244 lines
8.7 KiB
Text
244 lines
8.7 KiB
Text
/-
|
||
Copyright (c) 2017 Egbert Rijke. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Egbert Rijke
|
||
|
||
Basic facts about short exact sequences.
|
||
|
||
At the moment, it only covers short exact sequences of abelian groups, but this should be extended to short exact sequences in any abelian category.
|
||
-/
|
||
|
||
import algebra.group_theory hit.set_quotient types.sigma types.list types.sum .quotient_group .subgroup
|
||
|
||
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod prod.ops sum list trunc function group trunc
|
||
equiv is_equiv
|
||
|
||
structure SES (A B C : AbGroup) :=
|
||
( f : A →g B)
|
||
( g : B →g C)
|
||
( Hf : is_embedding f)
|
||
( Hg : is_surjective g)
|
||
( ex : is_exact_ag f g)
|
||
|
||
definition SES_of_inclusion {A B : AbGroup} (f : A →g B) (Hf : is_embedding f) : SES A B (quotient_ab_group (image_subgroup f)) :=
|
||
begin
|
||
have Hg : is_surjective (ab_qg_map (image_subgroup f)),
|
||
from is_surjective_ab_qg_map (image_subgroup f),
|
||
fapply SES.mk,
|
||
exact f,
|
||
exact ab_qg_map (image_subgroup f),
|
||
exact Hf,
|
||
exact Hg,
|
||
fapply is_exact.mk,
|
||
intro a,
|
||
fapply qg_map_eq_one, fapply tr, fapply fiber.mk, exact a, reflexivity,
|
||
intro b, intro p,
|
||
exact rel_of_ab_qg_map_eq_one _ p
|
||
end
|
||
|
||
definition SES_of_subgroup {B : AbGroup} (S : subgroup_rel B) : SES (ab_subgroup S) B (quotient_ab_group S) :=
|
||
begin
|
||
fapply SES.mk,
|
||
exact incl_of_subgroup S,
|
||
exact ab_qg_map S,
|
||
exact is_embedding_incl_of_subgroup S,
|
||
exact is_surjective_ab_qg_map S,
|
||
fapply is_exact.mk,
|
||
intro a, fapply ab_qg_map_eq_one, induction a with b p, exact p,
|
||
intro b p, fapply tr, fapply fiber.mk, fapply sigma.mk b, fapply rel_of_ab_qg_map_eq_one, exact p, reflexivity,
|
||
end
|
||
|
||
definition SES_of_surjective_map {B C : AbGroup} (g : B →g C) (Hg : is_surjective g) : SES (ab_kernel g) B C :=
|
||
begin
|
||
fapply SES.mk,
|
||
exact ab_kernel_incl g,
|
||
exact g,
|
||
exact is_embedding_ab_kernel_incl g,
|
||
exact Hg,
|
||
fapply is_exact.mk,
|
||
intro a, induction a with a p, exact p,
|
||
intro b p, fapply tr, fapply fiber.mk, fapply sigma.mk, exact b, exact p, reflexivity,
|
||
end
|
||
|
||
definition SES_of_homomorphism {A B : AbGroup} (f : A →g B) : SES (ab_kernel f) A (ab_image f) :=
|
||
begin
|
||
fapply SES.mk,
|
||
exact ab_kernel_incl f,
|
||
exact image_lift f,
|
||
exact is_embedding_ab_kernel_incl f,
|
||
exact is_surjective_image_lift f,
|
||
fapply is_exact.mk,
|
||
intro a, induction a with a p, fapply subtype_eq, exact p,
|
||
intro a p, fapply tr, fapply fiber.mk, fapply sigma.mk, exact a,
|
||
exact calc
|
||
f a = image_incl f (image_lift f a) : by exact homotopy_of_eq (ap group_fun (image_factor f)) a
|
||
... = image_incl f 1 : ap (image_incl f) p
|
||
... = 1 : by exact respect_one (image_incl f),
|
||
reflexivity
|
||
end
|
||
|
||
definition SES_of_isomorphism_right {B C : AbGroup} (g : B ≃g C) : SES trivial_ab_group B C :=
|
||
begin
|
||
fapply SES.mk,
|
||
exact from_trivial_ab_group B,
|
||
exact g,
|
||
exact is_embedding_from_trivial_ab_group B,
|
||
fapply is_surjective_of_is_equiv,
|
||
fapply is_exact.mk,
|
||
intro a, induction a, fapply respect_one,
|
||
intro b p,
|
||
have q : g b = g 1,
|
||
from p ⬝ (respect_one g)⁻¹,
|
||
note r := eq_of_fn_eq_fn (equiv_of_isomorphism g) q,
|
||
fapply tr, fapply fiber.mk, exact unit.star, rewrite r,
|
||
end
|
||
|
||
structure hom_SES {A B C A' B' C' : AbGroup} (ses : SES A B C) (ses' : SES A' B' C') :=
|
||
( hA : A →g A')
|
||
( hB : B →g B')
|
||
( hC : C →g C')
|
||
( htpy1 : hB ∘g (SES.f ses) ~ (SES.f ses') ∘g hA)
|
||
( htpy2 : hC ∘g (SES.g ses) ~ (SES.g ses') ∘g hB)
|
||
|
||
section ses
|
||
parameters {A B C : AbGroup} (ses : SES A B C)
|
||
|
||
local abbreviation f := SES.f ses
|
||
local notation `g` := SES.g ses
|
||
local abbreviation ex := SES.ex ses
|
||
local abbreviation q := ab_qg_map (kernel_subgroup g)
|
||
local abbreviation B_mod_A := quotient_ab_group (kernel_subgroup g)
|
||
|
||
--definition quotient_SES {A B C : AbGroup} (ses : SES A B C) :
|
||
-- quotient_ab_group (image_subgroup (SES.f ses)) ≃g C :=
|
||
-- begin
|
||
-- fapply ab_group_first_iso_thm B C (SES.g ses),
|
||
-- end
|
||
|
||
-- definition pre_right_extend_SES (to separate the following definition and replace C with B/A)
|
||
|
||
definition quotient_codomain_SES : B_mod_A ≃g C :=
|
||
begin
|
||
exact (codomain_surjection_is_quotient g (SES.Hg ses))
|
||
end
|
||
|
||
local abbreviation α := quotient_codomain_SES
|
||
|
||
definition quotient_triangle_SES : α ∘g q ~ g :=
|
||
begin
|
||
reflexivity
|
||
end
|
||
|
||
definition quotient_triangle_extend_SES {C': AbGroup} (k : B →g C') :
|
||
(Σ (h : C →g C'), h ∘g g ~ k) ≃ (Σ (h' : B_mod_A →g C'), h' ∘g q ~ k) :=
|
||
begin
|
||
fapply equiv.mk,
|
||
intro pair, induction pair with h H,
|
||
fapply sigma.mk, exact h ∘g α, intro b,
|
||
exact H b,
|
||
fapply adjointify,
|
||
intro pair, induction pair with h' H', fapply sigma.mk,
|
||
exact h' ∘g α⁻¹ᵍ,
|
||
intro b,
|
||
exact calc
|
||
h' (α⁻¹ᵍ (g b)) = h' (α⁻¹ᵍ (α (q b))) : by reflexivity
|
||
... = h' (q b) : by exact hwhisker_left h' (left_inv α) (q b)
|
||
... = k b : by exact H' b,
|
||
intro pair, induction pair with h' H', fapply sigma_eq, esimp, fapply homomorphism_eq, fapply hwhisker_left h' (left_inv α), esimp, fapply is_prop.elimo, fapply pi.is_trunc_pi, intro a, fapply is_trunc_eq,
|
||
intro pair, induction pair with h H, fapply sigma_eq, esimp, fapply homomorphism_eq, fapply hwhisker_left h (right_inv α),
|
||
esimp, fapply is_prop.elimo, fapply pi.is_trunc_pi, intro a, fapply is_trunc_eq,
|
||
end
|
||
|
||
parameters {A' B' C' : AbGroup}
|
||
(ses' : SES A' B' C')
|
||
(hA : A →g A') (hB : B →g B') (htpy1 : hB ∘g f ~ (SES.f ses') ∘g hA)
|
||
|
||
local abbreviation f' := SES.f ses'
|
||
local notation `g'` := SES.g ses'
|
||
local abbreviation ex' := SES.ex ses'
|
||
local abbreviation q' := ab_qg_map (kernel_subgroup g')
|
||
local abbreviation α' := quotient_codomain_SES
|
||
|
||
include htpy1
|
||
|
||
definition quotient_extend_unique_SES : is_contr (Σ (hC : C →g C'), hC ∘g g ~ g' ∘g hB) :=
|
||
begin
|
||
fapply @(is_trunc_equiv_closed_rev _ (quotient_triangle_extend_SES (g' ∘g hB))),
|
||
fapply ab_qg_universal_property,
|
||
intro b, intro K,
|
||
have k : trunctype.carrier (image_subgroup f b), from is_exact.ker_in_im ex b K,
|
||
induction k, induction a with a p,
|
||
induction p,
|
||
refine (ap g' (htpy1 a)) ⬝ _,
|
||
fapply is_exact.im_in_ker ex' (hA a)
|
||
end
|
||
|
||
/-
|
||
-- We define a group homomorphism B/ker(g) →g B'/ker(g'), keeping in mind that ker(g)=A and ker(g')=A'.
|
||
definition quotient_extend_SES : quotient_ab_group (kernel_subgroup g) →g quotient_ab_group (kernel_subgroup g') :=
|
||
begin
|
||
fapply ab_group_quotient_homomorphism B B' (kernel_subgroup g) (kernel_subgroup g') hB,
|
||
intro b,
|
||
intro K,
|
||
have k : trunctype.carrier (image_subgroup f b), from is_exact.ker_in_im ex b K,
|
||
induction k, induction a with a p,
|
||
rewrite [p⁻¹],
|
||
rewrite [htpy1 a],
|
||
fapply is_exact.im_in_ker ex' (hA a)
|
||
end
|
||
|
||
local abbreviation k := quotient_extend_SES
|
||
|
||
definition quotient_extend_SES_square : k ∘g (ab_qg_map (kernel_subgroup g)) ~ (ab_qg_map (kernel_subgroup g')) ∘g hB :=
|
||
begin
|
||
fapply quotient_group_compute
|
||
end
|
||
|
||
definition right_extend_SES : C →g C' :=
|
||
α' ∘g k ∘g α⁻¹ᵍ
|
||
|
||
local abbreviation hC := right_extend_SES
|
||
|
||
definition right_extend_SES_square : hC ∘g g ~ g' ∘ hB :=
|
||
begin
|
||
exact calc
|
||
hC ∘g g ~ hC ∘g α ∘g q : by reflexivity
|
||
... ~ α' ∘g k ∘g α⁻¹ᵍ ∘g α ∘g q : by reflexivity
|
||
... ~ α' ∘g k ∘g q : by exact hwhisker_left (α' ∘g k) (hwhisker_right q (left_inv α))
|
||
... ~ α' ∘g q' ∘g hB : by exact hwhisker_left α' (quotient_extend_SES_square)
|
||
... ~ g' ∘g hB : by reflexivity
|
||
end
|
||
|
||
local abbreviation htpy2 := right_extend_SES_square
|
||
|
||
definition right_extend_SES_unique_map_aux (hC' : C →g C') (htpy2' : g' ∘g hB ~ hC' ∘g g) : k ∘g q ~ α'⁻¹ᵍ ∘g hC' ∘g α ∘g q :=
|
||
begin
|
||
exact calc
|
||
k ∘g q ~ q' ∘g hB : by reflexivity
|
||
... ~ α'⁻¹ᵍ ∘g α' ∘g q' ∘g hB : by exact hwhisker_right (q' ∘g hB) (homotopy.symm (left_inv α'))
|
||
... ~ α'⁻¹ᵍ ∘g g' ∘g hB : by reflexivity
|
||
... ~ α'⁻¹ᵍ ∘g hC' ∘g g : by exact hwhisker_left (α'⁻¹ᵍ) htpy2'
|
||
... ~ α'⁻¹ᵍ ∘g hC' ∘g α ∘g q : by reflexivity
|
||
end
|
||
|
||
definition right_extend_SES_unique_map (hC' : C →g C') (htpy2' : hC' ∘g g ~ g' ∘g hB) : hC ~ hC' :=
|
||
begin
|
||
exact calc
|
||
hC ~ α' ∘g k ∘g α⁻¹ᵍ : by reflexivity
|
||
... ~ α' ∘g α'⁻¹ᵍ ∘g hC' ∘g α ∘g α⁻¹ᵍ :
|
||
... ~ hC' ∘g α ∘g α⁻¹ᵍ : _
|
||
... ~ hC' : _
|
||
end
|
||
|
||
definition right_extend_hom_SES : hom_SES ses ses' :=
|
||
begin
|
||
fapply hom_SES.mk,
|
||
exact hA,
|
||
exact hB,
|
||
exact hC,
|
||
exact htpy1,
|
||
exact htpy2
|
||
end
|
||
-/
|
||
|
||
end ses
|