3367c20f9d
There is one proof in realprojective which I couldn't quite fix, so for now I left a sorry
939 lines
43 KiB
Text
939 lines
43 KiB
Text
-- Authors: Floris van Doorn
|
||
|
||
import homotopy.smash types.pointed2 .pushout homotopy.red_susp
|
||
|
||
open bool pointed eq equiv is_equiv sum bool prod unit circle cofiber prod.ops wedge is_trunc
|
||
function red_susp unit
|
||
|
||
/- To prove: Σ(X × Y) ≃ ΣX ∨ ΣY ∨ Σ(X ∧ Y) (notation means suspension, wedge, smash) -/
|
||
|
||
/- To prove: Σ(X ∧ Y) ≃ X ★ Y (?) (notation means suspension, smash, join) -/
|
||
|
||
/- To prove: A ∧ S¹ ≃ ΣA -/
|
||
|
||
/- associativity is proven in smash_adjoint -/
|
||
variables {A A' B B' C C' D E F : Type*}
|
||
|
||
namespace smash
|
||
|
||
definition elim_gluel' {P : Type} {Pmk : Πa b, P} {Pl Pr : P}
|
||
(Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (a a' : A) :
|
||
ap (smash.elim Pmk Pl Pr Pgl Pgr) (gluel' a a') = Pgl a ⬝ (Pgl a')⁻¹ :=
|
||
!ap_con ⬝ whisker_left _ !ap_inv ⬝ !elim_gluel ◾ !elim_gluel⁻²
|
||
|
||
definition elim_gluer' {P : Type} {Pmk : Πa b, P} {Pl Pr : P}
|
||
(Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (b b' : B) :
|
||
ap (smash.elim Pmk Pl Pr Pgl Pgr) (gluer' b b') = Pgr b ⬝ (Pgr b')⁻¹ :=
|
||
!ap_con ⬝ whisker_left _ !ap_inv ⬝ !elim_gluer ◾ !elim_gluer⁻²
|
||
|
||
definition elim_gluel'_same {P : Type} {Pmk : Πa b, P} {Pl Pr : P}
|
||
(Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (a : A) :
|
||
elim_gluel' Pgl Pgr a a =
|
||
ap02 (smash.elim Pmk Pl Pr Pgl Pgr) (con.right_inv (gluel a)) ⬝ (con.right_inv (Pgl a))⁻¹ :=
|
||
begin
|
||
refine _ ⬝ whisker_right _ (eq_top_of_square (!ap_con_right_inv_sq))⁻¹,
|
||
refine _ ⬝ whisker_right _ !con_idp⁻¹,
|
||
refine _ ⬝ !con.assoc⁻¹,
|
||
apply whisker_left,
|
||
apply eq_con_inv_of_con_eq, symmetry,
|
||
apply con_right_inv_natural
|
||
end
|
||
|
||
definition elim_gluer'_same {P : Type} {Pmk : Πa b, P} {Pl Pr : P}
|
||
(Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (b : B) :
|
||
elim_gluer' Pgl Pgr b b =
|
||
ap02 (smash.elim Pmk Pl Pr Pgl Pgr) (con.right_inv (gluer b)) ⬝ (con.right_inv (Pgr b))⁻¹ :=
|
||
begin
|
||
refine _ ⬝ whisker_right _ (eq_top_of_square (!ap_con_right_inv_sq))⁻¹,
|
||
refine _ ⬝ whisker_right _ !con_idp⁻¹,
|
||
refine _ ⬝ !con.assoc⁻¹,
|
||
apply whisker_left,
|
||
apply eq_con_inv_of_con_eq, symmetry,
|
||
apply con_right_inv_natural
|
||
end
|
||
|
||
definition elim'_gluel'_pt {P : Type} {Pmk : Πa b, P}
|
||
(Pgl : Πa : A, Pmk a pt = Pmk pt pt) (Pgr : Πb : B, Pmk pt b = Pmk pt pt)
|
||
(a : A) (ql : Pgl pt = idp) (qr : Pgr pt = idp) :
|
||
ap (smash.elim' Pmk Pgl Pgr ql qr) (gluel' a pt) = Pgl a :=
|
||
!elim_gluel' ⬝ whisker_left _ ql⁻²
|
||
|
||
definition elim'_gluer'_pt {P : Type} {Pmk : Πa b, P}
|
||
(Pgl : Πa : A, Pmk a pt = Pmk pt pt) (Pgr : Πb : B, Pmk pt b = Pmk pt pt)
|
||
(b : B) (ql : Pgl pt = idp) (qr : Pgr pt = idp) :
|
||
ap (smash.elim' Pmk Pgl Pgr ql qr) (gluer' b pt) = Pgr b :=
|
||
!elim_gluer' ⬝ whisker_left _ qr⁻²
|
||
|
||
protected definition rec_eq {A B : Type*} {C : Type} {f g : smash A B → C}
|
||
(Pmk : Πa b, f (smash.mk a b) = g (smash.mk a b))
|
||
(Pl : f auxl = g auxl) (Pr : f auxr = g auxr)
|
||
(Pgl : Πa, square (Pmk a pt) Pl (ap f (gluel a)) (ap g (gluel a)))
|
||
(Pgr : Πb, square (Pmk pt b) Pr (ap f (gluer b)) (ap g (gluer b))) (x : smash' A B) : f x = g x :=
|
||
begin
|
||
induction x with a b a b,
|
||
{ exact Pmk a b },
|
||
{ exact Pl },
|
||
{ exact Pr },
|
||
{ apply eq_pathover, apply Pgl },
|
||
{ apply eq_pathover, apply Pgr }
|
||
end
|
||
|
||
definition rec_eq_gluel {A B : Type*} {C : Type} {f g : smash A B → C}
|
||
{Pmk : Πa b, f (smash.mk a b) = g (smash.mk a b)}
|
||
{Pl : f auxl = g auxl} {Pr : f auxr = g auxr}
|
||
(Pgl : Πa, square (Pmk a pt) Pl (ap f (gluel a)) (ap g (gluel a)))
|
||
(Pgr : Πb, square (Pmk pt b) Pr (ap f (gluer b)) (ap g (gluer b))) (a : A) :
|
||
natural_square (smash.rec_eq Pmk Pl Pr Pgl Pgr) (gluel a) = Pgl a :=
|
||
begin
|
||
refine ap square_of_pathover !rec_gluel ⬝ _,
|
||
apply to_right_inv !eq_pathover_equiv_square
|
||
end
|
||
|
||
definition rec_eq_gluer {A B : Type*} {C : Type} {f g : smash A B → C}
|
||
{Pmk : Πa b, f (smash.mk a b) = g (smash.mk a b)}
|
||
{Pl : f auxl = g auxl} {Pr : f auxr = g auxr}
|
||
(Pgl : Πa, square (Pmk a pt) Pl (ap f (gluel a)) (ap g (gluel a)))
|
||
(Pgr : Πb, square (Pmk pt b) Pr (ap f (gluer b)) (ap g (gluer b))) (b : B) :
|
||
natural_square (smash.rec_eq Pmk Pl Pr Pgl Pgr) (gluer b) = Pgr b :=
|
||
begin
|
||
refine ap square_of_pathover !rec_gluer ⬝ _,
|
||
apply to_right_inv !eq_pathover_equiv_square
|
||
end
|
||
|
||
/- the functorial action of the smash product -/
|
||
definition smash_functor' [unfold 7] (f : A →* C) (g : B →* D) : A ∧ B → C ∧ D :=
|
||
begin
|
||
intro x, induction x,
|
||
{ exact smash.mk (f a) (g b) },
|
||
{ exact auxl },
|
||
{ exact auxr },
|
||
{ exact ap (smash.mk (f a)) (respect_pt g) ⬝ gluel (f a) },
|
||
{ exact ap (λa, smash.mk a (g b)) (respect_pt f) ⬝ gluer (g b) }
|
||
end
|
||
|
||
definition smash_functor [constructor] (f : A →* C) (g : B →* D) : A ∧ B →* C ∧ D :=
|
||
begin
|
||
fapply pmap.mk,
|
||
{ exact smash_functor' f g },
|
||
{ exact ap011 smash.mk (respect_pt f) (respect_pt g) },
|
||
end
|
||
|
||
infixr ` ∧→ `:65 := smash_functor
|
||
|
||
definition functor_gluel (f : A →* C) (g : B →* D) (a : A) :
|
||
ap (f ∧→ g) (gluel a) = ap (smash.mk (f a)) (respect_pt g) ⬝ gluel (f a) :=
|
||
!elim_gluel
|
||
|
||
definition functor_gluer (f : A →* C) (g : B →* D) (b : B) :
|
||
ap (f ∧→ g) (gluer b) = ap (λc, smash.mk c (g b)) (respect_pt f) ⬝ gluer (g b) :=
|
||
!elim_gluer
|
||
|
||
definition functor_gluel2 {C D : Type} (f : A → C) (g : B → D) (a : A) :
|
||
ap (pmap_of_map f pt ∧→ pmap_of_map g pt) (gluel a) = gluel (f a) :=
|
||
begin
|
||
refine !elim_gluel ⬝ !idp_con
|
||
end
|
||
|
||
definition functor_gluer2 {C D : Type} (f : A → C) (g : B → D) (b : B) :
|
||
ap (pmap_of_map f pt ∧→ pmap_of_map g pt) (gluer b) = gluer (g b) :=
|
||
begin
|
||
refine !elim_gluer ⬝ !idp_con
|
||
end
|
||
|
||
definition functor_gluel' (f : A →* C) (g : B →* D) (a a' : A) :
|
||
ap (f ∧→ g) (gluel' a a') = ap (smash.mk (f a)) (respect_pt g) ⬝
|
||
gluel' (f a) (f a') ⬝ (ap (smash.mk (f a')) (respect_pt g))⁻¹ :=
|
||
begin
|
||
refine !elim_gluel' ⬝ _,
|
||
refine whisker_left _ !con_inv ⬝ _,
|
||
refine !con.assoc⁻¹ ⬝ _, apply whisker_right,
|
||
apply con.assoc
|
||
end
|
||
|
||
definition functor_gluer' (f : A →* C) (g : B →* D) (b b' : B) :
|
||
ap (f ∧→ g) (gluer' b b') = ap (λc, smash.mk c (g b)) (respect_pt f) ⬝
|
||
gluer' (g b) (g b') ⬝ (ap (λc, smash.mk c (g b')) (respect_pt f))⁻¹ :=
|
||
begin
|
||
refine !elim_gluer' ⬝ _,
|
||
refine whisker_left _ !con_inv ⬝ _,
|
||
refine !con.assoc⁻¹ ⬝ _, apply whisker_right,
|
||
apply con.assoc
|
||
end
|
||
|
||
/- the statements of the above rules becomes easier if one of the functions respects the basepoint
|
||
by reflexivity -/
|
||
-- definition functor_gluel'2 {D : Type} (f : A →* C) (g : B → D) (a a' : A) :
|
||
-- ap (f ∧→ (pmap_of_map g pt)) (gluel' a a') = gluel' (f a) (f a') :=
|
||
-- begin
|
||
-- refine !ap_con ⬝ whisker_left _ !ap_inv ⬝ _,
|
||
-- refine (!functor_gluel ⬝ !idp_con) ◾ (!functor_gluel ⬝ !idp_con)⁻²
|
||
-- end
|
||
|
||
-- definition functor_gluer'2 {C : Type} (f : A → C) (g : B →* D) (b b' : B) :
|
||
-- ap (pmap_of_map f pt ∧→ g) (gluer' b b') = gluer' (g b) (g b') :=
|
||
-- begin
|
||
-- refine !ap_con ⬝ whisker_left _ !ap_inv ⬝ _,
|
||
-- refine (!functor_gluer ⬝ !idp_con) ◾ (!functor_gluer ⬝ !idp_con)⁻²
|
||
-- end
|
||
|
||
definition functor_gluel'2 {C D : Type} (f : A → C) (g : B → D) (a a' : A) :
|
||
ap (pmap_of_map f pt ∧→ pmap_of_map g pt) (gluel' a a') = gluel' (f a) (f a') :=
|
||
!ap_con ⬝ whisker_left _ !ap_inv ⬝ !functor_gluel2 ◾ !functor_gluel2⁻²
|
||
|
||
definition functor_gluer'2 {C D : Type} (f : A → C) (g : B → D) (b b' : B) :
|
||
ap (pmap_of_map f pt ∧→ pmap_of_map g pt) (gluer' b b') = gluer' (g b) (g b') :=
|
||
!ap_con ⬝ whisker_left _ !ap_inv ⬝ !functor_gluer2 ◾ !functor_gluer2⁻²
|
||
|
||
lemma functor_gluel'2_same {C D : Type} (f : A → C) (g : B → D) (a : A) :
|
||
functor_gluel'2 f g a a =
|
||
ap02 (pmap_of_map f pt ∧→ pmap_of_map g pt) (con.right_inv (gluel a)) ⬝
|
||
(con.right_inv (gluel (f a)))⁻¹ :=
|
||
begin
|
||
refine _ ⬝ whisker_right _ (eq_top_of_square (!ap_con_right_inv_sq))⁻¹,
|
||
refine _ ⬝ whisker_right _ !con_idp⁻¹,
|
||
refine _ ⬝ !con.assoc⁻¹,
|
||
apply whisker_left,
|
||
apply eq_con_inv_of_con_eq, symmetry,
|
||
apply con_right_inv_natural
|
||
end
|
||
|
||
lemma functor_gluer'2_same {C D : Type} (f : A → C) (g : B → D) (b : B) :
|
||
functor_gluer'2 (pmap_of_map f pt) g b b =
|
||
ap02 (pmap_of_map f pt ∧→ pmap_of_map g pt) (con.right_inv (gluer b)) ⬝
|
||
(con.right_inv (gluer (g b)))⁻¹ :=
|
||
begin
|
||
refine _ ⬝ whisker_right _ (eq_top_of_square (!ap_con_right_inv_sq))⁻¹,
|
||
refine _ ⬝ whisker_right _ !con_idp⁻¹,
|
||
refine _ ⬝ !con.assoc⁻¹,
|
||
apply whisker_left,
|
||
apply eq_con_inv_of_con_eq, symmetry,
|
||
apply con_right_inv_natural
|
||
end
|
||
|
||
definition smash_functor_pid [constructor] (A B : Type*) :
|
||
pid A ∧→ pid B ~* pid (A ∧ B) :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro x, induction x with a b a b,
|
||
{ reflexivity },
|
||
{ reflexivity },
|
||
{ reflexivity },
|
||
{ apply eq_pathover_id_right, apply hdeg_square, exact !functor_gluel ⬝ !idp_con },
|
||
{ apply eq_pathover_id_right, apply hdeg_square, exact !functor_gluer ⬝ !idp_con }},
|
||
{ reflexivity }
|
||
end
|
||
|
||
/- the functorial action of the smash product respects pointed homotopies, and some computation
|
||
rules for this pointed homotopy -/
|
||
definition smash_functor_phomotopy {f f' : A →* C} {g g' : B →* D}
|
||
(h₁ : f ~* f') (h₂ : g ~* g') : f ∧→ g ~* f' ∧→ g' :=
|
||
begin
|
||
induction h₁ using phomotopy_rec_on_idp,
|
||
induction h₂ using phomotopy_rec_on_idp,
|
||
reflexivity
|
||
end
|
||
|
||
/- a more explicit proof, if we ever need it -/
|
||
-- definition smash_functor_homotopy [unfold 11] {f f' : A →* C} {g g' : B →* D}
|
||
-- (h₁ : f ~* f') (h₂ : g ~* g') : f ∧→ g ~ f' ∧→ g' :=
|
||
-- begin
|
||
-- intro x, induction x with a b a b,
|
||
-- { exact ap011 smash.mk (h₁ a) (h₂ b) },
|
||
-- { reflexivity },
|
||
-- { reflexivity },
|
||
-- { apply eq_pathover,
|
||
-- refine !functor_gluel ⬝ph _ ⬝hp !functor_gluel⁻¹,
|
||
-- refine _ ⬝v square_of_eq_top (ap_mk_left (h₁ a)),
|
||
-- exact ap011_ap_square_right smash.mk (h₁ a) (to_homotopy_pt h₂) },
|
||
-- { apply eq_pathover,
|
||
-- refine !functor_gluer ⬝ph _ ⬝hp !functor_gluer⁻¹,
|
||
-- refine _ ⬝v square_of_eq_top (ap_mk_right (h₂ b)),
|
||
-- exact ap011_ap_square_left smash.mk (h₂ b) (to_homotopy_pt h₁) },
|
||
-- end
|
||
|
||
-- definition smash_functor_phomotopy [constructor] {f f' : A →* C} {g g' : B →* D}
|
||
-- (h₁ : f ~* f') (h₂ : g ~* g') : f ∧→ g ~* f' ∧→ g' :=
|
||
-- begin
|
||
-- apply phomotopy.mk (smash_functor_homotopy h₁ h₂),
|
||
-- induction h₁ with h₁ h₁₀, induction h₂ with h₂ h₂₀,
|
||
-- induction f with f f₀, induction g with g g₀,
|
||
-- induction f' with f' f'₀, induction g' with g' g'₀,
|
||
-- induction C with C c₀, induction D with D d₀, esimp at *,
|
||
-- induction h₁₀, induction h₂₀, induction f'₀, induction g'₀,
|
||
-- exact !ap_ap011⁻¹
|
||
-- end
|
||
|
||
definition smash_functor_phomotopy_refl (f : A →* C) (g : B →* D) :
|
||
smash_functor_phomotopy (phomotopy.refl f) (phomotopy.refl g) = phomotopy.rfl :=
|
||
!phomotopy_rec_on_idp_refl ⬝ !phomotopy_rec_on_idp_refl
|
||
|
||
definition smash_functor_phomotopy_symm {f₁ f₂ : A →* C} {g₁ g₂ : B →* D}
|
||
(h : f₁ ~* f₂) (k : g₁ ~* g₂) :
|
||
smash_functor_phomotopy h⁻¹* k⁻¹* = (smash_functor_phomotopy h k)⁻¹* :=
|
||
begin
|
||
induction h using phomotopy_rec_on_idp, induction k using phomotopy_rec_on_idp,
|
||
exact ap011 smash_functor_phomotopy !refl_symm !refl_symm ⬝ !smash_functor_phomotopy_refl ⬝
|
||
!refl_symm⁻¹ ⬝ !smash_functor_phomotopy_refl⁻¹⁻²**
|
||
end
|
||
|
||
definition smash_functor_phomotopy_trans {f₁ f₂ f₃ : A →* C} {g₁ g₂ g₃ : B →* D}
|
||
(h₁ : f₁ ~* f₂) (h₂ : f₂ ~* f₃) (k₁ : g₁ ~* g₂) (k₂ : g₂ ~* g₃) :
|
||
smash_functor_phomotopy (h₁ ⬝* h₂) (k₁ ⬝* k₂) =
|
||
smash_functor_phomotopy h₁ k₁ ⬝* smash_functor_phomotopy h₂ k₂ :=
|
||
begin
|
||
induction h₁ using phomotopy_rec_on_idp, induction h₂ using phomotopy_rec_on_idp,
|
||
induction k₁ using phomotopy_rec_on_idp, induction k₂ using phomotopy_rec_on_idp,
|
||
refine ap011 smash_functor_phomotopy !trans_refl !trans_refl ⬝ !trans_refl⁻¹ ⬝ idp ◾** _,
|
||
exact !smash_functor_phomotopy_refl⁻¹
|
||
end
|
||
|
||
definition smash_functor_phomotopy_trans_right {f₁ f₂ : A →* C} {g₁ g₂ g₃ : B →* D}
|
||
(h₁ : f₁ ~* f₂) (k₁ : g₁ ~* g₂) (k₂ : g₂ ~* g₃) :
|
||
smash_functor_phomotopy h₁ (k₁ ⬝* k₂) =
|
||
smash_functor_phomotopy h₁ k₁ ⬝* smash_functor_phomotopy phomotopy.rfl k₂ :=
|
||
begin
|
||
refine ap (λx, smash_functor_phomotopy x _) !trans_refl⁻¹ ⬝ !smash_functor_phomotopy_trans,
|
||
end
|
||
|
||
definition smash_functor_phomotopy_phsquare {f₁ f₂ f₃ f₄ : A →* C} {g₁ g₂ g₃ g₄ : B →* D}
|
||
{h₁ : f₁ ~* f₂} {h₂ : f₃ ~* f₄} {h₃ : f₁ ~* f₃} {h₄ : f₂ ~* f₄}
|
||
{k₁ : g₁ ~* g₂} {k₂ : g₃ ~* g₄} {k₃ : g₁ ~* g₃} {k₄ : g₂ ~* g₄}
|
||
(p : phsquare h₁ h₂ h₃ h₄) (q : phsquare k₁ k₂ k₃ k₄) :
|
||
phsquare (smash_functor_phomotopy h₁ k₁)
|
||
(smash_functor_phomotopy h₂ k₂)
|
||
(smash_functor_phomotopy h₃ k₃)
|
||
(smash_functor_phomotopy h₄ k₄) :=
|
||
!smash_functor_phomotopy_trans⁻¹ ⬝ ap011 smash_functor_phomotopy p q ⬝
|
||
!smash_functor_phomotopy_trans
|
||
|
||
definition smash_functor_eq_of_phomotopy (f : A →* C) {g g' : B →* D}
|
||
(p : g ~* g') : ap (smash_functor f) (eq_of_phomotopy p) =
|
||
eq_of_phomotopy (smash_functor_phomotopy phomotopy.rfl p) :=
|
||
begin
|
||
induction p using phomotopy_rec_on_idp,
|
||
refine ap02 _ !eq_of_phomotopy_refl ⬝ _,
|
||
refine !eq_of_phomotopy_refl⁻¹ ⬝ _,
|
||
apply ap eq_of_phomotopy,
|
||
exact !smash_functor_phomotopy_refl⁻¹
|
||
end
|
||
|
||
/- the functorial action preserves compositions, the interchange law -/
|
||
definition smash_functor_pcompose_homotopy [unfold 11] {C D E F : Type}
|
||
(f' : C → E) (f : A → C) (g' : D → F) (g : B → D) :
|
||
(pmap_of_map f' (f pt) ∘* pmap_of_map f pt) ∧→ (pmap_of_map g' (g pt) ∘* pmap_of_map g pt) ~
|
||
(pmap_of_map f' (f pt) ∧→ pmap_of_map g' (g pt)) ∘* (pmap_of_map f pt ∧→ pmap_of_map g pt) :=
|
||
begin
|
||
intro x, induction x with a b a b,
|
||
{ reflexivity },
|
||
{ reflexivity },
|
||
{ reflexivity },
|
||
{ apply eq_pathover, refine !functor_gluel2 ⬝ph _, esimp,
|
||
refine _ ⬝hp (ap_compose (_ ∧→ _) _ _)⁻¹,
|
||
refine _ ⬝hp ap02 _ !functor_gluel2⁻¹, refine _ ⬝hp !functor_gluel2⁻¹, exact hrfl },
|
||
{ apply eq_pathover, refine !functor_gluer2 ⬝ph _, esimp,
|
||
refine _ ⬝hp (ap_compose (_ ∧→ _) _ _)⁻¹,
|
||
refine _ ⬝hp ap02 _ !functor_gluer2⁻¹, refine _ ⬝hp !functor_gluer2⁻¹, exact hrfl }
|
||
end
|
||
|
||
definition smash_functor_pcompose (f' : C →* E) (f : A →* C) (g' : D →* F) (g : B →* D) :
|
||
(f' ∘* f) ∧→ (g' ∘* g) ~* f' ∧→ g' ∘* f ∧→ g :=
|
||
begin
|
||
induction C with C, induction D with D, induction E with E, induction F with F,
|
||
induction f with f f₀, induction f' with f' f'₀, induction g with g g₀,
|
||
induction g' with g' g'₀, esimp at *,
|
||
induction f₀, induction f'₀, induction g₀, induction g'₀,
|
||
fapply phomotopy.mk,
|
||
{ rexact smash_functor_pcompose_homotopy f' f g' g },
|
||
{ reflexivity }
|
||
end
|
||
|
||
definition smash_functor_split (f : A →* C) (g : B →* D) :
|
||
f ∧→ g ~* (pid C) ∧→ g ∘* f ∧→ (pid B) :=
|
||
smash_functor_phomotopy !pid_pcompose⁻¹* !pcompose_pid⁻¹* ⬝* !smash_functor_pcompose
|
||
|
||
/- An alternative proof which doesn't start by applying inductions, so which is more explicit -/
|
||
-- definition smash_functor_pcompose_homotopy [unfold 11] (f' : C →* E) (f : A →* C) (g' : D →* F)
|
||
-- (g : B →* D) : (f' ∘* f) ∧→ (g' ∘* g) ~ (f' ∧→ g') ∘* (f ∧→ g) :=
|
||
-- begin
|
||
-- intro x, induction x with a b a b,
|
||
-- { reflexivity },
|
||
-- { reflexivity },
|
||
-- { reflexivity },
|
||
-- { apply eq_pathover, exact abstract begin apply hdeg_square,
|
||
-- refine !functor_gluel ⬝ _ ⬝ (ap_compose (f' ∧→ g') _ _)⁻¹,
|
||
-- refine whisker_right _ !ap_con ⬝ !con.assoc ⬝ _ ⬝ ap02 _ !functor_gluel⁻¹,
|
||
-- refine (!ap_compose'⁻¹ ⬝ !ap_compose') ◾ proof !functor_gluel⁻¹ qed ⬝ !ap_con⁻¹ end end },
|
||
-- { apply eq_pathover, exact abstract begin apply hdeg_square,
|
||
-- refine !functor_gluer ⬝ _ ⬝ (ap_compose (f' ∧→ g') _ _)⁻¹,
|
||
-- refine whisker_right _ !ap_con ⬝ !con.assoc ⬝ _ ⬝ ap02 _ !functor_gluer⁻¹,
|
||
-- refine (!ap_compose'⁻¹ ⬝ !ap_compose') ◾ proof !functor_gluer⁻¹ qed ⬝ !ap_con⁻¹ end end }
|
||
-- end
|
||
|
||
-- definition smash_functor_pcompose [constructor] (f' : C →* E) (f : A →* C) (g' : D →* F) (g : B →* D) :
|
||
-- (f' ∘* f) ∧→ (g' ∘* g) ~* f' ∧→ g' ∘* f ∧→ g :=
|
||
-- begin
|
||
-- fapply phomotopy.mk,
|
||
-- { exact smash_functor_pcompose_homotopy f' f g' g },
|
||
-- { exact abstract begin induction C, induction D, induction E, induction F,
|
||
-- induction f with f f₀, induction f' with f' f'₀, induction g with g g₀,
|
||
-- induction g' with g' g'₀, esimp at *,
|
||
-- induction f₀, induction f'₀, induction g₀, induction g'₀, reflexivity end end }
|
||
-- end
|
||
|
||
|
||
definition smash_functor_pid_pcompose [constructor] (A : Type*) (g' : C →* D) (g : B →* C)
|
||
: pid A ∧→ (g' ∘* g) ~* pid A ∧→ g' ∘* pid A ∧→ g :=
|
||
smash_functor_phomotopy !pid_pcompose⁻¹* phomotopy.rfl ⬝* !smash_functor_pcompose
|
||
|
||
definition smash_functor_pcompose_pid [constructor] (B : Type*) (f' : C →* D) (f : A →* C)
|
||
: (f' ∘* f) ∧→ pid B ~* f' ∧→ (pid B) ∘* f ∧→ (pid B) :=
|
||
smash_functor_phomotopy phomotopy.rfl !pid_pcompose⁻¹* ⬝* !smash_functor_pcompose
|
||
|
||
/- composing commutes with applying homotopies -/
|
||
definition smash_functor_pcompose_phomotopy {f₂ f₂' : C →* E} {f f' : A →* C} {g₂ g₂' : D →* F}
|
||
{g g' : B →* D} (h₂ : f₂ ~* f₂') (h₁ : f ~* f') (k₂ : g₂ ~* g₂') (k₁ : g ~* g') :
|
||
phsquare (smash_functor_pcompose f₂ f g₂ g)
|
||
(smash_functor_pcompose f₂' f' g₂' g')
|
||
(smash_functor_phomotopy (h₂ ◾* h₁) (k₂ ◾* k₁))
|
||
(smash_functor_phomotopy h₂ k₂ ◾* smash_functor_phomotopy h₁ k₁) :=
|
||
begin
|
||
induction h₁ using phomotopy_rec_on_idp, induction h₂ using phomotopy_rec_on_idp,
|
||
induction k₁ using phomotopy_rec_on_idp, induction k₂ using phomotopy_rec_on_idp,
|
||
refine (ap011 smash_functor_phomotopy !pcompose2_refl !pcompose2_refl ⬝
|
||
!smash_functor_phomotopy_refl) ⬝ph** phvrfl ⬝hp**
|
||
(ap011 pcompose2 !smash_functor_phomotopy_refl !smash_functor_phomotopy_refl ⬝
|
||
!pcompose2_refl)⁻¹,
|
||
end
|
||
|
||
definition smash_functor_pid_pcompose_phomotopy_right (g₂ : D →* E) {g g' : B →* D}
|
||
(k : g ~* g') :
|
||
phsquare (smash_functor_pid_pcompose A g₂ g)
|
||
(smash_functor_pid_pcompose A g₂ g')
|
||
(smash_functor_phomotopy phomotopy.rfl (pwhisker_left g₂ k))
|
||
(pwhisker_left (pid A ∧→ g₂) (smash_functor_phomotopy phomotopy.rfl k)) :=
|
||
begin
|
||
refine smash_functor_phomotopy_phsquare _ _ ⬝h** !smash_functor_pcompose_phomotopy ⬝hp**
|
||
((ap (pwhisker_right _) !smash_functor_phomotopy_refl) ◾** idp ⬝ !pcompose2_refl_left),
|
||
exact (!pcompose2_refl ⬝ph** phvrfl)⁻¹ʰ**,
|
||
exact (phhrfl ⬝hp** !pcompose2_refl_left⁻¹)
|
||
end
|
||
|
||
section
|
||
variables {A₀₀ A₂₀ A₀₂ A₂₂ : Type*} {B₀₀ B₂₀ B₀₂ B₂₂ : Type*}
|
||
{f₁₀ : A₀₀ →* A₂₀} {f₀₁ : A₀₀ →* A₀₂} {f₂₁ : A₂₀ →* A₂₂} {f₁₂ : A₀₂ →* A₂₂}
|
||
{g₁₀ : B₀₀ →* B₂₀} {g₀₁ : B₀₀ →* B₀₂} {g₂₁ : B₂₀ →* B₂₂} {g₁₂ : B₀₂ →* B₂₂}
|
||
|
||
/- applying the functorial action of smash to squares of pointed maps -/
|
||
definition smash_functor_psquare (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : psquare g₁₀ g₁₂ g₀₁ g₂₁) :
|
||
psquare (f₁₀ ∧→ g₁₀) (f₁₂ ∧→ g₁₂) (f₀₁ ∧→ g₀₁) (f₂₁ ∧→ g₂₁) :=
|
||
!smash_functor_pcompose⁻¹* ⬝* smash_functor_phomotopy p q ⬝* !smash_functor_pcompose
|
||
end
|
||
|
||
/- f ∧ g is constant if g is constant -/
|
||
definition smash_functor_pconst_right_homotopy [unfold 6] {C : Type} (f : A → C) (x : A ∧ B) :
|
||
(pmap_of_map f pt ∧→ pconst B D) x = pt :=
|
||
begin
|
||
induction x with a b a b,
|
||
{ exact gluel' (f a) pt },
|
||
{ exact (gluel pt)⁻¹ },
|
||
{ exact (gluer pt)⁻¹ },
|
||
{ apply eq_pathover, note x := functor_gluel2 f (λx : B, Point D) a, esimp [pconst] at *,
|
||
refine x ⬝ph _, refine _ ⬝hp !ap_constant⁻¹, apply square_of_eq, reflexivity },
|
||
{ apply eq_pathover, note x := functor_gluer2 f (λx : B, Point D) b, esimp [pconst] at *,
|
||
refine x ⬝ph _, refine _ ⬝hp !ap_constant⁻¹, apply square_of_eq,
|
||
rexact con.right_inv (gluel (f pt)) ⬝ (con.right_inv (gluer pt))⁻¹ }
|
||
end
|
||
|
||
definition smash_functor_pconst_right (f : A →* C) :
|
||
f ∧→ (pconst B D) ~* pconst (A ∧ B) (C ∧ D) :=
|
||
begin
|
||
induction C with C, induction f with f f₀, esimp at *, induction f₀,
|
||
fapply phomotopy.mk,
|
||
{ exact smash_functor_pconst_right_homotopy f },
|
||
{ rexact con.right_inv (gluel (f pt)) }
|
||
end
|
||
|
||
definition smash_functor_pconst_right_phomotopy {f f' : A →* C} (p : f ~* f') :
|
||
smash_functor_phomotopy p (phomotopy.refl (pconst B D)) ⬝* smash_functor_pconst_right f' =
|
||
smash_functor_pconst_right f :=
|
||
begin
|
||
induction p using phomotopy_rec_on_idp,
|
||
exact !smash_functor_phomotopy_refl ◾** idp ⬝ !refl_trans
|
||
end
|
||
|
||
/- This makes smash_functor into a pointed map (B →* B') →* (A ∧ B →* A ∧ B') -/
|
||
|
||
definition smash_functor_right [constructor] (A B C : Type*) :
|
||
ppmap B C →* ppmap (A ∧ B) (A ∧ C) :=
|
||
pmap.mk (smash_functor (pid A)) (eq_of_phomotopy (smash_functor_pconst_right (pid A)))
|
||
|
||
/- We want to show that smash_functor_right is natural in A, B and C.
|
||
|
||
For this we need two coherence rules. Given the function h := (f' ∘ f) ∧→ (g' ∘ g) and suppose
|
||
that either g' or g is constant. There are two ways to show that h is constant: either by using
|
||
exchange, or directly. We need to show that these two proofs result in the same pointed
|
||
homotopy. First we do the case where g is constant -/
|
||
|
||
private definition my_squarel {A : Type} {a₁ a₂ a₃ : A} (p₁ : a₁ = a₃) (p₂ : a₂ = a₃) :
|
||
square (p₁ ⬝ p₂⁻¹) p₂⁻¹ p₁ idp :=
|
||
proof square_of_eq idp qed
|
||
|
||
private definition my_squarer {A : Type} {a₁ a₂ a₃ : A} (p₁ : a₁ = a₃) (p₂ : a₁ = a₂) :
|
||
square (p₁ ⬝ p₁⁻¹) p₂⁻¹ p₂ idp :=
|
||
proof square_of_eq (con.right_inv p₁ ⬝ (con.right_inv p₂)⁻¹) qed
|
||
|
||
private definition my_cube_fillerl {A B C : Type} {g : B → C} {f : A → B} {a₁ a₂ : A} {b₀ : B}
|
||
{p : f ~ λa, b₀} {q : Πa, g (f a) = g b₀} (r : (λa, ap g (p a)) ~ q) :
|
||
cube (hrfl ⬝hp (r a₁)⁻¹) hrfl
|
||
(my_squarel (q a₁) (q a₂)) (aps g (my_squarel (p a₁) (p a₂)))
|
||
(hrfl ⬝hp (!ap_con ⬝ whisker_left _ !ap_inv ⬝ (r a₁) ◾ (r a₂)⁻²)⁻¹)
|
||
(hrfl ⬝hp (r a₂)⁻²⁻¹ ⬝hp !ap_inv⁻¹) :=
|
||
begin
|
||
induction r using homotopy.rec_on_idp, induction p using homotopy.rec_on_idp_left, exact idc
|
||
end
|
||
|
||
private definition my_cube_fillerr {B C : Type} {g : B → C} {b₀ bl br : B}
|
||
{pl : b₀ = bl} {pr : b₀ = br} {ql : g b₀ = g bl} {qr : g b₀ = g br}
|
||
(sl : ap g pl = ql) (sr : ap g pr = qr) :
|
||
cube (hrfl ⬝hp sr⁻¹) hrfl
|
||
(my_squarer ql qr) (aps g (my_squarer pl pr))
|
||
(hrfl ⬝hp (!ap_con ⬝ whisker_left _ !ap_inv ⬝ sl ◾ sl⁻²)⁻¹)
|
||
(hrfl ⬝hp sr⁻²⁻¹ ⬝hp !ap_inv⁻¹) :=
|
||
begin
|
||
induction sr, induction sl, induction pr, induction pl, exact idc
|
||
end
|
||
|
||
definition smash_functor_pcompose_pconst_homotopy {A B C D E F : Type}
|
||
(a₀ : A) (b₀ : B) (d₀ : D) (f' : C → E) (f : A → C) (g : D → F)
|
||
(x : pointed.MK A a₀ ∧ pointed.MK B b₀) :
|
||
square (smash_functor_pcompose_homotopy f' f g (λ a, d₀) x)
|
||
idp
|
||
(smash_functor_pconst_right_homotopy (λ a, f' (f a)) x)
|
||
(ap (smash_functor' (pmap.mk f' (refl (f' (f a₀)))) (pmap.mk g (refl (g d₀))))
|
||
(smash_functor_pconst_right_homotopy f x)) :=
|
||
begin
|
||
induction x with a b a b,
|
||
{ refine _ ⬝hp (functor_gluel'2 f' g (f a) (f a₀))⁻¹, exact hrfl },
|
||
{ refine _ ⬝hp !ap_inv⁻¹, refine _ ⬝hp !functor_gluel2⁻²⁻¹, exact hrfl },
|
||
{ refine _ ⬝hp !ap_inv⁻¹, refine _ ⬝hp !functor_gluer2⁻²⁻¹, exact hrfl },
|
||
{ exact abstract begin apply square_pathover,
|
||
refine !rec_eq_gluel ⬝p1 _ ⬝1p !natural_square_refl⁻¹,
|
||
refine !rec_eq_gluel ⬝p2 _ ⬝2p !natural_square_ap_fn⁻¹,
|
||
apply whisker001, apply whisker021,
|
||
apply move201, refine _ ⬝1p !eq_hconcat_hdeg_square⁻¹,
|
||
apply move221, refine _ ⬝1p !hdeg_square_hconcat_eq⁻¹,
|
||
refine ap (hconcat_eq _) !ap_inv ⬝p1 _ ⬝2p (ap (aps _) !rec_eq_gluel ⬝ !aps_eq_hconcat)⁻¹,
|
||
apply whisker021, refine _ ⬝2p !aps_hconcat_eq⁻¹, apply move221,
|
||
refine _ ⬝1p !hdeg_square_hconcat_eq⁻¹,
|
||
refine _ ⬝1p ap hdeg_square (eq_bot_of_square (transpose !ap02_ap_constant)),
|
||
apply my_cube_fillerl end end },
|
||
{ exact abstract begin apply square_pathover,
|
||
refine !rec_eq_gluer ⬝p1 _ ⬝1p !natural_square_refl⁻¹,
|
||
refine !rec_eq_gluer ⬝p2 _ ⬝2p !natural_square_ap_fn⁻¹,
|
||
apply whisker001, apply whisker021,
|
||
apply move201, refine _ ⬝1p !eq_hconcat_hdeg_square⁻¹,
|
||
apply move221, refine _ ⬝1p !hdeg_square_hconcat_eq⁻¹,
|
||
refine ap (hconcat_eq _) !ap_inv ⬝p1 _ ⬝2p (ap (aps _) !rec_eq_gluer ⬝ !aps_eq_hconcat)⁻¹,
|
||
apply whisker021, refine _ ⬝2p !aps_hconcat_eq⁻¹, apply move221,
|
||
refine _ ⬝1p !hdeg_square_hconcat_eq⁻¹,
|
||
refine _ ⬝1p ap hdeg_square (eq_bot_of_square (transpose !ap02_ap_constant)),
|
||
apply my_cube_fillerr end end }
|
||
end
|
||
|
||
definition smash_functor_pcompose_pconst (f' : C →* E) (f : A →* C) (g : D →* F) :
|
||
phsquare (smash_functor_pcompose f' f g (pconst B D))
|
||
(smash_functor_pconst_right (f' ∘* f))
|
||
(smash_functor_phomotopy phomotopy.rfl (pcompose_pconst g))
|
||
(pwhisker_left (f' ∧→ g) (smash_functor_pconst_right f) ⬝*
|
||
pcompose_pconst (f' ∧→ g)) :=
|
||
begin
|
||
induction A with A a₀, induction B with B b₀,
|
||
induction E with E e₀, induction C with C c₀, induction F with F x₀, induction D with D d₀,
|
||
induction f' with f' f'₀, induction f with f f₀, induction g with g g₀,
|
||
esimp at *, induction f'₀, induction f₀, induction g₀,
|
||
refine !smash_functor_phomotopy_refl ⬝ph** _, refine _ ⬝ !refl_trans⁻¹,
|
||
fapply phomotopy_eq,
|
||
{ intro x, refine eq_of_square _ ⬝ !con_idp,
|
||
exact smash_functor_pcompose_pconst_homotopy a₀ b₀ d₀ f' f g x, },
|
||
{ refine _ ⬝ !idp_con⁻¹,
|
||
refine whisker_right _ (!whisker_right_idp ⬝ !eq_of_square_hrfl_hconcat_eq) ⬝ _,
|
||
refine !con.assoc ⬝ _, apply con_eq_of_eq_inv_con,
|
||
refine whisker_right _ _ ⬝ _, rotate 1, rexact functor_gluel'2_same f' g (f a₀),
|
||
refine !inv_con_cancel_right ⬝ _,
|
||
exact sorry, -- TODO: FIX, the proof below should work
|
||
-- refine _ ⬝ whisker_left _ _,
|
||
-- rotate 2, refine ap (whisker_left _) _, symmetry, exact !idp_con ⬝ !idp_con ⬝ !whisker_right_idp ⬝ !idp_con,
|
||
-- symmetry, apply whisker_left_idp
|
||
}
|
||
end
|
||
|
||
/- a version where the left maps are identities -/
|
||
definition smash_functor_pid_pcompose_pconst (g : D →* F) :
|
||
phsquare (smash_functor_pid_pcompose A g (pconst B D))
|
||
(smash_functor_pconst_right (pid A))
|
||
(smash_functor_phomotopy phomotopy.rfl (pcompose_pconst g))
|
||
(pwhisker_left (pid A ∧→ g) (smash_functor_pconst_right (pid A)) ⬝*
|
||
pcompose_pconst (pid A ∧→ g)) :=
|
||
(!smash_functor_phomotopy_refl ◾** idp ⬝ !refl_trans) ⬝pv**
|
||
smash_functor_pcompose_pconst (pid A) (pid A) g
|
||
|
||
/- a small rewrite of the previous -/
|
||
definition smash_functor_pid_pcompose_pconst' (g : D →* F) :
|
||
pwhisker_left (pid A ∧→ g) (smash_functor_pconst_right (pid A)) ⬝*
|
||
pcompose_pconst (pid A ∧→ g) =
|
||
(smash_functor_pid_pcompose A g (pconst B D))⁻¹* ⬝*
|
||
(smash_functor_phomotopy phomotopy.rfl (pcompose_pconst g) ⬝*
|
||
smash_functor_pconst_right (pid A)) :=
|
||
begin
|
||
apply eq_symm_trans_of_trans_eq,
|
||
exact smash_functor_pid_pcompose_pconst g
|
||
end
|
||
|
||
/- if g' is constant -/
|
||
definition smash_functor_pconst_pcompose_homotopy [unfold 13] {A B C D E F : Type}
|
||
(a₀ : A) (b₀ : B) (x₀ : F) (f' : C → E) (f : A → C) (g : B → D)
|
||
(x : pointed.MK A a₀ ∧ pointed.MK B b₀) :
|
||
square (smash_functor_pcompose_homotopy f' f (λ a, x₀) g x)
|
||
idp
|
||
(smash_functor_pconst_right_homotopy (λ a, f' (f a)) x)
|
||
(smash_functor_pconst_right_homotopy f'
|
||
(smash_functor (pmap_of_map f a₀) (pmap_of_map g b₀) x)) :=
|
||
begin
|
||
induction x with a b a b,
|
||
{ exact hrfl },
|
||
{ exact hrfl },
|
||
{ exact hrfl },
|
||
{ exact abstract begin apply square_pathover,
|
||
refine !rec_eq_gluel ⬝p1 _ ⬝1p !natural_square_refl⁻¹,
|
||
refine !rec_eq_gluel ⬝p2 _ ⬝2p
|
||
(natural_square_compose (smash_functor_pconst_right_homotopy f') _ _)⁻¹ᵖ,
|
||
apply whisker001, apply whisker021,
|
||
apply move201, refine _ ⬝1p !eq_hconcat_hdeg_square⁻¹,
|
||
apply move221, refine _ ⬝1p !hdeg_square_hconcat_eq⁻¹,
|
||
refine ap (hconcat_eq _) !ap_inv ⬝p1 _ ⬝2p (natural_square_eq2 _ !functor_gluel2)⁻¹ᵖ,
|
||
apply whisker021,
|
||
refine _ ⬝1p ap hdeg_square (eq_of_square (!ap_constant_compose⁻¹ʰ) ⬝ !idp_con)⁻¹,
|
||
apply move221, refine _ ⬝1p !hdeg_square_hconcat_eq⁻¹,
|
||
refine _ ⬝2p !rec_eq_gluel⁻¹, apply whisker021,
|
||
apply move221, refine _ ⬝1p !hdeg_square_hconcat_eq⁻¹,
|
||
refine _ ⬝1p ap hdeg_square (eq_bot_of_square (transpose !ap02_constant)),
|
||
exact rfl2 end end },
|
||
{ exact abstract begin apply square_pathover,
|
||
refine !rec_eq_gluer ⬝p1 _ ⬝1p !natural_square_refl⁻¹,
|
||
refine !rec_eq_gluer ⬝p2 _ ⬝2p
|
||
(natural_square_compose (smash_functor_pconst_right_homotopy f') _ _)⁻¹ᵖ,
|
||
apply whisker001, apply whisker021,
|
||
apply move201, refine _ ⬝1p !eq_hconcat_hdeg_square⁻¹,
|
||
apply move221, refine _ ⬝1p !hdeg_square_hconcat_eq⁻¹,
|
||
refine ap (hconcat_eq _) !ap_inv ⬝p1 _ ⬝2p (natural_square_eq2 _ !functor_gluer2)⁻¹ᵖ,
|
||
apply whisker021,
|
||
refine _ ⬝1p ap hdeg_square (eq_of_square (!ap_constant_compose⁻¹ʰ) ⬝ !idp_con)⁻¹,
|
||
apply move221, refine _ ⬝1p !hdeg_square_hconcat_eq⁻¹,
|
||
refine _ ⬝2p !rec_eq_gluer⁻¹, apply whisker021,
|
||
apply move221, refine _ ⬝1p !hdeg_square_hconcat_eq⁻¹,
|
||
refine _ ⬝1p ap hdeg_square (eq_bot_of_square (transpose !ap02_constant)),
|
||
exact rfl2 end end },
|
||
end
|
||
|
||
definition smash_functor_pconst_pcompose (f' : C →* E) (f : A →* C) (g : B →* D) :
|
||
phsquare (smash_functor_pcompose f' f (pconst D F) g)
|
||
(smash_functor_pconst_right (f' ∘* f))
|
||
(smash_functor_phomotopy phomotopy.rfl (pconst_pcompose g))
|
||
(pwhisker_right (f ∧→ g) (smash_functor_pconst_right f') ⬝*
|
||
pconst_pcompose (f ∧→ g)) :=
|
||
begin
|
||
induction A with A a₀, induction B with B b₀,
|
||
induction E with E e₀, induction C with C c₀, induction F with F x₀, induction D with D d₀,
|
||
induction f' with f' f'₀, induction f with f f₀, induction g with g g₀,
|
||
esimp at *, induction f'₀, induction f₀, induction g₀,
|
||
refine !smash_functor_phomotopy_refl ⬝ph** _, refine _ ⬝ !refl_trans⁻¹,
|
||
fapply phomotopy_eq,
|
||
{ intro x, refine eq_of_square (smash_functor_pconst_pcompose_homotopy a₀ b₀ x₀ f' f g x) },
|
||
{ refine whisker_right _ (!whisker_right_idp ⬝ !eq_of_square_hrfl) ⬝ _,
|
||
have H : Π{A : Type} {a a' : A} (p : a = a'),
|
||
idp_con (p ⬝ p⁻¹) ⬝ con.right_inv p = idp ⬝
|
||
whisker_left idp (idp ⬝ (idp ⬝ proof whisker_right idp (idp_con (p ⬝ p⁻¹ᵖ))⁻¹ᵖ qed ⬝
|
||
whisker_left idp (con.right_inv p))), by intros; induction p; reflexivity,
|
||
rexact H (gluel (f' (f a₀))) }
|
||
end
|
||
|
||
/- a version where the left maps are identities -/
|
||
definition smash_functor_pid_pconst_pcompose (g : B →* D) :
|
||
phsquare (smash_functor_pid_pcompose A (pconst D F) g)
|
||
(smash_functor_pconst_right (pid A))
|
||
(smash_functor_phomotopy phomotopy.rfl (pconst_pcompose g))
|
||
(pwhisker_right (pid A ∧→ g) (smash_functor_pconst_right (pid A)) ⬝*
|
||
pconst_pcompose (pid A ∧→ g)) :=
|
||
(!smash_functor_phomotopy_refl ◾** idp ⬝ !refl_trans) ⬝pv**
|
||
smash_functor_pconst_pcompose (pid A) (pid A) g
|
||
|
||
/- Using these lemmas we show that smash_functor_right is natural in all arguments -/
|
||
definition smash_functor_right_natural_right (f : C →* C') :
|
||
psquare (smash_functor_right A B C) (smash_functor_right A B C')
|
||
(ppcompose_left f) (ppcompose_left (pid A ∧→ f)) :=
|
||
begin
|
||
refine _⁻¹*,
|
||
fapply phomotopy_mk_ppmap,
|
||
{ exact smash_functor_pid_pcompose A f },
|
||
{ refine idp ◾** (!phomotopy_of_eq_con ⬝ (ap phomotopy_of_eq !pcompose_left_eq_of_phomotopy ⬝
|
||
!phomotopy_of_eq_of_phomotopy) ◾** !phomotopy_of_eq_of_phomotopy) ⬝ _ ,
|
||
refine _ ⬝ (!phomotopy_of_eq_con ⬝ (ap phomotopy_of_eq !smash_functor_eq_of_phomotopy ⬝
|
||
!phomotopy_of_eq_of_phomotopy) ◾** !phomotopy_of_eq_of_phomotopy)⁻¹,
|
||
apply smash_functor_pid_pcompose_pconst }
|
||
end
|
||
|
||
definition smash_functor_right_natural_middle (f : B' →* B) :
|
||
psquare (smash_functor_right A B C) (smash_functor_right A B' C)
|
||
(ppcompose_right f) (ppcompose_right (pid A ∧→ f)) :=
|
||
begin
|
||
refine _⁻¹*,
|
||
fapply phomotopy_mk_ppmap,
|
||
{ intro g, exact smash_functor_pid_pcompose A g f },
|
||
{ refine idp ◾** (!phomotopy_of_eq_con ⬝ (ap phomotopy_of_eq !pcompose_right_eq_of_phomotopy ⬝
|
||
!phomotopy_of_eq_of_phomotopy) ◾** !phomotopy_of_eq_of_phomotopy) ⬝ _ ,
|
||
refine _ ⬝ (!phomotopy_of_eq_con ⬝ (ap phomotopy_of_eq !smash_functor_eq_of_phomotopy ⬝
|
||
!phomotopy_of_eq_of_phomotopy) ◾** !phomotopy_of_eq_of_phomotopy)⁻¹,
|
||
apply smash_functor_pid_pconst_pcompose }
|
||
end
|
||
|
||
definition smash_functor_right_natural_left (f : A →* A') :
|
||
psquare (smash_functor_right A B C) (ppcompose_right (f ∧→ (pid B)))
|
||
(smash_functor_right A' B C) (ppcompose_left (f ∧→ (pid C))) :=
|
||
begin
|
||
refine _⁻¹*,
|
||
fapply phomotopy_mk_ppmap,
|
||
{ intro g, exact smash_functor_psquare proof phomotopy.rfl qed proof phomotopy.rfl qed },
|
||
{ esimp,
|
||
refine idp ◾** (!phomotopy_of_eq_con ⬝ (ap phomotopy_of_eq !pcompose_left_eq_of_phomotopy ⬝
|
||
!phomotopy_of_eq_of_phomotopy) ◾** !phomotopy_of_eq_of_phomotopy) ⬝ _ ,
|
||
refine _ ⬝ (!phomotopy_of_eq_con ⬝ (ap phomotopy_of_eq !pcompose_right_eq_of_phomotopy ⬝
|
||
!phomotopy_of_eq_of_phomotopy) ◾** !phomotopy_of_eq_of_phomotopy)⁻¹,
|
||
apply eq_of_phsquare,
|
||
refine (phmove_bot_of_left _ !smash_functor_pconst_pcompose⁻¹ʰ**) ⬝h**
|
||
(!smash_functor_phomotopy_refl ⬝pv** !phhrfl) ⬝h** !smash_functor_pcompose_pconst ⬝vp** _,
|
||
refine !trans_assoc ⬝ !trans_assoc ⬝ idp ◾** _ ⬝ !trans_refl,
|
||
refine idp ◾** !refl_trans ⬝ !trans_left_inv }
|
||
end
|
||
|
||
/- f ∧ g is a pointed equivalence if f and g are -/
|
||
definition smash_functor_using_pushout [unfold 7] (f : A →* C) (g : B →* D) : A ∧ B → C ∧ D :=
|
||
begin
|
||
fapply pushout.functor (sum_functor f g) (prod_functor f g) id,
|
||
{ intro v, induction v with a b,
|
||
exact prod_eq idp (respect_pt g),
|
||
exact prod_eq (respect_pt f) idp },
|
||
{ intro v, induction v with a b: reflexivity }
|
||
end
|
||
|
||
definition smash_functor_homotopy_pushout_functor (f : A →* C) (g : B →* D) :
|
||
f ∧→ g ~ smash_functor_using_pushout f g :=
|
||
begin
|
||
intro x, induction x,
|
||
{ reflexivity },
|
||
{ reflexivity },
|
||
{ reflexivity },
|
||
{ apply eq_pathover, refine !elim_gluel ⬝ph _ ⬝hp !pushout.elim_glue⁻¹,
|
||
apply hdeg_square, esimp, apply whisker_right, exact !ap_ap011⁻¹ },
|
||
{ apply eq_pathover, refine !elim_gluer ⬝ph _ ⬝hp !pushout.elim_glue⁻¹,
|
||
apply hdeg_square, esimp, apply whisker_right, exact !ap_ap011⁻¹ }
|
||
end
|
||
|
||
local attribute is_equiv_sum_functor [instance]
|
||
definition smash_pequiv [constructor] (f : A ≃* C) (g : B ≃* D) : A ∧ B ≃* C ∧ D :=
|
||
begin
|
||
fapply pequiv_of_pmap (f ∧→ g),
|
||
refine @homotopy_closed _ _ _ _ _ (smash_functor_homotopy_pushout_functor f g)⁻¹ʰᵗʸ,
|
||
apply pushout.is_equiv_functor
|
||
end
|
||
|
||
definition smash_pequiv_left [constructor] (B : Type*) (f : A ≃* C) : A ∧ B ≃* C ∧ B :=
|
||
smash_pequiv f pequiv.rfl
|
||
|
||
definition smash_pequiv_right [constructor] (A : Type*) (g : B ≃* D) : A ∧ B ≃* A ∧ D :=
|
||
smash_pequiv pequiv.rfl g
|
||
|
||
/- A ∧ B ≃* pcofiber (pprod_of_wedge A B) -/
|
||
|
||
definition prod_of_wedge [unfold 3] (v : wedge A B) : A × B :=
|
||
begin
|
||
induction v with a b ,
|
||
{ exact (a, pt) },
|
||
{ exact (pt, b) },
|
||
{ reflexivity }
|
||
end
|
||
|
||
definition wedge_of_sum [unfold 3] (v : A + B) : wedge A B :=
|
||
begin
|
||
induction v with a b,
|
||
{ exact pushout.inl a },
|
||
{ exact pushout.inr b }
|
||
end
|
||
|
||
definition prod_of_wedge_of_sum [unfold 3] (v : A + B) : prod_of_wedge (wedge_of_sum v) = prod_of_sum v :=
|
||
begin
|
||
induction v with a b,
|
||
{ reflexivity },
|
||
{ reflexivity }
|
||
end
|
||
|
||
end smash open smash
|
||
|
||
namespace pushout
|
||
|
||
definition eq_inl_pushout_wedge_of_sum [unfold 3] (v : wedge A B) :
|
||
inl pt = inl v :> pushout wedge_of_sum bool_of_sum :=
|
||
begin
|
||
induction v with a b,
|
||
{ exact glue (sum.inl pt) ⬝ (glue (sum.inl a))⁻¹, },
|
||
{ exact ap inl (glue ⋆) ⬝ glue (sum.inr pt) ⬝ (glue (sum.inr b))⁻¹, },
|
||
{ apply eq_pathover_constant_left,
|
||
refine !con.right_inv ⬝pv _ ⬝vp !con_inv_cancel_right⁻¹, exact square_of_eq idp }
|
||
end
|
||
|
||
variables (A B)
|
||
definition eq_inr_pushout_wedge_of_sum [unfold 3] (b : bool) :
|
||
inl pt = inr b :> pushout (@wedge_of_sum A B) bool_of_sum :=
|
||
begin
|
||
induction b,
|
||
{ exact glue (sum.inl pt) },
|
||
{ exact ap inl (glue ⋆) ⬝ glue (sum.inr pt) }
|
||
end
|
||
|
||
definition is_contr_pushout_wedge_of_sum : is_contr (pushout (@wedge_of_sum A B) bool_of_sum) :=
|
||
begin
|
||
apply is_contr.mk (pushout.inl pt),
|
||
intro x, induction x with v b w,
|
||
{ apply eq_inl_pushout_wedge_of_sum },
|
||
{ apply eq_inr_pushout_wedge_of_sum },
|
||
{ apply eq_pathover_constant_left_id_right,
|
||
induction w with a b,
|
||
{ apply whisker_rt, exact vrfl },
|
||
{ apply whisker_rt, exact vrfl }}
|
||
end
|
||
|
||
definition bool_of_sum_of_bool {A B : Type*} (b : bool) : bool_of_sum (sum_of_bool A B b) = b :=
|
||
by induction b: reflexivity
|
||
|
||
/- a different proof, using pushout lemmas, and the fact that the wedge is the pushout of
|
||
A + B <-- 2 --> 1 -/
|
||
definition pushout_wedge_of_sum_equiv_unit : pushout (@wedge_of_sum A B) bool_of_sum ≃ unit :=
|
||
begin
|
||
refine pushout_hcompose_equiv (sum_of_bool A B) (wedge_equiv_pushout_sum A B ⬝e !pushout.symm)
|
||
_ _ ⬝e _,
|
||
exact erfl,
|
||
intro x, induction x,
|
||
reflexivity, reflexivity,
|
||
exact bool_of_sum_of_bool,
|
||
apply pushout_of_equiv_right
|
||
end
|
||
|
||
end pushout open pushout
|
||
|
||
namespace smash
|
||
|
||
variables (A B)
|
||
|
||
definition smash_equiv_cofiber : smash A B ≃ cofiber (@prod_of_wedge A B) :=
|
||
begin
|
||
unfold [smash, cofiber, smash'], symmetry,
|
||
fapply pushout_vcompose_equiv wedge_of_sum,
|
||
{ symmetry, apply equiv_unit_of_is_contr, apply is_contr_pushout_wedge_of_sum },
|
||
{ intro x, reflexivity },
|
||
{ apply prod_of_wedge_of_sum }
|
||
end
|
||
|
||
definition smash_punit_pequiv [constructor] : smash A punit ≃* punit :=
|
||
begin
|
||
apply pequiv_punit_of_is_contr,
|
||
apply is_contr.mk (smash.mk pt ⋆), intro x,
|
||
induction x,
|
||
{ induction b, exact gluel' pt a },
|
||
{ exact gluel pt },
|
||
{ exact gluer pt },
|
||
{ apply eq_pathover_constant_left_id_right, apply square_of_eq_top,
|
||
exact whisker_right _ !idp_con⁻¹ },
|
||
{ apply eq_pathover_constant_left_id_right, induction b,
|
||
refine !con.right_inv ⬝pv _, exact square_of_eq idp },
|
||
end
|
||
|
||
definition pprod_of_wedge [constructor] : wedge A B →* A ×* B :=
|
||
begin
|
||
fconstructor,
|
||
{ exact prod_of_wedge },
|
||
{ reflexivity }
|
||
end
|
||
|
||
definition smash_pequiv_pcofiber [constructor] : smash A B ≃* pcofiber (pprod_of_wedge A B) :=
|
||
begin
|
||
apply pequiv_of_equiv (smash_equiv_cofiber A B),
|
||
exact cofiber.glue pt
|
||
end
|
||
|
||
variables {A B}
|
||
|
||
/- commutativity -/
|
||
|
||
definition smash_flip' [unfold 3] (x : smash A B) : smash B A :=
|
||
begin
|
||
induction x,
|
||
{ exact smash.mk b a },
|
||
{ exact auxr },
|
||
{ exact auxl },
|
||
{ exact gluer a },
|
||
{ exact gluel b }
|
||
end
|
||
|
||
definition smash_flip_smash_flip' [unfold 3] (x : smash A B) : smash_flip' (smash_flip' x) = x :=
|
||
begin
|
||
induction x,
|
||
{ reflexivity },
|
||
{ reflexivity },
|
||
{ reflexivity },
|
||
{ apply eq_pathover_id_right,
|
||
refine ap_compose' smash_flip' _ _ ⬝ ap02 _ !elim_gluel ⬝ !elim_gluer ⬝ph _,
|
||
apply hrfl },
|
||
{ apply eq_pathover_id_right,
|
||
refine ap_compose' smash_flip' _ _ ⬝ ap02 _ !elim_gluer ⬝ !elim_gluel ⬝ph _,
|
||
apply hrfl }
|
||
end
|
||
|
||
variables (A B)
|
||
|
||
definition smash_flip [constructor] : smash A B →* smash B A :=
|
||
pmap.mk smash_flip' idp
|
||
|
||
definition smash_flip_smash_flip [constructor] :
|
||
smash_flip B A ∘* smash_flip A B ~* pid (A ∧ B) :=
|
||
phomotopy.mk smash_flip_smash_flip' idp
|
||
|
||
definition smash_comm [constructor] : smash A B ≃* smash B A :=
|
||
begin
|
||
apply pequiv.MK, do 2 apply smash_flip_smash_flip
|
||
end
|
||
|
||
variables {A B}
|
||
definition smash_flip_smash_functor' [unfold 7] (f : A →* C) (g : B →* D) : hsquare
|
||
smash_flip' smash_flip' (smash_functor' f g) (smash_functor' g f) :=
|
||
begin
|
||
intro x, induction x,
|
||
{ reflexivity },
|
||
{ reflexivity },
|
||
{ reflexivity },
|
||
{ apply eq_pathover,
|
||
refine ap_compose' (smash_functor' _ _) _ _ ⬝ ap02 _ !elim_gluel ⬝ !functor_gluer ⬝ph _
|
||
⬝hp (ap_compose' smash_flip' _ _ ⬝ ap02 _ !functor_gluel)⁻¹ᵖ,
|
||
refine _ ⬝hp (!ap_con ⬝ !ap_compose'⁻¹ ◾ !elim_gluel)⁻¹, exact hrfl },
|
||
{ apply eq_pathover,
|
||
refine ap_compose' (smash_functor' _ _) _ _ ⬝ ap02 _ !elim_gluer ⬝ !functor_gluel ⬝ph _
|
||
⬝hp (ap_compose' smash_flip' _ _ ⬝ ap02 _ !functor_gluer)⁻¹ᵖ,
|
||
refine _ ⬝hp (!ap_con ⬝ !ap_compose'⁻¹ ◾ !elim_gluer)⁻¹, exact hrfl },
|
||
end
|
||
|
||
definition smash_flip_smash_functor (f : A →* C) (g : B →* D) :
|
||
psquare (smash_flip A B) (smash_flip C D) (f ∧→ g) (g ∧→ f) :=
|
||
begin
|
||
apply phomotopy.mk (smash_flip_smash_functor' f g), refine !idp_con ⬝ _ ⬝ !idp_con⁻¹,
|
||
refine !ap_ap011 ⬝ _, apply ap011_flip,
|
||
end
|
||
|
||
end smash
|