Spectral/algebra/spectral_sequence.hlean

175 lines
7.9 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/- Spectral sequences
- basic properties of spectral sequences
- currently, we only construct an spectral sequence from an exact couple
-/
-- Author: Floris van Doorn
import .exact_couple
open algebra is_trunc left_module is_equiv equiv eq function nat sigma set_quotient group
left_module group int prod prod.ops
open exact_couple (Z2)
structure convergent_spectral_sequence.{u v w} {R : Ring} (E' : → LeftModule.{u v} R)
(Dinf : → LeftModule.{u w} R) : Type.{max u (v+1) (w+1)} :=
(E : → graded_module.{u 0 v} R Z2)
(d : Π(r : ), E r →gm E r)
(deg_d : → Z2)
(deg_d_eq0 : Π(r : ), deg (d r) 0 = deg_d r)
(α : Π(r : ) (x : Z2), E (r+1) x ≃lm graded_homology (d r) (d r) x)
(e : Π(x : Z2), E 0 x ≃lm E' x.1 x.2)
(s₀ : Z2 → )
(f : Π{r : } {x : Z2} (h : s₀ x ≤ r), E (s₀ x) x ≃lm E r x)
(lb : )
(HDinf : Π(n : ), is_built_from (Dinf n)
(λ(k : ), (λx, E (s₀ x) x) (n - (k + lb n), k + lb n)))
/- todo: the current definition doesn't say that E (s₀ x) x is contractible for x.1 + x.2 = n and x.2 < lb n -/
definition convergent_spectral_sequence_g [reducible] (E' : → AbGroup)
(Dinf : → AbGroup) : Type :=
convergent_spectral_sequence (λn s, LeftModule_int_of_AbGroup (E' n s))
(λn, LeftModule_int_of_AbGroup (Dinf n))
section exact_couple
open exact_couple exact_couple.exact_couple exact_couple.convergent_exact_couple
exact_couple.convergence_theorem exact_couple.derived_couple
definition convergent_spectral_sequence_of_exact_couple {R : Ring} {E' : → LeftModule R}
{Dinf : → LeftModule R} (c : convergent_exact_couple E' Dinf)
(st_eq : Πn, (st c n).1 + (st c n).2 = n) (deg_i_eq : deg (i (X c)) 0 = (- 1, 1)) :
convergent_spectral_sequence E' Dinf :=
convergent_spectral_sequence.mk (λr, E (page (X c) r)) (λr, d (page (X c) r))
(deg_d c) (deg_d_eq0 c)
(λr ns, by reflexivity) (e c) (B3 (HH c)) (λr ns Hr, Einfstable (HH c) Hr idp)
(λn, (st c n).2)
begin
intro n,
refine is_built_from_isomorphism (f c n) _ (is_built_from_infpage (HH c) (st c n) (HB c n)),
intro p, apply isomorphism_of_eq, apply ap (λx, E (page (X c) (B3 (HH c) x)) x),
induction p with p IH,
{ exact !prod.eta⁻¹ ⬝ prod_eq (eq_sub_of_add_eq (ap (add _) !zero_add ⬝ st_eq n))
(zero_add (st c n).2)⁻¹ },
{ assert H1 : Π(a : ), n - (p + a) - 1 = n - (succ p + a),
exact λa, !sub_add_eq_sub_sub⁻¹ ⬝ ap (sub n) (add_comm_middle p a 1 ⬝ proof idp qed),
assert H2 : Π(a : ), p + a + 1 = succ p + a,
exact λa, add_comm_middle p a 1,
refine ap (deg (i (X c))) IH ⬝ !deg_eq ⬝ ap (add _) deg_i_eq ⬝ prod_eq !H1 !H2 }
end
end exact_couple
namespace spectral_sequence
open convergent_spectral_sequence
variables {R : Ring} {E' : → LeftModule R} {Dinf : → LeftModule R}
(c : convergent_spectral_sequence E' Dinf)
-- (E : → graded_module.{u 0 v} R Z2)
-- (d : Π(r : ), E r →gm E r)
-- (deg_d : → Z2)
-- (deg_d_eq0 : Π(r : ), deg (d r) 0 = deg_d r)
-- (α : Π(r : ) (x : Z2), E (r+1) x ≃lm graded_homology (d r) (d r) x)
-- (e : Π(x : Z2), E 0 x ≃lm E' x.1 x.2)
-- (s₀ : Z2 → )
-- (f : Π{r : } {x : Z2} (h : s₀ x ≤ r), E (s₀ x) x ≃lm E r x)
-- (lb : )
-- (HDinf : Π(n : ), is_built_from (Dinf n)
-- (λ(k : ), (λx, E (s₀ x) x) (n - (k + lb n), k + lb n)))
definition Einf (x : Z2) : LeftModule R := E c (s₀ c x) x
definition is_contr_E_succ (r : ) (x : Z2) (h : is_contr (E c r x)) : is_contr (E c (r+1) x) :=
is_contr_equiv_closed_rev (equiv_of_isomorphism (α c r x)) (is_contr_homology _ _ _)
definition deg_d_eq (r : ) (x : Z2) : deg (d c r) x = x + deg_d c r :=
!deg_eq ⬝ ap (add _) !deg_d_eq0
definition deg_d_inv_eq (r : ) (x : Z2) : (deg (d c r))⁻¹ᵉ x = x - deg_d c r :=
inv_eq_of_eq (!deg_d_eq ⬝ !neg_add_cancel_right)⁻¹
definition is_contr_E_of_le {r₁ r₂ : } (H : r₁ ≤ r₂) (x : Z2) (h : is_contr (E c r₁ x)) :
is_contr (E c r₂ x) :=
begin
induction H with r₂ H IH,
{ exact h },
{ apply is_contr_E_succ, exact IH }
end
definition is_contr_E (r : ) (x : Z2) (h : is_contr (E' x.1 x.2)) : is_contr (E c r x) :=
is_contr_E_of_le c !zero_le x (is_contr_equiv_closed_rev (equiv_of_isomorphism (e c x)) h)
definition is_contr_Einf (x : Z2) (h : is_contr (E' x.1 x.2)) : is_contr (Einf c x) :=
is_contr_E c (s₀ c x) x h
definition E_isomorphism {r₁ r₂ : } {ns : Z2} (H : r₁ ≤ r₂)
(H1 : Π⦃r⦄, r₁ ≤ r → r < r₂ → is_contr (E c r (ns - deg_d c r)))
(H2 : Π⦃r⦄, r₁ ≤ r → r < r₂ → is_contr (E c r (ns + deg_d c r))) :
E c r₂ ns ≃lm E c r₁ ns :=
begin
assert H3 : Π⦃r⦄, r₁ ≤ r → r ≤ r₂ → E c r ns ≃lm E c r₁ ns,
{ intro r Hr₁ Hr₂,
induction Hr₁ with r Hr₁ IH, reflexivity,
let Hr₂' := le_of_succ_le Hr₂,
refine α c r ns ⬝lm homology_isomorphism _ _ _ _ ⬝lm IH Hr₂',
exact is_contr_equiv_closed (equiv_ap (E c r) !deg_d_inv_eq⁻¹) (H1 Hr₁ Hr₂),
exact is_contr_equiv_closed (equiv_ap (E c r) !deg_d_eq⁻¹) (H2 Hr₁ Hr₂) },
exact H3 H (le.refl _)
end
definition E_isomorphism0 {r : } {n s : }
(H1 : Πr', r' < r → is_contr (E' (n - (deg_d c r').1) (s - (deg_d c r').2)))
(H2 : Πr', r' < r → is_contr (E' (n + (deg_d c r').1) (s + (deg_d c r').2))) :
E c r (n, s) ≃lm E' n s :=
E_isomorphism c !zero_le (λr' Hr₁ Hr₂, is_contr_E c r' _ (H1 r' Hr₂))
(λr' Hr₁ Hr₂, is_contr_E c r' _ (H2 r' Hr₂)) ⬝lm
e c (n, s)
definition Einf_isomorphism (r₁ : ) {ns : Z2}
(H1 : Π⦃r⦄, r₁ ≤ r → is_contr (E c r (ns - deg_d c r)))
(H2 : Π⦃r⦄, r₁ ≤ r → is_contr (E c r (ns + deg_d c r))) :
Einf c ns ≃lm E c r₁ ns :=
begin
cases le.total r₁ (s₀ c ns) with Hr Hr,
exact E_isomorphism c Hr (λr Hr₁ Hr₂, H1 Hr₁) (λr Hr₁ Hr₂, H2 Hr₁),
exact f c Hr
end
definition Einf_isomorphism0 {n s : }
(H1 : Πr, is_contr (E' (n - (deg_d c r).1) (s - (deg_d c r).2)))
(H2 : Πr, is_contr (E' (n + (deg_d c r).1) (s + (deg_d c r).2))) :
Einf c (n, s) ≃lm E' n s :=
E_isomorphism0 c (λr Hr, H1 r) (λr Hr, H2 r)
/- we call a spectral sequence normal if it is a first-quadrant spectral sequence and the degree of d is what we expect -/
include c
structure is_normal : Type :=
(normal1 : Π{n} s, n < 0 → is_contr (E' n s))
(normal2 : Πn {s}, s < 0 → is_contr (E' n s))
(normal3 : Π(r : ), deg_d c r = (r+2, -(r+1)))
open is_normal
variable {c}
variable (d : is_normal c)
include d
definition stable_range {n s : } {r : } (H1 : n < r + 2) (H2 : s < r + 1) :
Einf c (n, s) ≃lm E c r (n, s) :=
begin
fapply Einf_isomorphism,
{ intro r' Hr', apply is_contr_E, apply normal1 d,
refine lt_of_le_of_lt (le_of_eq (ap (λx, n - x.1) (normal3 d r'))) _,
apply sub_lt_left_of_lt_add,
refine lt_of_lt_of_le H1 (le.trans _ (le_of_eq !add_zero⁻¹)),
exact add_le_add_right (of_nat_le_of_nat_of_le Hr') 2 },
{ intro r' Hr', apply is_contr_E, apply normal2 d,
refine lt_of_le_of_lt (le_of_eq (ap (λx, s + x.2) (normal3 d r'))) _,
change s - (r' + 1) < 0,
apply sub_lt_left_of_lt_add,
refine lt_of_lt_of_le H2 (le.trans _ (le_of_eq !add_zero⁻¹)),
exact add_le_add_right (of_nat_le_of_nat_of_le Hr') 1 },
end
/- some properties which use the degree of the spectral sequence we construct. For the AHSS and SSS the hypothesis is by reflexivity -/
-- definition foo
end spectral_sequence