με ι μι,
exact Group_eq_equiv_lemma2 (Group.sigma_char2 (Group.mk G (group.mk s m ma o om mo i mi))).2.2
(Group.sigma_char2 (Group.mk G (group.mk σ μ μa ε εμ με ι μι))).2.2
end
definition isomorphism.sigma_char (G H : Group) : (G ≃g H) ≃ Σ(e : G ≃ H), is_mul_hom e :=
begin
fapply equiv.MK,
{ intro φ, exact ⟨equiv_of_isomorphism φ, to_respect_mul φ⟩ },
{ intro v, induction v with e p, exact isomorphism_of_equiv e p },
{ intro v, induction v with e p, induction e, reflexivity },
{ intro φ, induction φ with φ H, induction φ, reflexivity },
end
definition Group_eq_equiv (G H : Group) : G = H ≃ (G ≃g H) :=
begin
refine (eq_equiv_fn_eq_of_equiv Group.sigma_char2 G H) ⬝e _,
refine !sigma_eq_equiv ⬝e _,
refine sigma_equiv_sigma_right Group_eq_equiv_lemma ⬝e _,
transitivity (Σ(e : (Group.sigma_char2 G).1 ≃ (Group.sigma_char2 H).1),
@is_mul_hom _ _ _ _ (to_fun e)), apply sigma_ua,
exact !isomorphism.sigma_char⁻¹ᵉ
end
definition to_fun_Group_eq_equiv {G H : Group} (p : G = H)
: Group_eq_equiv G H p ~ isomorphism_of_eq p :=
begin
induction p, reflexivity
end
definition Group_eq2 {G H : Group} {p q : G = H}
(r : isomorphism_of_eq p ~ isomorphism_of_eq q) : p = q :=
begin
apply eq_of_fn_eq_fn (Group_eq_equiv G H),
apply isomorphism_eq,
intro g, refine to_fun_Group_eq_equiv p g ⬝ r g ⬝ (to_fun_Group_eq_equiv q g)⁻¹,
end
definition Group_eq_equiv_Group_iso (G₁ G₂ : Group) : G₁ = G₂ ≃ G₁ ≅ G₂ :=
Group_eq_equiv G₁ G₂ ⬝e (Group_iso_equiv G₁ G₂)⁻¹ᵉ
definition category_Group.{u} : category Group.{u} :=
category.mk precategory_Group
begin
intro G H,
apply is_equiv_of_equiv_of_homotopy (Group_eq_equiv_Group_iso G H),
intro p, induction p, fapply iso_eq, apply homomorphism_eq, reflexivity
end
definition category_AbGroup : category AbGroup :=
category.mk precategory_AbGroup sorry
definition Grp.{u} [constructor] : Category := category.Mk Group.{u} category_Group
definition AbGrp [constructor] : Category := category.Mk AbGroup category_AbGroup
end category
namespace sphere
-- definition constant_sphere_map_sphere {n m : } (H : n < m) (f : S* n →* S* m) :
-- f ~* pconst (S* n) (S* m) :=
-- begin
-- assert H : is_contr (Ω[n] (S* m)),
-- { apply homotopy_group_sphere_le, },
-- apply phomotopy_of_eq,
-- apply eq_of_fn_eq_fn !psphere_pmap_pequiv,
-- apply @is_prop.elim
-- end
end sphere
section injective_surjective
open trunc fiber image
/- do we want to prove this without funext before we move it? -/
variables {A B C : Type} (f : A → B)
definition is_embedding_factor [is_set A] [is_set B] (g : B → C) (h : A → C) (H : g ∘ f ~ h) :
is_embedding h → is_embedding f :=
begin
induction H using homotopy.rec_on_idp,
intro E,
fapply is_embedding_of_is_injective,
intro x y p,
fapply @is_injective_of_is_embedding _ _ _ E _ _ (ap g p)
end
definition is_surjective_factor (g : B → C) (h : A → C) (H : g ∘ f ~ h) :
is_surjective h → is_surjective g :=
begin
induction H using homotopy.rec_on_idp,
intro S,
intro c,
note p := S c,
induction p,
apply tr,
fapply fiber.mk,
exact f a,
exact p
end
end injective_surjective
-- Yuri Sulyma's code from HoTT MRC
notation `⅀→`:(max+5) := psusp_functor
notation `⅀⇒`:(max+5) := psusp_functor_phomotopy
notation `Ω⇒`:(max+5) := ap1_phomotopy
definition ap1_phomotopy_symm {A B : Type*} {f g : A →* B} (p : f ~* g) : (Ω⇒ p)⁻¹* = Ω⇒ (p⁻¹*) :=
begin
induction p using phomotopy_rec_on_idp,
rewrite ap1_phomotopy_refl,
rewrite [+refl_symm],
rewrite ap1_phomotopy_refl
end
definition ap1_phomotopy_trans {A B : Type*} {f g h : A →* B} (q : g ~* h) (p : f ~* g) : Ω⇒ (p ⬝* q) = Ω⇒ p ⬝* Ω⇒ q :=
begin
induction p using phomotopy_rec_on_idp,
induction q using phomotopy_rec_on_idp,
rewrite trans_refl,
rewrite [+ap1_phomotopy_refl],
rewrite trans_refl
end
definition psusp_pelim2 {X Y : Type*} {f g : ⅀ X →* Y} (p : f ~* g) : ((loop_psusp_pintro X Y) f) ~* ((loop_psusp_pintro X Y) g) :=
pwhisker_right (loop_psusp_unit X) (Ω⇒ p)
namespace pointed
definition to_homotopy_pt_mk {A B : Type*} {f g : A →* B} (h : f ~ g)
(p : h pt ⬝ respect_pt g = respect_pt f) : to_homotopy_pt (phomotopy.mk h p) = p :=
to_right_inv !eq_con_inv_equiv_con_eq p
variables {A₀₀ A₂₀ A₀₂ A₂₂ : Type*}
{f₁₀ : A₀₀ →* A₂₀} {f₁₂ : A₀₂ →* A₂₂}
{f₀₁ : A₀₀ →* A₀₂} {f₂₁ : A₂₀ →* A₂₂}
definition psquare_transpose (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : psquare f₀₁ f₂₁ f₁₀ f₁₂ := p⁻¹*
definition suspend_psquare (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : psquare (⅀→ f₁₀) (⅀→ f₁₂) (⅀→ f₀₁) (⅀→ f₂₁) :=
sorry
definition susp_to_loop_psquare (f₁₀ : A₀₀ →* A₂₀) (f₁₂ : A₀₂ →* A₂₂) (f₀₁ : psusp A₀₀ →* A₀₂) (f₂₁ : psusp A₂₀ →* A₂₂) : (psquare (⅀→ f₁₀) f₁₂ f₀₁ f₂₁) → (psquare f₁₀ (Ω→ f₁₂) ((loop_psusp_pintro A₀₀ A₀₂) f₀₁) ((loop_psusp_pintro A₂₀ A₂₂) f₂₁)) :=
begin
intro p,
refine pvconcat _ (ap1_psquare p),
exact loop_psusp_unit_natural f₁₀
end
definition loop_to_susp_square (f₁₀ : A₀₀ →* A₂₀) (f₁₂ : A₀₂ →* A₂₂) (f₀₁ : A₀₀ →* Ω A₀₂) (f₂₁ : A₂₀ →* Ω A₂₂) : (psquare f₁₀ (Ω→ f₁₂) f₀₁ f₂₁) → (psquare (⅀→ f₁₀) f₁₂ ((psusp_pelim A₀₀ A₀₂) f₀₁) ((psusp_pelim A₂₀ A₂₂) f₂₁)) :=
begin
intro p,
refine pvconcat (suspend_psquare p) _,
exact psquare_transpose (loop_psusp_counit_natural f₁₂)
end
end pointed