3367c20f9d
There is one proof in realprojective which I couldn't quite fix, so for now I left a sorry
267 lines
8.8 KiB
Text
267 lines
8.8 KiB
Text
-- Based on Buchholtz-Rijke: Real projective spaces in HoTT
|
||
-- Author: Ulrik Buchholtz
|
||
|
||
import homotopy.join
|
||
|
||
open eq nat susp pointed pmap sigma is_equiv equiv fiber is_trunc trunc
|
||
trunc_index is_conn bool unit join pushout
|
||
|
||
definition of_is_contr (A : Type) : is_contr A → A := @center A
|
||
|
||
definition sigma_unit_left' [constructor] (B : unit → Type)
|
||
: (Σx, B x) ≃ B star :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro w, induction w with u b, induction u, exact b },
|
||
{ intro b, exact ⟨ star, b ⟩ },
|
||
{ intro b, reflexivity },
|
||
{ intro w, induction w with u b, induction u, reflexivity }
|
||
end
|
||
|
||
definition sigma_eq_equiv' {A : Type} (B : A → Type)
|
||
(a₁ a₂ : A) (b₁ : B a₁) (b₂ : B a₂)
|
||
: (⟨a₁, b₁⟩ = ⟨a₂, b₂⟩) ≃ (Σ(p : a₁ = a₂), p ▸ b₁ = b₂) :=
|
||
calc (⟨a₁, b₁⟩ = ⟨a₂, b₂⟩)
|
||
≃ Σ(p : a₁ = a₂), b₁ =[p] b₂ : sigma_eq_equiv
|
||
... ≃ Σ(p : a₁ = a₂), p ▸ b₁ = b₂
|
||
: by apply sigma_equiv_sigma_right; intro e; apply pathover_equiv_tr_eq
|
||
|
||
definition dec_eq_is_prop [instance] (A : Type) : is_prop (decidable_eq A) :=
|
||
begin
|
||
apply is_prop.mk, intros h k,
|
||
apply eq_of_homotopy, intro a,
|
||
apply eq_of_homotopy, intro b,
|
||
apply decidable.rec_on (h a b),
|
||
{ intro p, apply decidable.rec_on (k a b),
|
||
{ intro q, apply ap decidable.inl, apply is_set.elim },
|
||
{ intro q, exact absurd p q } },
|
||
{ intro p, apply decidable.rec_on (k a b),
|
||
{ intro q, exact absurd q p },
|
||
{ intro q, apply ap decidable.inr, apply is_prop.elim } }
|
||
end
|
||
|
||
definition dec_eq_bool : decidable_eq bool :=
|
||
begin
|
||
intro a, induction a: intro b: induction b,
|
||
{ exact decidable.inl idp },
|
||
{ exact decidable.inr ff_ne_tt },
|
||
{ exact decidable.inr (λ p, ff_ne_tt p⁻¹) },
|
||
{ exact decidable.inl idp }
|
||
end
|
||
|
||
definition lemma_II_4 {A B : Type₀} (a : A) (b : B)
|
||
(e f : A ≃ B) (p : e a = b) (q : f a = b)
|
||
: (⟨e, p⟩ = ⟨f, q⟩) ≃ Σ (h : e ~ f), p = h a ⬝ q :=
|
||
calc (⟨e, p⟩ = ⟨f, q⟩)
|
||
≃ Σ (h : e = f), h ▸ p = q : sigma_eq_equiv'
|
||
... ≃ Σ (h : e ~ f), p = h a ⬝ q :
|
||
begin
|
||
apply sigma_equiv_sigma ((equiv_eq_char e f) ⬝e eq_equiv_homotopy),
|
||
intro h, induction h, esimp, change (p = q) ≃ (p = idp ⬝ q),
|
||
rewrite idp_con
|
||
end
|
||
|
||
-- the type of two-element types
|
||
structure BoolType :=
|
||
(carrier : Type₀)
|
||
(bool_eq_carrier : ∥ bool = carrier ∥)
|
||
attribute BoolType.carrier [coercion]
|
||
|
||
-- the basepoint
|
||
definition pointed_BoolType [instance] : pointed BoolType :=
|
||
pointed.mk (BoolType.mk bool (tr idp))
|
||
|
||
definition pBoolType : pType := pType.mk BoolType pt
|
||
|
||
definition BoolType.sigma_char : BoolType ≃ { X : Type₀ | ∥ bool = X ∥ } :=
|
||
begin
|
||
fapply equiv.MK: intro Xf: induction Xf with X f,
|
||
{ exact ⟨ X, f ⟩ }, { exact BoolType.mk X f },
|
||
{ esimp }, { esimp }
|
||
end
|
||
|
||
definition BoolType.eq_equiv_equiv (A B : BoolType)
|
||
: (A = B) ≃ (A ≃ B) :=
|
||
calc (A = B)
|
||
≃ (BoolType.sigma_char A = BoolType.sigma_char B)
|
||
: eq_equiv_fn_eq_of_equiv
|
||
... ≃ (BoolType.carrier A = BoolType.carrier B)
|
||
: begin
|
||
induction A with A p, induction B with B q,
|
||
symmetry, esimp, apply equiv_subtype
|
||
end
|
||
... ≃ (A ≃ B) : eq_equiv_equiv A B
|
||
|
||
definition lemma_II_3 {A B : BoolType} (a : A) (b : B)
|
||
: (⟨A, a⟩ = ⟨B, b⟩) ≃ Σ (e : A ≃ B), e a = b :=
|
||
calc (⟨A, a⟩ = ⟨B, b⟩)
|
||
≃ Σ (e : A = B), e ▸ a = b : sigma_eq_equiv'
|
||
... ≃ Σ (e : A ≃ B), e a = b :
|
||
begin
|
||
apply sigma_equiv_sigma
|
||
(BoolType.eq_equiv_equiv A B),
|
||
intro e, induction e, unfold BoolType.eq_equiv_equiv,
|
||
induction A with A p, esimp
|
||
end
|
||
|
||
definition theorem_II_2_lemma_1 (e : bool ≃ bool)
|
||
(p : e tt = tt) : e ff = ff :=
|
||
sum.elim (dichotomy (e ff)) (λ q, q)
|
||
begin
|
||
intro q, apply empty.elim, apply ff_ne_tt,
|
||
apply to_inv (eq_equiv_fn_eq_of_equiv e ff tt),
|
||
exact q ⬝ p⁻¹,
|
||
end
|
||
|
||
definition theorem_II_2_lemma_2 (e : bool ≃ bool)
|
||
(p : e tt = ff) : e ff = tt :=
|
||
sum.elim (dichotomy (e ff))
|
||
begin
|
||
intro q, apply empty.elim, apply ff_ne_tt,
|
||
apply to_inv (eq_equiv_fn_eq_of_equiv e ff tt),
|
||
exact q ⬝ p⁻¹
|
||
end
|
||
begin
|
||
intro q, exact q
|
||
end
|
||
|
||
definition theorem_II_2 : is_contr (Σ (X : BoolType), X) :=
|
||
begin
|
||
fapply is_contr.mk,
|
||
{ exact sigma.mk pt tt },
|
||
{ intro w, induction w with Xf x, induction Xf with X f,
|
||
apply to_inv (lemma_II_3 tt x), apply of_is_contr,
|
||
induction f with f, induction f, induction x,
|
||
{ apply is_contr.mk ⟨ equiv_bnot, idp ⟩,
|
||
intro w, induction w with e p, symmetry,
|
||
apply to_inv (lemma_II_4 tt ff e equiv_bnot p idp),
|
||
fapply sigma.mk,
|
||
{ intro b, induction b,
|
||
{ exact theorem_II_2_lemma_2 e p },
|
||
{ exact p } },
|
||
{ reflexivity } },
|
||
{ apply is_contr.mk ⟨ erfl, idp ⟩,
|
||
intro w, induction w with e p, symmetry,
|
||
apply to_inv (lemma_II_4 tt tt e erfl p idp),
|
||
fapply sigma.mk,
|
||
{ intro b, induction b,
|
||
{ exact theorem_II_2_lemma_1 e p },
|
||
{ exact p } },
|
||
{ reflexivity } } }
|
||
end
|
||
|
||
definition corollary_II_6 : Π A : BoolType, (pt = A) ≃ A :=
|
||
@total_space_method BoolType pt BoolType.carrier theorem_II_2 idp
|
||
|
||
definition is_conn_BoolType [instance] : is_conn 0 BoolType :=
|
||
begin
|
||
apply is_contr.mk (tr pt),
|
||
intro X, induction X with X, induction X with X p,
|
||
induction p with p, induction p, reflexivity
|
||
end
|
||
|
||
definition bool_type_dec_eq : Π (A : BoolType), decidable_eq A :=
|
||
@is_conn.is_conn.elim -1 pBoolType is_conn_BoolType
|
||
(λ A : BoolType, decidable_eq A) _ dec_eq_bool
|
||
|
||
definition alpha (A : BoolType) (x y : A) : bool :=
|
||
decidable.rec_on (bool_type_dec_eq A x y)
|
||
(λ p, tt) (λ q, ff)
|
||
|
||
definition alpha_inv (a b : bool) : alpha pt a (alpha pt a b) = b :=
|
||
begin
|
||
induction a: induction b: esimp
|
||
end
|
||
|
||
definition is_equiv_alpha [instance] : Π {A : BoolType} (a : A),
|
||
is_equiv (alpha A a) :=
|
||
begin
|
||
apply @is_conn.elim -1 pBoolType is_conn_BoolType
|
||
(λ A : BoolType, Π a : A, is_equiv (alpha A a)),
|
||
intro a,
|
||
exact adjointify (alpha pt a) (alpha pt a) (alpha_inv a) (alpha_inv a)
|
||
end
|
||
|
||
definition alpha_equiv (A : BoolType) (a : A) : A ≃ bool :=
|
||
equiv.mk (alpha A a) (is_equiv_alpha a)
|
||
|
||
definition alpha_symm : Π (A : BoolType) (x y : A),
|
||
alpha A x y = alpha A y x :=
|
||
begin
|
||
apply @is_conn.elim -1 pBoolType is_conn_BoolType
|
||
(λ A : BoolType, Π x y : A, alpha A x y = alpha A y x),
|
||
intros x y, induction x: induction y: esimp
|
||
end
|
||
|
||
-- we define the type of types together with a line bundle
|
||
structure two_cover :=
|
||
(carrier : Type₀)
|
||
(cov : carrier → Type₀)
|
||
(cov_eq : Π x : carrier, ∥ bool = cov x ∥ )
|
||
open two_cover
|
||
|
||
definition empty_two_cover : two_cover :=
|
||
two_cover.mk empty empty.elim (empty.rec _)
|
||
|
||
open sigma.ops
|
||
|
||
definition two_cover_step (X : two_cover) : two_cover :=
|
||
begin
|
||
fapply two_cover.mk,
|
||
{ exact pushout (@sigma.pr1 (carrier X) (cov X)) (λ x, star) },
|
||
{ fapply pushout.elim_type,
|
||
{ intro x, exact cov X x },
|
||
{ intro u, exact BoolType.carrier pt },
|
||
{ intro w, exact alpha_equiv
|
||
(BoolType.mk (cov X w.1) (cov_eq X w.1)) w.2 } },
|
||
{ fapply pushout.rec,
|
||
{ intro x, exact cov_eq X x },
|
||
{ intro u, exact tr idp },
|
||
{ intro w, apply is_prop.elimo } }
|
||
end
|
||
|
||
definition realprojective_two_cover : ℕ → two_cover :=
|
||
nat.rec (two_cover_step empty_two_cover) (λ x, two_cover_step)
|
||
|
||
definition realprojective : ℕ → Type₀ :=
|
||
λ n, carrier (realprojective_two_cover n)
|
||
|
||
definition realprojective_cov [reducible] (n : ℕ)
|
||
: realprojective n → BoolType :=
|
||
λ x, BoolType.mk
|
||
(cov (realprojective_two_cover n) x)
|
||
(cov_eq (realprojective_two_cover n) x)
|
||
|
||
definition theorem_III_3_u [reducible] (n : ℕ)
|
||
: (Σ (w : Σ x, realprojective_cov n x), realprojective_cov n w.1)
|
||
≃ (Σ x, realprojective_cov n x) × bool :=
|
||
calc (Σ (w : Σ x, realprojective_cov n x), realprojective_cov n w.1)
|
||
≃ (Σ (w : Σ x, realprojective_cov n x), realprojective_cov n w.1)
|
||
: sigma_assoc_comm_equiv
|
||
... ≃ Σ (w : Σ x, realprojective_cov n x), bool
|
||
: @sigma_equiv_sigma_right (Σ x : realprojective n, realprojective_cov n x)
|
||
(λ w, realprojective_cov n w.1) (λ w, bool)
|
||
(λ w, alpha_equiv (realprojective_cov n w.1) w.2)
|
||
... ≃ (Σ x, realprojective_cov n x) × bool
|
||
: equiv_prod
|
||
|
||
definition theorem_III_3 (n : ℕ)
|
||
: sphere n ≃ sigma (realprojective_cov n) :=
|
||
begin
|
||
induction n with n IH,
|
||
{ symmetry, apply sorry /-sigma_empty_left-/ },
|
||
{ apply equiv.trans (join_bool (sphere n))⁻¹ᵉ,
|
||
apply equiv.trans (join_equiv_join erfl IH),
|
||
symmetry, refine equiv.trans _ !join_symm,
|
||
apply equiv.trans !pushout.flattening, esimp,
|
||
fapply pushout.equiv,
|
||
{ unfold function.compose, exact theorem_III_3_u n},
|
||
{ reflexivity },
|
||
{ exact sigma_unit_left' (λ u, bool) },
|
||
{ unfold function.compose, esimp, intro w,
|
||
induction w with w z, induction w with x y,
|
||
reflexivity },
|
||
{ unfold function.compose, esimp, intro w,
|
||
induction w with w z, induction w with x y,
|
||
exact alpha_symm (realprojective_cov n x) y z } }
|
||
end
|