Spectral/algebra/seq_colim.hlean
2017-07-04 16:11:21 +01:00

92 lines
3.8 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

--Authors: Robert Rose, Liz Vidaurre
import .direct_sum ..move_to_lib
open eq algebra is_trunc set_quotient relation sigma prod sum list trunc function equiv sigma.ops nat
namespace group
section
parameters (A : → AbGroup) (f : Πi , A i →g A (i + 1))
variables {A' : AbGroup}
definition seq_colim_carrier : AbGroup := dirsum A
inductive seq_colim_rel : seq_colim_carrier → Type :=
| rmk : Πi a, seq_colim_rel ((dirsum_incl A i a) * (dirsum_incl A (i + 1) (f i a))⁻¹)
definition seq_colim : AbGroup := quotient_ab_group_gen seq_colim_carrier (λa, ∥seq_colim_rel a∥)
parameters {A f}
definition seq_colim_incl [constructor] (i : ) : A i →g seq_colim :=
gqg_map _ _ ∘g dirsum_incl A i
definition seq_colim_quotient (h : Πi, A i →g A') (k : Πi a, h i a = h (succ i) (f i a))
(v : seq_colim_carrier) (r : ∥seq_colim_rel v∥) : dirsum_elim h v = 1 :=
begin
induction r with r, induction r,
refine !to_respect_mul ⬝ _,
refine ap (λγ, group_fun (dirsum_elim h) (group_fun (dirsum_incl A i) a) * group_fun (dirsum_elim h) γ)
(!to_respect_inv)⁻¹ ⬝ _,
refine ap (λγ, γ * group_fun (dirsum_elim h) (group_fun (dirsum_incl A (succ i)) (f i a)⁻¹))
!dirsum_elim_compute ⬝ _,
refine ap (λγ, (h i a) * γ) !dirsum_elim_compute ⬝ _,
refine ap (λγ, γ * group_fun (h (succ i)) (f i a)⁻¹) !k ⬝ _,
refine ap (λγ, group_fun (h (succ i)) (f i a) * γ) (!to_respect_inv) ⬝ _,
exact !mul.right_inv
end
definition seq_colim_elim [constructor] (h : Πi, A i →g A')
(k : Πi a, h i a = h (succ i) (f i a)) : seq_colim →g A' :=
gqg_elim _ (dirsum_elim h) (seq_colim_quotient h k)
definition seq_colim_compute (h : Πi, A i →g A')
(k : Πi a, h i a = h (succ i) (f i a)) (i : ) (a : A i) :
(seq_colim_elim h k) (seq_colim_incl i a) = h i a :=
begin
refine gqg_elim_compute (λa, ∥seq_colim_rel a∥) (dirsum_elim h) (seq_colim_quotient h k) (dirsum_incl A i a) ⬝ _,
exact !dirsum_elim_compute
end
definition seq_colim_glue {i : @trunctype.mk 0 _} {a : A i} : seq_colim_incl i a = seq_colim_incl (succ i) (f i a) :=
begin
refine gqg_eq_of_rel _ _,
exact tr (seq_colim_rel.rmk _ _)
end
section
local abbreviation h (m : seq_colim →g A') : Πi, A i →g A' := λi, m ∘g (seq_colim_incl i)
local abbreviation k (m : seq_colim →g A') : Πi a, h m i a = h m (succ i) (f i a) :=
λ i a, ap m (@seq_colim_glue i a)
definition seq_colim_unique (m : seq_colim →g A') :
Πv, seq_colim_elim (h m) (k m) v = m v :=
begin
intro v, refine (gqg_elim_unique _ (dirsum_elim (h m)) _ m _ _)⁻¹ ⬝ _,
apply dirsum_elim_unique, rotate 1, reflexivity,
intro i a, reflexivity
end
end
end
definition seq_colim_functor [constructor] {A A' : → AbGroup}
{f : Πi , A i →g A (i + 1)} {f' : Πi , A' i →g A' (i + 1)}
(h : Πi, A i →g A' i) (p : Πi, hsquare (f i) (f' i) (h i) (h (i+1))) :
seq_colim A f →g seq_colim A' f' :=
seq_colim_elim (λi, seq_colim_incl i ∘g h i)
begin
intro i a,
refine _ ⬝ ap (seq_colim_incl (succ i)) (p i a)⁻¹,
apply seq_colim_glue
end
-- definition seq_colim_functor_compose [constructor] {A A' A'' : → AbGroup}
-- {f : Πi , A i →g A (i + 1)} {f' : Πi , A' i →g A' (i + 1)} {f'' : Πi , A'' i →g A'' (i + 1)}
-- (h : Πi, A i →g A' i) (p : Πi (a : A i), h (i+1) (f i a) = f' i (h i a))
-- (h : Πi, A i →g A' i) (p : Πi (a : A i), h (i+1) (f i a) = f' i (h i a)) :
-- seq_colim A f →g seq_colim A' f' :=
-- sorry
end group