Spectral/homotopy/realprojective.hlean
Floris van Doorn 3367c20f9d make pointed suspension and spheres the default
There is one proof in realprojective which I couldn't quite fix, so for now I left a sorry
2017-07-20 18:03:13 +01:00

267 lines
8.8 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- Based on Buchholtz-Rijke: Real projective spaces in HoTT
-- Author: Ulrik Buchholtz
import homotopy.join
open eq nat susp pointed pmap sigma is_equiv equiv fiber is_trunc trunc
trunc_index is_conn bool unit join pushout
definition of_is_contr (A : Type) : is_contr A → A := @center A
definition sigma_unit_left' [constructor] (B : unit → Type)
: (Σx, B x) ≃ B star :=
begin
fapply equiv.MK,
{ intro w, induction w with u b, induction u, exact b },
{ intro b, exact ⟨ star, b ⟩ },
{ intro b, reflexivity },
{ intro w, induction w with u b, induction u, reflexivity }
end
definition sigma_eq_equiv' {A : Type} (B : A → Type)
(a₁ a₂ : A) (b₁ : B a₁) (b₂ : B a₂)
: (⟨a₁, b₁⟩ = ⟨a₂, b₂⟩) ≃ (Σ(p : a₁ = a₂), p ▸ b₁ = b₂) :=
calc (⟨a₁, b₁⟩ = ⟨a₂, b₂⟩)
≃ Σ(p : a₁ = a₂), b₁ =[p] b₂ : sigma_eq_equiv
... ≃ Σ(p : a₁ = a₂), p ▸ b₁ = b₂
: by apply sigma_equiv_sigma_right; intro e; apply pathover_equiv_tr_eq
definition dec_eq_is_prop [instance] (A : Type) : is_prop (decidable_eq A) :=
begin
apply is_prop.mk, intros h k,
apply eq_of_homotopy, intro a,
apply eq_of_homotopy, intro b,
apply decidable.rec_on (h a b),
{ intro p, apply decidable.rec_on (k a b),
{ intro q, apply ap decidable.inl, apply is_set.elim },
{ intro q, exact absurd p q } },
{ intro p, apply decidable.rec_on (k a b),
{ intro q, exact absurd q p },
{ intro q, apply ap decidable.inr, apply is_prop.elim } }
end
definition dec_eq_bool : decidable_eq bool :=
begin
intro a, induction a: intro b: induction b,
{ exact decidable.inl idp },
{ exact decidable.inr ff_ne_tt },
{ exact decidable.inr (λ p, ff_ne_tt p⁻¹) },
{ exact decidable.inl idp }
end
definition lemma_II_4 {A B : Type₀} (a : A) (b : B)
(e f : A ≃ B) (p : e a = b) (q : f a = b)
: (⟨e, p⟩ = ⟨f, q⟩) ≃ Σ (h : e ~ f), p = h a ⬝ q :=
calc (⟨e, p⟩ = ⟨f, q⟩)
≃ Σ (h : e = f), h ▸ p = q : sigma_eq_equiv'
... ≃ Σ (h : e ~ f), p = h a ⬝ q :
begin
apply sigma_equiv_sigma ((equiv_eq_char e f) ⬝e eq_equiv_homotopy),
intro h, induction h, esimp, change (p = q) ≃ (p = idp ⬝ q),
rewrite idp_con
end
-- the type of two-element types
structure BoolType :=
(carrier : Type₀)
(bool_eq_carrier : ∥ bool = carrier ∥)
attribute BoolType.carrier [coercion]
-- the basepoint
definition pointed_BoolType [instance] : pointed BoolType :=
pointed.mk (BoolType.mk bool (tr idp))
definition pBoolType : pType := pType.mk BoolType pt
definition BoolType.sigma_char : BoolType ≃ { X : Type₀ | ∥ bool = X ∥ } :=
begin
fapply equiv.MK: intro Xf: induction Xf with X f,
{ exact ⟨ X, f ⟩ }, { exact BoolType.mk X f },
{ esimp }, { esimp }
end
definition BoolType.eq_equiv_equiv (A B : BoolType)
: (A = B) ≃ (A ≃ B) :=
calc (A = B)
≃ (BoolType.sigma_char A = BoolType.sigma_char B)
: eq_equiv_fn_eq_of_equiv
... ≃ (BoolType.carrier A = BoolType.carrier B)
: begin
induction A with A p, induction B with B q,
symmetry, esimp, apply equiv_subtype
end
... ≃ (A ≃ B) : eq_equiv_equiv A B
definition lemma_II_3 {A B : BoolType} (a : A) (b : B)
: (⟨A, a⟩ = ⟨B, b⟩) ≃ Σ (e : A ≃ B), e a = b :=
calc (⟨A, a⟩ = ⟨B, b⟩)
≃ Σ (e : A = B), e ▸ a = b : sigma_eq_equiv'
... ≃ Σ (e : A ≃ B), e a = b :
begin
apply sigma_equiv_sigma
(BoolType.eq_equiv_equiv A B),
intro e, induction e, unfold BoolType.eq_equiv_equiv,
induction A with A p, esimp
end
definition theorem_II_2_lemma_1 (e : bool ≃ bool)
(p : e tt = tt) : e ff = ff :=
sum.elim (dichotomy (e ff)) (λ q, q)
begin
intro q, apply empty.elim, apply ff_ne_tt,
apply to_inv (eq_equiv_fn_eq_of_equiv e ff tt),
exact q ⬝ p⁻¹,
end
definition theorem_II_2_lemma_2 (e : bool ≃ bool)
(p : e tt = ff) : e ff = tt :=
sum.elim (dichotomy (e ff))
begin
intro q, apply empty.elim, apply ff_ne_tt,
apply to_inv (eq_equiv_fn_eq_of_equiv e ff tt),
exact q ⬝ p⁻¹
end
begin
intro q, exact q
end
definition theorem_II_2 : is_contr (Σ (X : BoolType), X) :=
begin
fapply is_contr.mk,
{ exact sigma.mk pt tt },
{ intro w, induction w with Xf x, induction Xf with X f,
apply to_inv (lemma_II_3 tt x), apply of_is_contr,
induction f with f, induction f, induction x,
{ apply is_contr.mk ⟨ equiv_bnot, idp ⟩,
intro w, induction w with e p, symmetry,
apply to_inv (lemma_II_4 tt ff e equiv_bnot p idp),
fapply sigma.mk,
{ intro b, induction b,
{ exact theorem_II_2_lemma_2 e p },
{ exact p } },
{ reflexivity } },
{ apply is_contr.mk ⟨ erfl, idp ⟩,
intro w, induction w with e p, symmetry,
apply to_inv (lemma_II_4 tt tt e erfl p idp),
fapply sigma.mk,
{ intro b, induction b,
{ exact theorem_II_2_lemma_1 e p },
{ exact p } },
{ reflexivity } } }
end
definition corollary_II_6 : Π A : BoolType, (pt = A) ≃ A :=
@total_space_method BoolType pt BoolType.carrier theorem_II_2 idp
definition is_conn_BoolType [instance] : is_conn 0 BoolType :=
begin
apply is_contr.mk (tr pt),
intro X, induction X with X, induction X with X p,
induction p with p, induction p, reflexivity
end
definition bool_type_dec_eq : Π (A : BoolType), decidable_eq A :=
@is_conn.is_conn.elim -1 pBoolType is_conn_BoolType
(λ A : BoolType, decidable_eq A) _ dec_eq_bool
definition alpha (A : BoolType) (x y : A) : bool :=
decidable.rec_on (bool_type_dec_eq A x y)
(λ p, tt) (λ q, ff)
definition alpha_inv (a b : bool) : alpha pt a (alpha pt a b) = b :=
begin
induction a: induction b: esimp
end
definition is_equiv_alpha [instance] : Π {A : BoolType} (a : A),
is_equiv (alpha A a) :=
begin
apply @is_conn.elim -1 pBoolType is_conn_BoolType
(λ A : BoolType, Π a : A, is_equiv (alpha A a)),
intro a,
exact adjointify (alpha pt a) (alpha pt a) (alpha_inv a) (alpha_inv a)
end
definition alpha_equiv (A : BoolType) (a : A) : A ≃ bool :=
equiv.mk (alpha A a) (is_equiv_alpha a)
definition alpha_symm : Π (A : BoolType) (x y : A),
alpha A x y = alpha A y x :=
begin
apply @is_conn.elim -1 pBoolType is_conn_BoolType
(λ A : BoolType, Π x y : A, alpha A x y = alpha A y x),
intros x y, induction x: induction y: esimp
end
-- we define the type of types together with a line bundle
structure two_cover :=
(carrier : Type₀)
(cov : carrier → Type₀)
(cov_eq : Π x : carrier, ∥ bool = cov x ∥ )
open two_cover
definition empty_two_cover : two_cover :=
two_cover.mk empty empty.elim (empty.rec _)
open sigma.ops
definition two_cover_step (X : two_cover) : two_cover :=
begin
fapply two_cover.mk,
{ exact pushout (@sigma.pr1 (carrier X) (cov X)) (λ x, star) },
{ fapply pushout.elim_type,
{ intro x, exact cov X x },
{ intro u, exact BoolType.carrier pt },
{ intro w, exact alpha_equiv
(BoolType.mk (cov X w.1) (cov_eq X w.1)) w.2 } },
{ fapply pushout.rec,
{ intro x, exact cov_eq X x },
{ intro u, exact tr idp },
{ intro w, apply is_prop.elimo } }
end
definition realprojective_two_cover : → two_cover :=
nat.rec (two_cover_step empty_two_cover) (λ x, two_cover_step)
definition realprojective : → Type₀ :=
λ n, carrier (realprojective_two_cover n)
definition realprojective_cov [reducible] (n : )
: realprojective n → BoolType :=
λ x, BoolType.mk
(cov (realprojective_two_cover n) x)
(cov_eq (realprojective_two_cover n) x)
definition theorem_III_3_u [reducible] (n : )
: (Σ (w : Σ x, realprojective_cov n x), realprojective_cov n w.1)
≃ (Σ x, realprojective_cov n x) × bool :=
calc (Σ (w : Σ x, realprojective_cov n x), realprojective_cov n w.1)
≃ (Σ (w : Σ x, realprojective_cov n x), realprojective_cov n w.1)
: sigma_assoc_comm_equiv
... ≃ Σ (w : Σ x, realprojective_cov n x), bool
: @sigma_equiv_sigma_right (Σ x : realprojective n, realprojective_cov n x)
(λ w, realprojective_cov n w.1) (λ w, bool)
(λ w, alpha_equiv (realprojective_cov n w.1) w.2)
... ≃ (Σ x, realprojective_cov n x) × bool
: equiv_prod
definition theorem_III_3 (n : )
: sphere n ≃ sigma (realprojective_cov n) :=
begin
induction n with n IH,
{ symmetry, apply sorry /-sigma_empty_left-/ },
{ apply equiv.trans (join_bool (sphere n))⁻¹ᵉ,
apply equiv.trans (join_equiv_join erfl IH),
symmetry, refine equiv.trans _ !join_symm,
apply equiv.trans !pushout.flattening, esimp,
fapply pushout.equiv,
{ unfold function.compose, exact theorem_III_3_u n},
{ reflexivity },
{ exact sigma_unit_left' (λ u, bool) },
{ unfold function.compose, esimp, intro w,
induction w with w z, induction w with x y,
reflexivity },
{ unfold function.compose, esimp, intro w,
induction w with w z, induction w with x y,
exact alpha_symm (realprojective_cov n x) y z } }
end